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Intro Rules of Inference Proof Methods

Introduction

Rules of Inference and Formal Proofs

Proofs in mathematics are valid arguments that establish the truth of
mathematical statements.

An argument is a sequence of statements that end with a conclusion.

The argument is valid if the conclusion (final statement) follows from
the truth of the preceding statements (premises).

Rules of inference are templates for building valid arguments.

We will study rules of inferences for compound propositions, for quantified
statements, and then see how to combine them.

These will be the main ingredients needed in formal proofs.
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Introduction

Proof methods and Informal Proofs

After studying how to write formal proofs using rules of inference for
predicate logic and quantified statements, we will move to informal
proofs.

Proving useful theorems using formal proofs would result in long and
tedious proofs, where every single logical step must be provided.

Proofs used for human consumption (rather than for automated derivations
by the computer) are usually informal proofs, where steps are combined
or skipped, axioms or rules of inference are not explicitly provided.

The second part of these slides will cover methods for writing informal
proofs.
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Rules of Inference for Propositional Logic

Valid Arguments using Propositional Logic

Consider the following argument (sequence of propositions):

If the prof offers chocolate for an answer, you answer the prof’s
question.

The prof offers chocolate for an answer.

Therefore, you answer the prof’s question.

Let p be “the prof offers chocolate for an answer”
and q be “you answer the prof’s question”.

The form of the above argument is:
p→ q
p

∴ q

The argument is valid since ((p→ q) ∧ p)→ q is a tautology.

CSI2101 Discrete Structures Winter 2010: Rules of Inferences and Proof Methods Lucia Moura



Intro Rules of Inference Proof Methods

Rules of Inference for Propositional Logic

Arguments, argument forms and their validity

Definition

An argument in propositional logic is sequence of propositions. All but the
final proposition are called premises and the final proposition is called the
conclusion. An argument is valid if the truth of all its premises implies
that the conclusion is true.
An argument form in propositional logic is a sequence of compound
propositions involving propositional variables. An argument form is valid if
no matter which propositions are substituted for the propositional variables
in its premises, if the premises are all true, then the conclusion is true.

In other words, an argument form with premises p1, p2, . . . , pn and
conclusion q is valid if and only if

(p1 ∧ p2 ∧ · · · ∧ pn)→ q

is a tautology.
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Rules of Inference for Propositional Logic

Rules of Inference for Propositional Logic I

inference rule tautology name

p
p→ q

∴ q
(p ∧ (p→ q))→ q

Modus ponens
(mode that affirms)

¬q
p→ q

∴ ¬p
(¬q ∧ (p→ q))→ ¬p

Modus tollens
(mode that denies)

p→ q
q → r

∴ p→ r
((p→ q) ∧ (q → r))→ (p→ r) hypothetical syllogism

p ∨ q
¬p

∴ q
((p ∨ q) ∧ (¬p))→ q disjunctive syllogism
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Rules of Inference for Propositional Logic

Rules of Inference for Propositional Logic II

p
∴ p ∨ q

p→ (p ∨ q) addition

p ∧ q
∴ p

(p ∧ q)→ p simplification

p
q

∴ p ∧ q
((p) ∧ (q))→ (p ∧ q) conjunction

p ∨ q
¬p ∨ r

∴ q ∨ r
((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r) resolution
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Rules of Inference for Propositional Logic

Which rule of inference is used in each argument below?

Alice is a Math major. Therefore, Alice is either a Math major or a
CSI major.

Jerry is a Math major and a CSI major. Therefore, Jerry is a Math
major.

If it is rainy, then the pool will be closed. It is rainy. Therefore, the
pool is closed.

If it snows today, the university will close. The university is not closed
today. Therefore, it did not snow today.

If I go swimming, then I will stay in the sun too long. If I stay in the
sun too long, then I will sunburn. Therefore, if I go swimming, then I
will sunburn.

l go swimming or eat an ice cream. I did not go swimming.
Therefore, I eat an ice cream.
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Rules of Inference for Propositional Logic

Determine whether the argument is valid and whether the
conclusion must be true

If
√

2 > 3
2 then (

√
2)2 > (3

2)2. We know that
√

2 > 3
2 . Therefore,

(
√

2)2 = 2 > (3
2)2 = 9

4 .

Is the argument valid?

Does the conclusion must be true?

What is wrong?

The argument is valid: modus ponens inference rule.

We cannot conclude that the conclusion is true, since one of its
premises,

√
2 > 3

2 , is false.

Indeed, in this case the conclusion is false, since 2 6> 9
4 = 2.25.
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Rules of Inference for Propositional Logic

Formal Proofs: using rules of inference to build arguments

Definition

A formal proof of a conclusion q given hypotheses p1, p2, . . . , pn is a
sequence of steps, each of which applies some inference rule to hypotheses
or previously proven statements (antecedents) to yield a new true
statement (the consequent).

A formal proof demonstrates that if the premises are true, then the
conclusion is true.
Note that the word formal here is not a synomym of rigorous.
A formal proof is based simply on symbol manipulation (no need of
thinking, just apply rules).
A formal proof is rigorous but so can be a proof that does not rely on
symbols!
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Rules of Inference for Propositional Logic

Formal proof example

Show that the hypotheses:

It is not sunny this afternoon and it is colder than yesterday.

We will go swimming only if it is sunny.

If we do not go swimming, then we will take a canoe trip.

If we take a canoe trip, then we will be home by sunset.

lead to the conclusion:

We will be home by the sunset.

Main steps:

1 Translate the statements into proposional logic.

2 Write a formal proof, a sequence of steps that state hypotheses or
apply inference rules to previous steps.
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Rules of Inference for Propositional Logic

Show that the hypotheses:

It is not sunny this afternoon and it is colder than yesterday. ¬s ∧ c

We will go swimming only if it is sunny. w → s

If we do not go swimming, then we will take a canoe trip. ¬w → t

If we take a canoe trip, then we will be home by sunset. t→ h

lead to the conclusion:

We will be home by the sunset. h

Step Reason

1. ¬s ∧ c hypothesis
2. ¬s simplification
3. w → s hypothesis
4. ¬w modus tollens of 2 and 3
5. ¬w → t hypothesis
6. t modus ponens of 4 and 5
7. t→ h hypothesis
8. h modus ponens of 6 and 7

Where:
s: “it is sunny this afternoon”
c: “it is colder than yesterday”
w: “we will go swimming”
t: “we will take a canoe trip.
h: “we will be home by the sunset.”
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Rules of Inference for Propositional Logic

Resolution and Automated Theorem Proving

We can build programs that automate the task of reasoning and proving
theorems.

Recall that the rule of inference called resolution is based on the
tautology:

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r)

If we express the hypotheses and the conclusion as clauses (possible by
CNF, a conjunction of clauses), we can use resolution as the only
inference rule to build proofs!

This is used in programming languages like Prolog.
It can be used in automated theorem proving systems.
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Rules of Inference for Propositional Logic

Proofs that use exclusively resolution as inference rule
Step 1: Convert hypotheses and conclusion into clauses:

Original hypothesis equivalent CNF Hypothesis as list of clauses

(p ∧ q) ∨ r (p ∨ r) ∧ (q ∨ r) (p ∨ r), (q ∨ r)
r → s (¬r ∨ s) (¬r ∨ s)
Conclusion equivalent CNF Conclusion as list of clauses

p ∨ s (p ∨ s) (p ∨ s)

Step 2: Write a proof based on resolution:

Step Reason

1. p ∨ r hypothesis
2. ¬r ∨ s hypothesis
3. p ∨ s resolution of 1 and 2
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Rules of Inference for Propositional Logic

Show that the hypotheses:

¬s ∧ c translates to clauses: ¬s, c

w → s translates to clause: (¬w ∨ s)
¬w → t translates to clause: (w ∨ t)
t→ h translates to clause: (¬t ∨ h)

lead to the conclusion:

h (it is already a trivial clause)
Note that the fact that p and ¬p ∨ q implies q (called disjunctive syllogism) is a special case of resolution,

since p ∨ F and ¬p ∨ q give us F ∨ q which is equivalent to q.

Resolution-based proof:

Step Reason

1. ¬s hypothesis
2. ¬w ∨ s hypothesis
3. ¬w resolution of 1 and 2
4. w ∨ t hypothesis
5. t resolution of 3 and 4
6. ¬t ∨ h hypothesis
7. h resolution of 5 and 6
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Rules of Inference for Propositional Logic

Fallacies
Fallacy = misconception resulting from incorrect argument.

Fallacy of affirming the conclusion
Based on

((p→ q) ∧ q)→ p

which is NOT A TAUTOLOGY.
Ex.: If prof gives chocolate, then you answer the question. You
answer the question. We conclude the prof gave chocolate.

Fallacy of denying the hypothesis
Based on

((p→ q) ∧ ¬p)→ ¬q

which is NOT A TAUTOLOGY.
Ex.: If prof gives chocolate, then you answer the question. Prof
doesn’t give chocolate. Therefore, you don’t answer the question.
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Rules of Inference for Quantified Statements

Rules of Inference for Quantified Statements

Rule of Inference Name

∀xP (x)
∴ P (c)

Universal instantiation

P (c) for an arbitrary c
∴ ∀xP (x)

Universal generalization

∃xP (x)
∴ P (c) for some element c

Existential instantiation

P (c) for some element c
∴ ∃xP (x)

Existencial generalization
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Rules of Inference for Quantified Statements

Show that the premises:

A student in Section A of the course has not read the book.

Everyone in Section A of the course passed the first exam.

imply the conclusion

Someone who passed the first exam has not read the book.

A(x): “x is in Section A of the course”
B(x): “x read the book”
P (x): “x passed the first exam.”

Hypotheses: ∃x(A(x) ∧ ¬B(x)) and ∀x(A(x)→ P (x)).
Conclusion: ∃x(P (x) ∧ ¬B(x)).
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Rules of Inference for Quantified Statements

Hypotheses: ∃x(A(x) ∧ ¬B(x)) and ∀x(A(x)→ P (x)).
Conclusion: ∃x(P (x) ∧ ¬B(x)).

Step Reason

1. ∃x(A(x) ∧ ¬B(x)) Hypothesis
2. A(a) ∧ ¬B(a) Existencial instantiation from (1)
3. A(a) Simplification from (2)
4. ∀x(A(x)→ P (x)) Hypothesis
5. A(a)→ P (a) Universal instantiation from (4)
6. P (a) Modus ponens from (3) and (5)
7. ¬B(a) Simplification from (2)
8. P (a) ∧ ¬B(a) Conjunction from (6) and (7)
9. ∃x(P (x) ∧ ¬B(x)) Existential generalization from (8)
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Rules of Inference for Quantified Statements

Combining Rules of Inference for Propositions and
Quantified Statements
These inference rules are frequently used and combine propositions and
quantified statements:

Universal Modus Ponens

∀x(P (x)→ Q(x))
P (a), where a is a particular element in the domain

∴ Q(a)

Universal Modus Tollens

∀x(P (x)→ Q(x))
¬Q(a), where a is a particular element in the domain

∴ ¬P (a)
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Proof Methods

Proof Methods

A proof is a valid argument that establishes the truth of a mathematical
statement, using the hypotheses of the theorem, if any, axioms assumed to
be true, and previously proven theorems.

Using these ingredients and rules of inference, the proof establishes the
truth of the statement being proved.

We move from formal proofs, as seen in the previous section, to informal
proofs, where more than one inference rule may be used at each step,
where steps may be skipped, and where axioms and rules of inference used
are not explicitly stated.

CSI2101 Discrete Structures Winter 2010: Rules of Inferences and Proof Methods Lucia Moura



Intro Rules of Inference Proof Methods

Proof Methods

Some terminology
Theorem: a statement that can be shown to be true (sometimes
referred to as facts or results). Less important theorems are often
called propositions.
A lemma is a less important theorem, used as an auxiliary result to
prove a more important theorem.
A corollary is a theorem proven as an easy consequence of a theorem.
A conjecture is a statement that is being proposed as a true
statement. If later proven, it becomes a theorem, but it may be false.
Axiom (or postulates) are statements that we assume to be true
(algebraic axioms specify rules for arithmetic like commutative laws).
A proof is a valid argument that establishes the truth of a theorem.
The statements used in a proof include axioms, hypotheses (or
premises), and previously proven theorems. Rules of inference,
together with definition of terms, are used to draw conclusions from
other assertions, tying together the steps of a proof.
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Proof Methods

Understanding how theorems are stated

Many theorems assert that a property holds for all elements in a domain.
However, the universal quantifier is often not explicitly stated.

The statement:

“If x > y, where x and y are positive real numbers, then x2 > y2.”

really means

“For all positive real numbers x and y, if x > y then x2 > y2.”

That is, in formal logic under the domain of positive real numbers this is
the same as ∀x∀y((x > y)→ (x2 > y2)).

CSI2101 Discrete Structures Winter 2010: Rules of Inferences and Proof Methods Lucia Moura



Intro Rules of Inference Proof Methods

Proof Methods

Methods of proving theorems
To prove a theorem of the form ∀x(P (x)→ Q(x)), we use the steps:

Take an arbitrary element c of the domain and show that
(P (c)→ Q(c)) is true.
Apply universal generalization to conclude ∀x(P (x)→ Q(x)).
(Normally we not even bother with this final step.)

3 methods of showing statements of the type p→ q are true:
1 Direct proofs: Assume p is true; the last step establishes q is true.
2 Proof by Contraposition: Uses a direct proof of the contrapositive

of p→ q, which is ¬q → ¬p. That is, assume ¬q is true; the last step
established ¬p is true.

3 Proof by Contradiction: To prove that P is true, we assume ¬P is
true and reach a contradiction, that is that (r ∧ ¬r) is true for some
proposition r. In particular, to prove (p→ q), we assume (p→ q) is
false, and get as a consequence a contradiction. Assuming that
(p→ q) is false = (¬p ∨ q) is false = (p ∧ ¬q) is true.
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Proof Methods

Direct Proofs
A formal direct proof of a conditional statement p→ q works as follows:
assume p is true, build steps using inference rules, with the final step
showing that q is true.
In a (informal) direct proof, we assume that p is true, and use axioms,
definitions and previous theorems, together with rules of inference to show
that q must be true.

Definition

The integer n is even if there exists an integer k such that n = 2k, and n
is odd if there exists an integer k such that n = 2k + 1.

Give a direct proof of the following theorem.

Theorem

If n is an odd integer, then n2 is odd.
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Proof Methods

Theorem

If n is an odd integer, then n2 is odd.

Observations: We want to show that ∀n(P (n)→ Q(n)), where P (n) is
“n is an odd integer” and Q(n) is “n2 is odd”.
We show this by proving that for an arbitrary n, P (n) implies Q(n),
without invoking the universal generalization.

Proof:
Let n be an odd integer.
By definition of odd, we know that there exists an integer k such that
n = 2k + 1.
Squaring both sides of the equation, we get
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.
Since n2 = 2k′ + 1, where k′ = 2k2 + 2k, by the definition of odd we
conclude n2 is odd. �
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Proof Methods

Definition

An integer a is a perfect square if there is an integer b such that a = b2.

Exercise:
Prove the following theorem using a direct proof.

Theorem

If m and n are both perfect squares, then mn is also a perfect square.
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Proof Methods

Proof by Contraposition

This method of proof makes use of the equivalence (p→ q) ≡ (¬q → ¬p).
In a proof by contraposition that p→ q, we assume ¬q is true, and using
axioms, definitions and previously proven theorems, together with inference
rules, we show that ¬p must be true. (It is a direct proof of the
contrapositive statement!)

Theorem

If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We prove the statement by contraposition.
Assume n is even (assuming ¬q). Then, by definition, n = 2k for some
integer k. Thus, 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). So, we have
that 3n + 2 = 2k′ where k′ = 3k + 1, which means 3n + 2 is an even
number. This is the negation of the hypothesis of the theorem (¬p),
which concludes our proof by contraposition. �
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Proof Methods

Exercises: proof by contraposition

Prove that if n = ab, where a and b are positive integers, then
a ≤
√

n or b ≤
√

n.

Show that the proposition P (0) is true where the domain consists of
the integer numbers and P (n) is “If n ≥ 1 then n2 > n.”
Note: vacuous proof: when p is false p→ q is true, regardless of the
value of q.
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Proof Methods

When to use each type of proof?
Usually try a direct proof. If it doesn’t work, try a proof by contraposition.

Definition

A real number r is rational if there exists integers p and q with q 6= 0 such
that r = p/q. A real number that is not rational is called irrational

Prove that the sum of two rational numbers is rational. (For all
r, s ∈ R , if r and s are rational numbers, then r + s is rational.)
Let r and s be rational numbers. Then, there exist integers p, q, t, u with
q 6= 0 and u 6= 0 such that r = p/q and s = t/u. So,

r + s =
p

q
+

t

u
=

pu + qt

qu
.

Since q 6= 0 and u 6= 0, we have qu 6= 0. Therefore, we expressed r + s as
the ratio of two integers pu + qt and qu, where qu 6= 0. This means that
r + s is rational. (The direct proof succeeded!)
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Proof Methods

Prove that for any integer number n, if n2 is odd, then n is odd.

Trying a direct proof...
Let n be an integer number. Assume that n2 is odd. We get next that
there exists an integer k such that n2 = 2k + 1. Solving for n produces the
equation n = ±

√
2k + 1, which is not very useful to show that n is odd.

Try a prove by contraposition...
Let n be an integer number. Assume n is not odd. This means that n is
even, and so there exists an integer k such that n = 2k. Thus,
n2 = (2k)2 = 4k2 = 2(2k2). So, taking k′ = 2k2, we see that n2 = 2k′

and so n2 is even. This concludes our proof by contraposition.
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Proof Methods

Proof by Contradiction

In a proof by contradiction, we prove that a proposition p is true, by
showing that there exists a contradiction q such that ¬p→ q.

We can prove that p is true by showing for instance that ¬p→ (r ∧ ¬r),
for some proposition r.
Prove that

√
2 is irrational.

A direct proof is difficult, as it means to show that there exists no two
integer a and b with b 6= 0 such that

√
2 = a/b. Nonexistence proofs are

usually hard.
Let’s try a proof by contradiction...
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Proof Methods

Theorem
√

2 is irrational.

Proof: We prove by means of contradiction. Assume
√

2 is a rational
number. So, there exists a′ and b′ integers with b′ 6= 0 with

√
2 = a′/b′.

We select such integers a and b with the additional property that a and b
have no common factors, i.e. the fraction a/b is in lowest terms (this is
always possible to obtain, for we can keep dividing by common factors).
So,
√

2 = a/b so 2 = a2/b2. This implies 2b2 = a2 (1). By the definition
of even, we know that a2 is even. Next we use a theorem that states that
if a2 is even then a is even (prove it as an exercise). Now, since a is even,
we know that there exists c such that a = 2c. Substituting in the formula
(1) above, we get that 2b2 = (2c)2 = 4c2. Dividing both sides by 2 we get
b2 = 2c2. By the definition of even, we see that b is even. Therefore, we
got that a is even and b is even, and so 2 is a common factor of a and b.
But we also had that a and b had no common factors. We just reached a
contradiction! �
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Proof Methods

Other types of proof statements

Proof of equivalences:
To prove a statement p↔ q, we show that both p→ q and q → p are
true.

Example: Prove that if n is a positive integer, then n is odd if and
only if n2 is odd.

Showing that a statement of the form ∀xP (x) is false:
In this case, we need to find a counterexample.

Example: Show that the statement “Every positive integer is the sum
of the squares of two integers.” is false.
We argue that 3 is a counterexample. The only perfect squares
smaller than 3 are 0 and 1, and clearly, 3 cannot be written as a sum
of two terms each being 0 or 1.
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Proof Methods

Mistakes in Proofs

What is the problem with he following proof that 1 = 2?

Use the following steps, where a and b are two equal positive integers.
1. a = b Given
2. a2 = ab Multiply both sides of (1) by a.
3. a2 − b2 = ab− b2 Substract b2 from both sides of (2)
4. (a− b)(a + b) = b(a− b) Factoring both sides of (3)
5. a + b = b Divide both sides of (4) by a− b
6. 2b = b Replace a by b in (5), since a = b
7. 2 = 1 Divide both sides of 6. by b.

Therefore 2 = 1.
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Proof Strategies

Proof by Cases
Sometimes it is difficult to use a single argument that holds for all cases.
Proof by cases uses the following equivalence:

[(p1 ∨ p2 ∨ · · · ∨ pn)→ q] ≡ [(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn → q)]

Example: Prove that if n is integer then n2 ≥ n.
We split the proof into three cases.

Case (i) n = 0.
In this case, n2 = 02 = 0 = n.

Case (ii) n ≥ 1
In this case, when we multiply both sides of n ≥ 1 by n we obtain
n · n ≥ n · 1. This implies n2 ≥ n.

Case (iii) n ≤ −1
In this case, n ≤ −1, but n2 ≥ 0. Therefore, n2 ≥ 0 ≥ −1 ≥ n, and
so n2 ≥ n.

�
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Proof Strategies

Exhaustive proof

This is a special form of a proof by cases, when there is a finite and small
number of examples for which we need to prove a fact.

Prove that (n + 1)2 ≥ 3n if n is a positive integer with n ≤ 2.

We use a proof by exhaustion, by examining the cases n = 1, 2.
For n = 1, (n + 1)2 = 22 = 4 ≥ 3 = 3n.
For n = 2, (n + 1)2 = 32 = 9 ≥ 32 = 3n.
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Proof Strategies

Existence Proofs
Existence proofs prove statements of the form ∃xP (x).

Constructive existence proof: find a such that P (a) is true.
Example: Show that there is a positive integer that can be written as
a sum of cubes of positive integers in two different ways.
Proof: 1729 = 103 + 93 and 1729 = 123 + 13.

Nonconstructive existence proof: show that ∃xP (x) without
explicitly giving a for which P (a) is true.
Example: Show that there exist irrational numbers x and y such that
xy is rational.
From a previous theorem we know that

√
2 is irrational. Consider the

number
√

2
√

2
. There are two possible cases:

I
√

2
√

2
is rational: In this case, take x =

√
2 and y =

√
2.

I
√

2
√

2
is irrational: In this case, take x =

√
2
√

2
and y =

√
2. Then

xy = (
√

2
√

2
)
√

2 = (
√

2)2 = 2.
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√
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√
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√
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√
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√
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√
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Existence Proofs
Existence proofs prove statements of the form ∃xP (x).

Constructive existence proof: find a such that P (a) is true.
Example: Show that there is a positive integer that can be written as
a sum of cubes of positive integers in two different ways.
Proof: 1729 = 103 + 93 and 1729 = 123 + 13.
Nonconstructive existence proof: show that ∃xP (x) without
explicitly giving a for which P (a) is true.
Example: Show that there exist irrational numbers x and y such that
xy is rational.
From a previous theorem we know that

√
2 is irrational. Consider the

number
√

2
√

2
. There are two possible cases:

I
√

2
√

2
is rational: In this case, take x =

√
2 and y =

√
2.

I
√

2
√

2
is irrational: In this case, take x =

√
2
√

2
and y =

√
2. Then

xy = (
√

2
√

2
)
√

2 = (
√

2)2 = 2.

CSI2101 Discrete Structures Winter 2010: Rules of Inferences and Proof Methods Lucia Moura



Intro Rules of Inference Proof Methods

Proof Strategies

Existence Proofs
Existence proofs prove statements of the form ∃xP (x).
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√
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√
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√
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√
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√
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Proof Strategies

The art of finding a proof method that works for a theorem

We need practice in order to recognize which type of proof to apply to a
particular theorem/fact that we need to prove.

In the next topic “number theory”, several theorems will be proven using
different proof methods and strategies.
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