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Recurrence Relations

A recurrence relation for the sequence {an} is an equation that
expresses an in terms of one or more of the previous terms
a0, a1, . . . , an−1, for all integers n with n ≥ n0.

Many sequences can be a solution for the same recurrence
relation.

an = 2an−1 − an−2, for n ≥ 2

The following sequences are solutions of this recurrence relation:

I an = 3n, for all n ≥ 0,
I an = 5, for all n ≥ 0.

The initial conditions for a sequence specify the terms before n0

(before the recurrence relation takes effect).
The recurrence relations together with the initial conditions uniquely
determines the sequence. For the example above, the initial
conditions are: a0 = 0, a1 = 3; and a0 = 5, a1 = 5; respectively.
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Modeling with Recurrence Relations (used for advanced counting)

Compound interest: A person deposits $10,000 into savings that
yields 11% per year with interest compound annually. How much is in
the account in 30 years?

Growth of rabbit population on an island:
A young pair of rabbits of opposite sex are placed on an island. A pair
of rabbits do not breed until they are 2 months old, but then they
produce another pair each month. Find a recurrence relation for the
number of pairs of rabbits on the island after n months.

The Hanoi Tower:
Setup a recurrence relation for the sequence representing the number
of moves needed to solve the Hanoi tower puzzle.

Find a recurrence relation for the number of bit strings of length n
that do not have two consecutive 0s, and also give initial conditions.
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Linear Homogeneous Recurrence Relations

We will study more closely linear homogeneous recurrence relations of
degree k with constant coefficients:

an = c1an−1 + c2an−2 + · · ·+ ckan−k,

where c1, c2, . . . , ck are real numbers and ck 6= 0.

linear = previous terms appear with exponent 1 (not squares, cubes, etc),
homogeneous = no term other than the multiples of ai’s,
degree k= expressed in terms of previous k terms
constant coefficients = coefficients in front of the terms are constants,
instead of general functions.

This recurrence relation plus k initial conditions uniquely determines the
sequence.

CSI2101 Discrete Structures Winter 2010: Recurrence Relations Lucia Moura



Recurrence Relations Solving Linear Recurrence Relations Divide-and-Conquer RR’s

Solving Homogeneous Recurrence Relations

Which of the following are linear homogeneous recurrence relations of
degree k with constant coefficients? If yes, determine k; if no, explain why
not.

Pn = (1.11)Pn−1

fn = fn−1 + fn−2

Hn = 2Hn−1 + 1
an = an−5

an = an−1 + a2
n−2

Bn = nBn−1

CSI2101 Discrete Structures Winter 2010: Recurrence Relations Lucia Moura



Recurrence Relations Solving Linear Recurrence Relations Divide-and-Conquer RR’s

Solving Homogeneous Recurrence Relations

Solving Linear Homogeneous Recurrence Relations with
Constant Coefficients

Theorem (1)

Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two
distinct roots r1 and r2. Then, the sequence {an} is a solution of the
recurrence relation an = c1an−1 + c2an−2 if and only if an = α1r

n
1 + α2r

n
2

for n = 0, 1, 2, . . ., where α1 and α2 are constants.

Proof: (⇐) If an = α1r
n
1 + α2r

n
2 , then {an} is a solution for the

recurrence relation.
(⇒) If {an} is a solution for the recurrence relation, then
an = α1r

n
1 + α2r

n
2 , for some constants α1 and α2.

Exercises:
1 Solve: an = an−1 + 2an−2 with ao = 2 and a1 = 7
2 Find explicit formula for the Fibonacci Numbers.
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Solving Homogeneous Recurrence Relations

Root with multiplicity 2...

Theorem (2)

Let c1 and c2 be real numbers with c2 6= 0. Suppose that
r2 − c1r − c2 = 0 has only one root r0. A sequence {an} is a solution of
the recurrence relation an = c1an−1 + c2an−2 if and only if
an = α1r

n
0 + α2nr

n
0 , for n = 0, 1, 2 . . ., where α1 and α2 are constants.

Exercise:
Solve the recurrence relation an = 6an−1 − 9an−2, with initial conditions
a0 = 1, a1 = 6.
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Solving Homogeneous Recurrence Relations

Exercise:
Solve the recurrence relation an = 6an−1 − 9an−2, with initial conditions
a0 = 1, a1 = 6.

Solution:
r2 − 6r + 9 = 0 has only 3 as a root.
So the format of the solution is an = α13n + α2n3n. Need to determine
α1 and α2 from initial conditions:

a0 = 1 = α1

a1 = 6 = α1 · 3 + α23

Solving these equations we get α1 = 1 and α2 = 1.
Therefore, an = 3n + n3n.

Question: how can you double check this answer is right?
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Solving Homogeneous Recurrence Relations

Theorem (3)

Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic
equation rk − c1rk−1 − · · · − ck = 0 has k distinct roots r1, r2, . . . , rk.
Then, a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if an = α1r
n
1 + α2r

n
2 + · · ·+ αkr

n
k for n = 0, 1, 2, . . . , where

α1, α2, . . . , αk are constants.

Exercise:
Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3,

with the initial conditions a0 = 2, a1 = 5 ,and a2 = 15.
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Solving Homogeneous Recurrence Relations

Theorem (4)

Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic
equation rk − c1rk−1 − · · · − ck = 0 has t distinct roots r1, r2, . . . , rt with
multiplicities m1,m2, . . . ,mt, respectively, so that mi ≥ 1 and
m1 +m2 + · · ·+mt = k. Then, a sequence {an} is a solution of the
recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

an = (α1,0 + α1,1n+ · · ·α1,m1−1n
m1−1)rn

1

+(α2,0 + α2,1n+ · · ·α2,m2−1n
m2−1)rn

2

+ · · ·+ (αt,0 + αt,1n+ · · ·αt,mt−1n
mt−1)rn

t

for n = 0, 1, 2, . . . , where αi,j are constants for 1 ≤ i ≤ t, 0 ≤ j ≤ mi−1 .
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Solving Homogeneous Recurrence Relations

Exercise:
Find the solution to the recurrence relation

an = −3an−1 − 3an−2 − an−3,

with initial conditions a0 = 1, a1 = −2 and a2 = −1.
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Non-homogeneous Recurrence Relations

We look not at linear non-homogeneous recurrence relation with
constant coefficients, that is, one of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

where c1, c2, . . . , ck are real numbers and F (n) is a function not identically
zero depending only on n.
The recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k,

is the associated homogeneous recurrence relation.

CSI2101 Discrete Structures Winter 2010: Recurrence Relations Lucia Moura



Recurrence Relations Solving Linear Recurrence Relations Divide-and-Conquer RR’s

Solving Non-homogeneous Recurrence Relations

Solving Non-homogeneous Linear Recurrence Relations

Theorem (5)

If {a(p)
n } is a particular solution for the non-homogeneous linear recurrence

relation with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

then every solution is of the form {a(p)
n + a

(h)
n }, where {a(h)

n } is a solution
of the associated homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k.

Key: find a particular solution to the non-homogeneous case and we are
done, since we know how to solve the homogeneous one.
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Solving Non-homogeneous Recurrence Relations

Finding a particular solution

Theorem (6)

Suppose that {an} satisfies the linear non-homogeneous recurrence
relation an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n), where c1, c2, . . . , ck
are real numbers and F (n) = (btnt + bt−1n

t−1 + · · ·+ b1n+ b0)sn, where
b0, b1, . . . , bt and s are real numbers.
When s is NOT a root of the characteristic equation of the associated
linear homogeneous recurrence relation, there is a particular solution of the
form

(ptn
t + pt−1n

t−1 + · · ·+ p1n+ p0)sn.

When s is a root of the characteristic equation and its multiplicity is m,
there is a particular solution of the form

nm(ptn
t + pt−1n

t−1 + · · ·+ p1n+ p0)sn.
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Solving Non-homogeneous Recurrence Relations

Exercises: (roots of characteristic polynomial are given to simplify your work)

Find all solutions of

an = 3an−1 + 2n. What is the solution with a1 = 3? (root: r1 = 3)

an = 5an−1 − 6an−2 + 7n (root: r1 = 3, r2 = 2)

What is the form of a particular solution to

an = 6an−1 − 9an−2 + F (n),

when:

F (n) = 3n,

F (n) = n3n,

F (n) = n22n,

F (n) = (n2 + 1)3n.

(root: r1 = 3, multiplicity 2)
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Divide-and-Conquer Recurrence Relations

Divide-and-conquer algorithms:

I divide a problem of size n into a subproblems of size b,
I use some extra operations to combine the individual solutions into the

final solution for the problem of size n, say g(n) steps.

Examples: binary search, merge sort, fast multiplication of integers,
fast matrix multiplication.

A divide-and-conquer recurrence relation, expresses the number of
steps f(n) needed to solve the problem:

f(n) = af(n/b) + cnd.

(for simplicity assume this is defined for n that are multiples of b;
otherwise there are roundings up or down to closest integers)
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Divide-and-Conquer Algorithms and Recurrence Relations

Examples

Give the recurrence relations for:

Mergesort

Binary search

Finding both maximum and minimum over a array of length n by
dividing it into 2 pieces and the comparing their individual maxima
and minima.
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Master Theorem for Divide-and-Conquer Recurrence
Relations

Theorem (Master Theorem)

Let f be an increasing function that satisfies the recurrence relation:

f(n) = af(n/b) + cnd,

whenever n = bk, where k is a positive integer, a ≥ 1, b is an integer
greater than 1, and c and d are real numbers with c positive and d
non-negative. Then,

O(nd) if a < bd

f(n) is O(nd log n) if a = bd

O(nlogb a) if a > bd.
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Master Theorem

Proof of the master theorem

We can prove the theorem by showing the following steps:

1 Show that if a = bd and n is a power of b, then
f(n) = f(1)nd + cnd logb n.
Once this is shown, it is clear that if a = bd then f(n) ∈ O(nd log n).

2 Show that if a 6= bd and n is a power of b, then
f(n) = c1n

d + c2n
logba, where c1 = bdc/(bd − a) and

c2 = f(1) + bdc/(a− bd).

3 Once the previous is shown, we get:
if a < bd, then logb a < d, so
f(n) = c1n

d + c2n
logb a ≤ (c1 + c2)nd ∈ O(nd).

if a > bd, then logb a > d, so
f(n) = c1n

d + c2n
logb a ≤ (c1 + c2)nlogb a ∈ O(nlogb a).
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Master Theorem

Proving item 1:

Lemma

If a = bd and n is a power of b, then f(n) = f(1)nd + cnd logb n.

Proof:
Let k = logb n, that is nk = b. Iterating f(n) = af(n/b) + cnd, we get:

f(n) = a(af(n/b2) + c(n/b)d) + cnd = a2f(n/b2) + ac(n/b)d + cnd

= a2(af(n/b3) + c(n/b2)) + ac(n/b)d + cnd

= a3f(n/b3) + a2c(n/b2)d + ac(n/b)d + cnd

= ... = akf(1) +
k−1∑
j=0

ajc(n/bj)d = akf(1) +
k−1∑
j=0

cnd

= akf(1) + kcnd = alogb nf(1) + (logb n)cnd

= nlogb af(1) + cnd logb n = ndf(1) + cnd logb n.
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Master Theorem

Proving item 2:

Lemma

If a 6= bd and n is a power of b, then f(n) = c1n
d + c2n

logba, where
c1 = bdc/(bd − a) and c2 = f(1) + bdc/(a− bd).

Proof:
Let k = logb n; i. e. n = bk. We will prove the lemma by induction on k.
Basis: If n = 1 and k = 0, then
c1n

d + c2n
logb a = c1 + c2 = bdc/(bd − a) + f(1) + bdc/(a− bd) = f(1).

Inductive step: Assume lemma is true for k, where n = bk. Then, for
n = bk+1, f(n) = af(n/b) + cnd =
a((bdc/(bd − a))(n/b)d + (f(1) + bdc/(a− bd))(n/b)logb a)) + cnd =
(bdc/(bd − a))nda/bd + (f(1) + bdc/(a− bd))nlogb a + cnd =
nd[ac/(bd − a) + c(bd − a)/(bd − a)] + [f(1) + bdc/(a− bdc)]nlogb a =
(bdc/(bd − a))nd + (f(1) + bdc/(a− bd))nlogb a. �
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Master Theorem

Use the master theorem to determine the asymptotic growth of the
following recurrence relations:

binary search: b(n) = b(n/2) + 2;

mergesort: M(n) = 2M(n/2) + n;

maximum/minima: m(n) = 2m(n/2) + 2.

You have divided and conquered; have you saved in all cases?
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