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1 Propositional logic — 10 points

Part A — 5 points

Show that the compound proposition below is a contradiction:

(Vg AN(pVag) APV =g)A(=pV—g)

Via truth tables:

plq|pVg|-pVg|pV—-q|pVq|result
T(T| T T T F F
TIF| T F T T F
FIT| T T F T F
F|F| F T T T F

Via equivalences:

PVOAN(EPV APV g A(pVg)

q N\ —q
F

(
(PA=p) V@) A((pA-p)V—q)
(F'Vq) A (FV—q)

.. continued
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Part B — 5 points

You go to your digital circuit lab to implement a boolean function represented by the fol-
lowing compound proposition: (p A q) V (=g Ap)V (r Ap)V (gAT).

However, you realise that you only have 2 AND-gates (binary) and 2 OR-gates (binary) in
your knapsack.

Give a circuit that implements the boolean function and uses only the gates available in your
knapsack. Indeed, you will get a bonus 2 points if you use only 2 gates in total.

Q) V(=g Ap)V(rAp)V(gAT)
(qV=q)V(rAp)V(gAr)
(pAT)V(rAp)V(gAT)
pV(rAp)V(gAr)

(p A
(p A

The above solution is acceptable, but for bonus marks, can be simplified further to:

pV(rAp)VigAr)
(pAT)V(pAT)V(gAT)
(pA(rVvT))Vi(gAr)
(pAT)V(gAT)
pVi(gAT)

Note that the drawing of the circuit is not included here but was expected in your solution.

.. continued
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2 Predicate logic — 24 points

Part A — 12 points

Circle true or false

1. Vz3y(x? = y), where the domain is the set of real numbers. [true] [false]
2. JaVy((y # 0) — (xy = 1), where the domain is the set of real numbers. [true] [false]
3. The following are logically equivalent: =(p A =¢) and (p — q) [true] [false]
4. The following are logically equivalent: Vz—Q(x) and —3z—-Q(x) [true] [false]
5. JzP(z) A Vx—Q(x) logically implies Jz(P(z) V Q(z)) [true] [false]
6. Consider the domain of discourse to be the set {1,2,3}, and Q(z,y) =“y > 27,

and R(y) =“y is odd”. Then Vy((VzQ(z,y)) — R(y)) is true. [true] [false]

Justification not required, but given here for your understanding;:

1. Va, take y = 2%

2. Obviously wrong. For example, if y = 2, then the only x satisfying xy = 1 is x = % It
y = 3, however, the only x satisfying xy = 1is x = % Thus, there is no one x for all y.

3. 2(pA=q)=(pVa) =(p—a)
4. Vr-Q(x) = ~—V-Q(z) = -FzQ(z) £ —Fz—-Q(x).
5. JxP(x) AVo—Q(z) implies 3z P(x), which implies Jz(P(z) V Q(x)).

6. VzQ(x,y) is only satisfied for y = 3, and R(3) is true, so the predicate holds.

.. continued
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Part B — 12 points

Consider the following statements:
B(z): “x is a baby”

L(z): “z is logical”

M (z) “x is able to manage a crocodile”
D(z): “x is despised”

Suppose the domain consists of all people.

B1 Express each of the following statements using quantifiers, logical connectives and the
propositional functions given above.

phrase in English logical statement
1. | Babies are illogical. Vo (B(x) — —L(z))
2. | Nobody despised who can manage a crocodile. | =3x(D(x) A M(x)) = Va(D(z) — =M (z))
3. | Illogical persons are despised. Va(—L(x) — D(x))
4. | Babies cannot manage crocodiles. Vo (B(x) — - M(z))

B2 Does 4. follows from 1., 2., 3. ?
If yes, justify your argument.

If no, explain why it doesn’t.

Using 1, 2, 3 by universal instantiation, for an arbitrary a:

1. B(a) — —L(a)

2. D(a) — —|M((Z>

3. =L(a) — D(a)
Applying the transitivity of — on 1 and 3, we get B(a) — D(a). Applying transitivity again
on this and 2, we get B(a) — - M (a). Since the choice of a was arbitrary, we have that:

Vo (B(z) — —~M(x)).

.. continued
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3 Inference rules — 20 points

Part A — 10 points Using inference rules, show that the hypotheses:

e If a student likes chocolate then he/she answers the questions.
e If a student doesn’t like chocolate then he/she is not motivated to go to class.

e If a student is not motivated to go to class then he/she fails the course.
lead to the conclusion:

e If a student doesn’t like chocolate then he/she fails the course.

Define the following:

student likes chocolate

student answers the question
student is motivated to go to class
student fails the course

3 & T

We translate the hypotheses and conclusion into propositions as follows:

1. l—a
2. =l — —m
3. —-m — f

4. =l — f

Formal argument:

1. =l — —m hypothesis
2. —m — f  hypothesis
3. ~l— f hypothetical syllogism of 1, 2

.. continued
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Part B — 10 points Justify the rule of universal transitivity, which states that if
Vr(P(z) — Q(x)) and Vz(Q(z) — R(z)) are true then Va(P(x) — R(x)) is true, where the

domain of all quantifiers is the same.

Step Justification
1. Vz(P(z) — Q(z)) hypothesis
2. P(a) = Qa) universal instantiation for arbitrary a
3. Vz(Q(x) — R(x)) hypothesis
4. Q(a) — R(a) universal instantiation for arbitrary a
5. P(a) — R(a) hypothetical syllogism for 2, 4
6. Va(P(x) — R(x)) universal generalization

.. continued
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4 Proof Methods — 20 points

For this question you will need the definitions of odd and even, seen in class.

DEFINITION: An integer n is even if there exists an integer k such that n = 2k.
An integer n is odd if there exists an integer k such that n = 2k + 1.

Part A — 10 points Prove that if m+n and n+ p are even numbers, then m + p is even.

Let m,n, p be integers such that m + n is even and n + p is even. By definition of odd, there
exist k and k' such that m +n = 2k and n + p = 2k’. Thus, m = 2k — n and p = 2k’ — n.
This gives:
m+p = (2k—n)+ (2K —n)
= 2k—n+2k —n
= 2(k+k —n)

Therefore m + p is even.

.. continued
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Part B — 10 points Prove the following:
For any integer number n, if n2 + 5 is odd then n is even.
using

B1 (5 points) a proof by contraposition.

B2 (5 points) a proof by contradiction.

B1. Assume n is odd, and show n? + 5 is even.
Let n be an even number. Thus, n = 2k + 1 for some integer k. Then:
n*+5 = (2k+1)*+5
= 4k*+4k+145

= 4k* 4+ 4k +6
= 2(2k* 4+ 2k +3)

Thus, n? + 5 is even.

B2. Assume n? + 5 is odd and n is odd and reach a contradiction.

Let n be an odd number such that n? + 5 is odd. Thus, there exist k, &' such that
n=2k+1and n*>+5 =2k +1. Thus, n? +5 = 2k+1)2+5 = 2K + 1, so
4k* + 4k +6 = 2K + 1, i.e. 5 =2k — 4k?* — 4k = 2(k’ — 4k* — 4k). This implies that 5
is an even number, which is a contradiction.

.. continued
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5 Number Theory — 26 points

Part A — 6 points Find counterexamples to each of these statements about congru-
ences:

A1l Let a,b,c, and m be integers with m > 2.
If ac = be (mod m), then a = b (mod m).

Counterexample:
Takea=1,b=2,c=0, m = 3. Then:

ac=bc (modm): 1-0=2-0 (mod 3)
aZb(modm): 1% 2 (mod 3)

A2 Let a,b,c,d and m be integers with ¢ and d positive and m > 2.
If a =b (mod m) and ¢ = d (mod m), then a® = b? (mod m).

Counterexample:
Take a =2, b=5,c=4,d=1, m = 3. Then:
a=b(modm): 2=5 (mod 3)

c=d(modm): 4=1 (mod 3)
a®# b? (mod m): 2% =16 # 5' =5 (mod 3)

.. continued
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Part B — 5 points

What is the greatest common divisor and the least common multiple of:
37.5%. 7% and 2! . 35 . 52,

ged(37- 5% 73,211 .35 . 52) = 35.52
lem(37 - 5% 73,211 .35 . 52) = 211.37.53.73

Part C — 5 points

Use the Euclidean algorithm to calculate ged(100,270). Show each step.

100 = 0-270+ 100
270 = 2-100470
100 = 1-704 30
70 = 2-30+10
30 = 3-10+0

Thus, ged(135,50) = 10.

.. continued
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Part D — 10 points Prove the following result.

Let a, b and m be integers with m > 2.
If @ =0 (mod m) then ged(a, m) = ged(b, m).
Let a, b, m be integers with m > 2. Assume a = b (mod m).
So mla — b, or in other words, a — b = km for some integer k.
We will show that the common divisors of a and m are the same as the common divisors of
b and m.
(=) Let d be a common divisor of @ and m. Since d|a and d|m, we conclude that d|a—km =
b. Thus, d is a common divisor of b and m.
(<) Let d be a common divisor of b and m. Since d|b and d|m, we conclude that d|b+km =

a. Thus, d is a common divisor of a and m.

So we have shown that a and m, b and m have the same common divisors, so their greatest
common divisor is the same. Thus, ged(a, m) = ged (b, m).

... End Of Midterm Test



