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The Integers and Division

Introduction

In the next sections we will review concepts from Number Theory, the
branch of mathematics that deals with integer numbers and their
properties.

We will be covering the following topics:

1 Divisibility and Modular Arithmetic (applications to hashing
functions/tables and simple cryptographic cyphers). Section 3.4

2 Prime Numbers, Greatest Common Divisors (GCD) and Euclidean
Algorithm. Section 3.5, part of 3.6

3 Applications to computer science: computer arithmetic with large
integers and cryptography. Section 3.7
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The Integers and Division

Divisibility
When dividing an integer by a second nonzero integer, the quotient may or
may not be an integer.
For example, 12/3 = 4 while 9/4 = 2.25.

The issue of divisibility is addressed in the following definition.

Definition

If a and b are integers with a 6= 0, we say that a divides b if there exists an
integer c such that b = ac. When a divides b we say that a is a factor of b
and that b is a multiple of a.
The notation a | b denotes a divides b and a 6 | b denotes a does not divide
b.

Back to the above examples, we see that 3 divides 12, denoted as 3 | 12,
and 4 does not divide 9, denoted as 4 6 | 9.
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The Integers and Division

Divisibility Properties

Theorem (1)

Let a, b, and c be integers. Then,

1 if a | b and a | c then a | (b + c);
2 if a | b then a | bc for all integers c;

3 if a | b and b | c then a | c;

Proof: Direct proof given in class.

Corollary (1)

If a, b, and c are integers such that a | b and a | c, then a | mb + nc
whenever m and n are integers.

Proof: Direct proof given in class.

CSI2101 Discrete Structures Winter 2010: Intro to Number Theory Lucia Moura



The Integers and Division Primes and Greatest Common Divisor Applications

The Integers and Division

The division algorithm

Theorem (2, The division algorithm)

Let a be an integer and d a positive integer. Then, there are unique
integers q and r, with 0 ≤ r < d, such that a = dq + r.

d is called the divisor;

a is called the dividend;

q is called the quotient; this can be expressed q = a div d;

r is called the remainder; this cane be expressed r = a mod d;

Example:
If a = 7 and d = 3, then q = 2 and r = 1, since 7 = (2)(3) + 1.
If a = −7 and d = 3, then q = −3 and r = 2, since −7 = (−3)(3) + 2.
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The Integers and Division

Using successive subtractions to find q and r:

a = 101 and d = 11

101
- 11

90
- 11

79
- 11

68
- 11

57
- 11

46

46
- 11

35
- 11

24
- 11

13
- 11

2

q = 9 as we subtracted 11, 9 times
r = 2 since this was the last value before getting negative.
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The Integers and Division

Proof of the previous theorem (the division Algorithm)

Existence:
Let S be the set of nonnegative integers of the form a− dq, where q is an
integer. This set is nonempty because −dq can be made as large as
desired (taking q as a negative integer with large absolute value). By the
well-ordering property, S has a least element r = a− dq0 for some integer
q0.
The integer r is nonnegative. It is also the case that r < d; otherwise if
r ≥ d, then there would be a smaller nonnegative element in S, namely
a− d(q0 + 1), contradicting the fact that a− dq0 was the smallest element
of S. So, we just proved the existence of r and q, with 0 ≤ r < d. �
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The Integers and Division

Uniqueness:
Suppose there exist q, Q, r, R with 0 ≤ r, R < d such that a = dq + r and
a = dQ + R. Assume without loss of generality that q ≤ Q. Subtracting
both equations, we have d(q −Q) = (R− r). Thus, d divides (R− r),
and so |d| < |(R− r)| or R− r = 0. But we know that 0 ≤ r, R < d, so
|R− r| < d, and we must have R− r = 0. This means R = r, which
substituting into original equations gives a− r = dq = dQ. Since d 6= 0,
dividing both sides of dq = dQ by d we get that q = Q. Therefore we have
showed that r = R and q = Q, proving uniqueness. �
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Modular Arithmetic

Modular Arithmetic

Definition

If a and b are integers and m is a positive integer, then a is congruent to b
modulo m if m divides a− b. We use the notation a ≡ b (mod m) if this
is the case, and a 6≡ b (mod m), otherwise.

The following theorem says that two numbers being congruent modulo m
is equivalent to their having the same remainders when dividing by m.

Theorem (3)

Let a and b be integers and let m be a positive integer.
Then, a ≡ b (mod m) if and only if a mod m = b mod m.

Example: 10 and 26 are congruent modulo 8, since their difference is 16 or
−16, which is divisible by 8. When dividing 10 and 26 by 8 we get
10 = 1 · 8 + 2 and 26 = 4 · 8 + 2. So 10 mod 8 = 2 = 16 mod 8.
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Modular Arithmetic

Proof of the theorem given in class.
(you may use this space to take notes)
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Modular Arithmetic

Theorem (4)

Let m be a positive integer. The integers a and b are congruent modulo m
if and only if there is an integer k such that a = b + km

(Proof given in class.)

Theorem (5)

Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then
a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

(Proof given in class.)
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Modular Arithmetic

Corollary (2)

Let m be a positive integer and let a and b be integers. Then,

(a + b) mod m = ((a mod m) + (b mod m)) mod m

ab mod m = ((a mod m)(b mod m)) mod m

Proof:
By the definition of mod m and the definition of congruence modulo m,
we know that a ≡ (a mod m) (mod m), and b ≡ (b mod m) (mod m).
Applying Theorem 5, we get

a + b ≡ (a mod m) + (b mod m) (mod m)

ab ≡ (a mod m)(b mod m) (mod m)

Using Theorem 3, from the above congruences we get the equalities in the
statement of the theorem.
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Modular Arithmetic

Congruences and Hashing Functions
A hashing table is a data structure that allows for direct access to data.
If done carefully, and under certain assumptions, we can search for a
record with a set of n records in expected time O(1).
Each record is uniquely identified by a key (e.g. of keys are student
number for a student record, account number for bank account records,
call number for book records in a library, etc).

One of the most common hash functions uses modular arithmetic:
h(k) = k mod m, where m is the number of memory addresses.
Advantages: easy to compute, function is onto (all memory address can be
used).

Since two different integers k1 and k2 may be mapped to the same
location if k1 ≡ k2 (mod m), collisions may arises. Methods for finding an
alternate location for a key are employed (collision resolution techniques).
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Modular Arithmetic

Congruences and Pseudorandom Number Generators
We need random numbers in several types of algorithms, such as:
randomized algorithms: algorithms that need to flip a coin to behave
unbiasedly), simulation algorithms: where probability models are used to
explain behaviour (example: arrival rate of subway passengers).
A systematic method of generating a number cannot be truly random, so
we call them pseudorandom number generators. The most common
method for such generators is the linear congruential method.
Pick integers a, c, m and seed x0, with 2 ≤ a < m, 0 ≤ c, x0 < m.
Generate a sequence of numbers x0, x1, x2, . . . from the seed x0, using the
congruence:

xn+1 = (axn + c) mod m.

The length of the period before repeats is called the period. Of course
the period is at most m, and sometimes is exactly m (see textbook
example). For this reason m must be large.
If we need a number in [0, 1] we simply provide xn/m.
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Modular Arithmetic

Congruences and Cryptography
Cryptology is the study of secret messages. One of its early uses was by
Roman emperor Julius Caesar.
The Caesar cipher shifted each letter 3 letters forward in the alphabet
(cyclically, sending xyz to abc respectively):

Decipher the message: JRRG OXFN LQ WKH PLGWHUP!
We can express the Caesar cipher mathematically using modular arithmetic
(and generalizing the shift by 3 to a shift by k):

encryption function: f(p) = (p + k) mod 26.
decryption function: f−1(p) = (p− k) mod 26
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Primes

Primes

Definition

A positive integer p > 1 is called prime if the only positive factors of p are
1 and p. A positive integer that is greater than one and is not prime is
called composite.

An integer n is composite if and only if there exists an integer a such that
a|n and 1 < a < n.

Prime numbers: 2, 3, 5, 7, 11, 13, 17, etc.

For the following composite numbers n provide a proof it is composite,
that is, give a divisor a, with 1 < a < n:
Composite Numbers: 4, 6, 8, 9, 10, 12, 14, 15, etc.
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Primes

Theorem (The Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or
as the product of two or more primes where the prime factors are written
in order of nondecreasing size.

The proof uses strong induction, so we will delay it until the next topic.

Examples:

100 = 2 · 2 · 5 · 5 = 22 · 52

641 = 641
333 = 3 · 3 · 37 = 32 · 37
64 = 2 · 2 · 2 · 2 · 2 · 2 = 26
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Primes

Theorem

If n is a composite integer, then n has a prime divisor less than or equal to√
n.

Proof: If n is composite then n has a factor a with 1 < a < n. So, there
exists an integer b > 1 such that n = ab. We claim that a ≤

√
n or

b ≤
√

n. Indeed, assuming by contradiction that a >
√

n and b >
√

n, we
would get n = ab >

√
n ·
√

n = n, a contradiction. So, a ≤
√

n or
b ≤
√

n. Thus, n has a positive divisor ≤
√

n. If the divisor d is prime,
then the theorem follows. If the divisor d is composite, then by the
Fundamental Theorem of Arithmetic, it has a prime divisor p < d ≤

√
n,

and since p|d and d|n, we have that p divides n, and the theorem follows
in this case as well. �

Exercise: Use this Theorem to show 101 is prime.
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Primes

Theorem

There are infinitely many primes.

Proof: We will use a proof by contradiction. Assume there are finitely
many primes: p1, p2, . . . , pn. Let Q = p1p2 · · · pn + 1.
By the Fundamental Theorem of Arithmetic, Q is prime or it can be
written as the product of two or more primes. In either case, there exists a
prime p such that p|Q.
We claim this prime p cannot be any of the pi with 1 ≤ i ≤ n. Indeed, if
pi|Q, we would conclude that pi|(Q− p1p2 · · · pn) = 1, which is a
contradiction. Therefore, we conclude that p is a prime, and is not any of
the primes listed p1, p2, . . . , pn. But we have assumed that this was a
complete list of all existing primes, and we reached a contradiction.
�
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GCDs and LCMs

Greatest Common Divisors

Definition

Let a and b be integers, not both zero. The largest integer d such that d|a
and d|b is called the greatest common divisor of a and b, and is denoted by
gcd(a, b).

Example: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, 12.
So, gcd(24, 36) = 12.

Find the following greatest common divisors:
gcd(17, 100) =
gcd(1000, 625) =
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GCDs and LCMs

Definition

The integers a and b are relatively prime if gcd(a, b) = 1.

8 and 9 are relatively prime since 8 = 23 and 9 = 32, their only common
divisor is 1, giving gcd(8, 9) = 1.

Are the following numbers relatively prime?

3 and 12
1024 and 625
7 and 15
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GCDs and LCMs

Proposition

Let a and b be positive integers and let p1, p2, . . . , pn be all the primes
that appear in the prime factorization of a or b, so that

a = pa1
1 pa2

2 · · · p
an
n , b = pb1

1 pb2
2 · · · p

bn
n ,

where each ai, bi ≥ 0 for 1 ≤ i ≤ n. Then,

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(an,bn)

n

Proof: First note that the integer d = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(an,bn)

n

divides a and b, since the power of each prime pi does not exceed the
power of pi appearing in the factorization of each of these numbers.
Second, the exponents of pi in d cannot be increased, otherwise it would
not divide one of a or b, and no other prime can be included. �
Example: 120 = 23 · 3 · 5 and 500 = 22 · 53,
so gcd(120, 500) = 2min(3,2)3min(1,0)5min(1,3) = 223051 = 20.
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GCDs and LCMs

Definition

The least common multiple of the positive integers a and b is the smallest
positive integer that is divisible by both a and b, denoted by lcm(a, b).

Examples: lcm(2, 10) = 10, lcm(5, 7) = 35, lcm(4, 6) = 12.

Proposition

Let a and b be positive integers and let p1, p2, . . . , pn be all the primes
that appear in the prime factorization of a or b, so that

a = pa1
1 pa2

2 · · · p
an
n , b = pb1

1 pb2
2 · · · p

bn
n ,

where each ai, bi ≥ 0 for 1 ≤ i ≤ n. Then,

lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(an,bn)

n

Proof: left as exercise (similar to the previous proposition)
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GCDs and LCMs

Theorem

Let a and b be positive integers. Then,

ab = gcd(a, b) · lcm(a, b).

Proof: Write a and b as in the previous propositions

a = pa1
1 pa2

2 · · · p
an
n , b = pb1

1 pb2
2 · · · p

bn
n ,

By these propositions, we have
gcd(a, b) · lcm(a, b) =
(pmin(a1,b1)

1 p
min(a2,b2)
2 · · · pmin(an,bn)

n )(pmax(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(an,bn)

n )
= p

max(a1,b1)+min(a1,b1)
1 p

max(a2,b2)+min(a2,b2)
2 · · · pmax(an,bn)+min(an,bn)

n .
Now note that max(ai, bi) + min(ai, bi) = ai + bi. Thus,

gcd(a, b) · lcm(a, b) = pa1+b1
1 pa2+b2

2 · · · pan+bn
n

= pa1
1 pa2

2 · · · p
an
n pb1

1 pb2
2 · · · p

bn
n = ab.
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GCDs and LCMs

Towards an efficient GCD Algorithm

The methods described in Proposition 1 to calculate gcd(a, b) via the
prime factorization of a and b is not efficient.
For instance, we do not know how to efficiently factor a number; that is,
there are no polynomial time algorithm known that does this job. Since
that method requires factoring a and b, we would need to use algorithms
that do not run in polynomial time (exponential or sub-exponential time).

Note that here the input size is blog2 ac+ blog2 bc (number of bits needed
to represent a and b). An algorithm running in linear time with a and b
would not be a polynomial time algorithm.
However, there is an efficient algorithm which uses only O(log(min(a, b)))
integer divisions.
This algorithm was invented by Euclid, a famous mathematician living
during 325-265 B.C.
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GCDs and LCMs

The Euclidean Algorithm
We want to calculate the gcd(91, 287).
Applying the division algorithm to 287 and 91, we get

287 = 91 · 3 + 14.

Any common divisor d of 287 and 91 must also be a divisor of 14, because
d|287 and d|91 implies d|(287− 91 · 3) = 14.
Also, any common divisor of 91 and 14 must also be a divisor of 287.
So, gcd(287, 91)=gcd(91, 14). Great! We’ve just decreased one of the
numbers. Continue the process by dividing 91 by 14:

91 = 14 · 6 + 7.

Again, we conclude gcd(91, 14)=gcd(14, 7), and divide 14 by 7:

14 = 7 · 2 + 0

Because 7 divides 14 we know gcd(14, 7) = 7. Therefore,
gcd(287, 91) =gcd(91, 14) =gcd(14, 7) = 7.
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GCDs and LCMs

The Euclidean algorithm is based on the following Lemma:

Lemma

Let a = bq + r where a, b, q and r are integers. Then gcd(a, b) =gcd(b, r).

Proof: It is enough to show that the common divisors of a and b are the
same as the common divisors of b and r, for then they will also share the
greatest common divisor.
Suppose d|a and d|b. Then d|a− bq = r. So any common divisor of a and
b is also a common divisor of b and r.
Suppose d|b and d|r. Then d|bq + r = a So, any common divisor of b and
r is a common divisor of a and b.
Therefore, gcd(a, b) =gcd(b, r). �
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GCDs and LCMs

The Euclidean Algorithm
Correctness of the Algorithm: partial correctness +termination

Input: a and b positive integers
Output: gcd(a,b)

x := max(a,b)
y := min(a,b)
gcd(x,y)=gcd(a,b)
while (y6=0) do Loop invariant: gcd(x,y)=gcd(a,b)
r := x mod y by the previous THM: gcd(x,y)=gcd(y,r)
x:=y
y:=r

endwhile (loop terminates since y≥ 0 and decreases at each iteration)

postcondition gcd(x,y)=gcd(a,b) and y=0
postcondition x=gcd(x,0)=gcd(a,b)
return x
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GCDs and LCMs

Applying Euclidean Algorithm to find gcd(123, 277):

277 = 123 · 2 + 31
123 = 31 · 3 + 30
31 = 30 · 1 + 1
30 = 1 · 30 + 0

gcd(123, 277) = 1

x 277 123 31 30 1 ← gcd

y 123 31=277 mod 123 30=123 mod 31 1=31 mod 30 0=30 mod 1
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Applications of Number Theory

Useful Results

Theorem (A)

If a and b are positive integers, then there exist integers s and t such that
gcd(a, b) = sa + tb.

Example:
gcd(252, 198) = 18 = 4 · 252− 5 · 198

We won’t prove this now, but will show a method for computing s and t
called the extended Euclidean Algorithm.
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Applications of Number Theory

Extended Euclidean Algorithm
Consider the steps of the Euclidean algorithm for gcd(252, 198):

252 = 1 · 198 + 54
198 = 3 · 54 + 36
54 = 1 · 36 + 18
36 = 2 · 18

Isolate the nonzero remainders in the above equations, substituting
backwards:

gcd(252, 198) = 18 = 54− 1 · 36
= 54− 1(198− 3 · 54) = 4 · 54− 1 · 198
= 4 · (252− 1 · 198)− 1 · 198 = 4 · 252− 5 · 198

Therefore, gcd(252, 198) = 4 · 252− 5 · 198.
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Applications of Number Theory

Lemma (A)

If a, b, and c are positive integers such that gcd(a, b) = 1 and a|bc, then
a|c.

Proof: Using Extended Euclidean Algorithm, there exists s and t such that
sa + tb = 1 =gcd(a, b). Multiplying by c, we get sac + tbc = c. Since a|bc
then a|tbc. But then by the above equation since a|sac and a|tbc, we get
that a|c. �

The above Lemma generalizes to the following Lemma:

Lemma (B)

If p is a prime and p|a1a2 · · · an, where each ai is an integer, then p|ai for
some i.

Proof: Do as an exercise.
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Applications of Number Theory

Dividing both sides of a congruence
As we have seen, we can’t always divide both sides of a congruence by the
same integer, even if it is non-zero.

For example:
6 ≡ 12 (mod 6), but 3 6≡ 6 (mod 6).
14 ≡ 8 (mod 6), but 7 6≡ 4 (mod 6).

However, we can divide by appropriate integers c, as long as gcd(c, m) = 1:

Theorem (B)

Let m be a positive integer and let a, b, and c be integers. If
ac ≡ bc (mod m) and gcd(c, m) = 1, then a ≡ b (mod m).

Proof: Since ac ≡ bc (mod m) we have that m|ac− bc = c(a− b). By
Lemma A, since gcd(c, m) = 1, we have that c|(a− b). This gives
a ≡ b (mod m). �
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Applications of Number Theory

Solving Linear Congruences

Let m be a positive integer, a and b be integers and x be a variable. The
following congruence is called a linear congruence:

ax ≡ b (mod m).

How can we solve it, i.e. find all integers x that satisfy it?

One possible method is to multiply both sides of the congruence by an
inverse a of a (mod m) if one such inverse exists:
a is an inverse of a (mod m) if aa ≡ 1 (mod m).

CSI2101 Discrete Structures Winter 2010: Intro to Number Theory Lucia Moura



The Integers and Division Primes and Greatest Common Divisor Applications

Applications of Number Theory

Example:
5 is an inverse of 3 (mod 7), since 5 · 3 ≡ 15 ≡ 1 (mod 7).
Using this we can solve:

3x ≡ 4 (mod 7)
5 · 3x ≡ 5 · 4 (mod 7)
1 · x ≡ 20 (mod 7)

x ≡ 6 (mod 7)

Substitute back into the original linear congruence to check that 6 is a
solution:

3 · 6 ≡ 18 ≡ 4 (mod 7).

But how can we compute inverses (mod m)?
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Applications of Number Theory

Computing inverses modulo m

Theorem

If a and m are relatively prime integers with m > 1, then an inverse of a
modulo m exists. Furthermore, this inverse is unique modulo m.

Proof: By Theorem A, since gcd(a, m) = 1, there exists s and t such that

sa + tm = 1.

This implies sa + tm ≡ 1 (mod m). Since tm ≡ 0 (mod m), so
sa ≡ 1 (mod m), which implies s is an inverse of a modulo m.
It remains to show that this inverse is unique modulo m. Suppose s and s′

are inverses of a modulo m. Then,

sa ≡ 1 ≡ s′a (mod m).

Since gcd(a, m) = 1, by Theorem B, we can divide both sides of the
congruence by a, obtaining s ≡ s′ (mod m). �
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Applications of Number Theory

Computing the inverse of 24 modulo 7

Applying the extended Euclidean Algorithm:

24 = 3 · 7 + 3
7 = 2 · 3 + 1
3 = 3 · 1 + 0

Using backward substitution:

1 = 7− 2 · 3 = 7− 2 · (24− 3 · 7) = −2 · 24 + 7 · 7.

So s = −2 and t = 7.
−2 · 24 ≡ 1 (mod 7)

You can use as an inverse of 24 modulo 7, any integer equivalent to −2
modulo 7, such as: . . . ,−9,−2, 5, 12, 19, . . .
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Applications of Number Theory

Chinese Remainder Thm: solving systems of congruences
A Chinese Mathematician asked in the first century:

There are certain things whose number is unknown. When
divided by 3, the remainder is 2; when divided by 5 the
remainder is 3; and when divided by 7, the remainder is 2. What
will be the number of things?

This puzzle is asking for the solution of the following system of
congruences:

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),
x ≡ 2 (mod 7).

The Chinese Remainder Theorem establishes that when the moduli are
pairwise relatively prime, we can solve such as system of linear
congruences uniquely module the product of the moduli.
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Theorem (Chinese Reminder Theorem)

Let m1, m2, . . . ,mn be pairwise relatively prime positive integers and
a1, a2, . . . , an be arbitrary integers. Then, the system:

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),
... ...

x ≡ an (mod mn),

has a unique solution modulo m = m1m2 . . . mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent modulo
m to this solution).
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Proof of the Chinese Reminder Theorem (existence part)
In order to construct a simultaneous solution, let Mk = m/mk. Note that
gcd(mk, Mk) = 1. So there exists yk inverse of Mk modulo mk.
Then x = a1M1y1 + a2M2y2 + · · ·+ anMnyn is a simulatneous solution.
Indeed, for any 1 ≤ k ≤ n, since for j 6= k, all terms except kth term are 0
modulo mk, which gives x ≡ a2Mkyk ≡ ak (mod mk). �
Showing that this is a unique solution is exercise 3.7-24, which is
recommended.
Solving the original old question, that asks for a simultaneous solution to
x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7).
m1 = 3, m2 = 5, m3 = 7, so m = m1m2m3 = 105.
a1 = 2, a2 = 3, a3 = 2;
M1 = 35, an inverse of 35 modulo 3: 2 M2 = 21, an inverse of 21 modulo
5: 1 M3 = 15. an inverse of 35 modulo 3: 1
So the solution x ≡ a1M1y1 + a2M2y2 + a3M3y3 ≡
2 · 25 · 2 + 3 · 21 · 1 + 2 · 15 · 1 ≡ 233 ≡ 23 (mod 105).
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

If p is a prime and a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p).

Furthermore, for every integer a we have

ap ≡ a (mod p).

The proof is left as an exercise, whose steps are outlined in Exercise 17
(page 244-245).

Example: p = 5
Verify that the theorem works for a = 1, 2, 3, 4: For 1 it is trivial,
24 = 16 ≡ 1 (mod 5), 34 = 81 ≡ 1 (mod 5), 44 = 256 ≡ 1 (mod 5).
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Public Key Cryptography and the RSA Cryptosystem

Two people, say Alice and Bob, would like to exchange secret messages;
however, Eve is eavesdropping:
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One technique would be to use an encryption technique based on an
encryption key, but this poses a challenge: how do they exchange the
encryption key without Eve receiving it?
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Traditional Cryptography

In normal cryptography, both parties need to know a secret key k. The
sender then encodes message m using key k via some method f to get the
ciphertext c:

c = f(m, k).

Then, the receiver decodes the ciphertext c using key k via some method g
to get back the original message m:

m = g(c, k).

The issue here is how to securely exchange the secret key k.

If we could find a method of encryption / decryption such that exchanging
the necessary keys does not reveal to Eve how to decrypt intercepted
messages, then we would avoid this problem altogether.
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Public Key Cryptosystem
The idea is that the receiver publically publishes a public key k. Then
anyone who wishes to encode a message m can do so:

c = f(m, k).

The receiver has a private key k′ that is needed to decode the ciphertext
c to receive the original message m:

m = g(c, k).

Both the encoding technique f and the decoding technique g are also
publically known; the only secret information is k′.

While it is possible, it is computationally difficult to compute k′ from k:
the key pair can be chosen so that in the amount of time it takes to
derive k′ from k, the information m no longer has significant value.
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RSA Cryptosystem
The most common form of public key cryptosystem is RSA, which stands
for Rivest, Shamir, and Adleman, who invented it. It is based on modular
arithmetic and large primes, and its security comes from the computational
difficulty of factoring large numbers.

The idea is as follows: select p and q to be large primes (at least several
hundred digits); the degree of security is dependent on the size of p and q.
Take n = pq. Then the public key is a pair k = (n, e) such that:

gcd(e, (p− 1)(q − 1)) = 1.

The encoding function is:

f(m, k) ≡ me (mod n).

This assumes that the message can be represented by an integer m < n
with gcd(m, p) = gcd(m, q) = 1; if not, we can break m down into smaller
pieces and encode each individually.
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The private key is a pair k′ = (n, d) such that:

de ≡ 1 (mod (p− 1)(q − 1)).

The decoding function is:

g(c, k′) = cd (mod n).

The security of the algorithm lies in the challenge of prime factorization:
in order to calculate d, it is necessary to factor n to get p and q, which is
very difficult (exponential in the number of digits in p and q).

We now proceed to show that RSA actually works.
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Proof of the RSA Cryptosystem

Theorem (RSA Cryptosystem)

Let p, q be primes with n = pq and let e be an integer such that
gcd(e, (p− 1)(q − 1)) = 1, with ed ≡ 1 (mod (p− 1)(q − 1)). Let m be
an integer with m < n and gcd(m, p) = gcd(m, q) = 1. Define k = (n, e)
and k′ = (n, d), and the functions:

f(m, k) = md (mod n)

g(c, k) = ce (mod n).

Then we claim that:
g(f(m, k), k′) = m.
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Proof.

We have that:

g(f(m, k), k′) = (me mod n)d mod n = med mod n.

By the choice of e and d, we have that: ed ≡ 1 (mod (p− 1)(q − 1)), or,
equivalently, for some integer s, ed = 1 + s(p− 1)(q − 1). By Fermat’s
Little Theorem, mp−1 ≡ 1 (mod p) and mq−1 ≡ 1 (mod q), giving:

med ≡ m1+s(p−1)(q−1) ≡ m · (mp−1)s(q−1) ≡ m · 1s(q−1) ≡ m (mod p).

Similarly, med ≡ m (mod q). Since gcd(p, q) = 1, by the Chinese
Remainder Theorem, med = m (mod pq) as required.
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Note that we can apply the same argument to show that:

f(g(m, k′), k) = m.

Thus, the owner of the private key can encrypt a message m using the
private key, which can then be decrypted by anyone using the public key,
and prove that only the private key owner could have encrypted it. This is
the basis of digital signature systems.

Example: Bob wants to receive messages from Alice, so he selects two
primes, say p = 43 and q = 59. (We choose small primes for feasibility of
the example; in reality, they would be vastly larger.) Then n = pq = 2537
and (p− 1)(q − 1) = 2436. He then picks e = 13, which has the property
that:

gcd(e, (p− 1)(q − 1)) = gcd(13, 2436) = 1.
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Bob then calculates d = 937, the inverse of e mod 2436:

de ≡ 937× 13 ≡ 12181 ≡ 5× 2436 + 1 ≡ 1 (mod 2436).

Bob publishes the public key k = (2537, 13).

Alice wants to send message “STOP” to Bob using RSA. She encodes
this: S→ 18, T→ 19, O→ 14, P→ 15, i.e. 1819 1415 grouped into
blocks of 4. Thus, m = m1m2 = 18191415. Each block is encrypted:

181913 mod 2537 = 2081

145113 mod 2537 = 2182
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Then the encrypted message is 20812182. Bob has private key
k′ = (2537, 937), and computes:

2081937 mod 2537 = 1819→ ST

2812937 mod 2537 = 1415→ OP

Thus, the original message was STOP.
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