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CSI 2101- Growth of Functions
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CSI 2101- Complexity

Having an algorithm for a given problem that does not mean that the problem can 
be solved.

The procedure (algorithm) may be so inefficient that it would not be possible to 
solve the problem within a useful period of time.

So what is inefficient? 
What is the “complexity” of an algorithm?
number of steps that it takes to transform the input data into the desired output.

Each simple operation (+,-,*,/,=,if, etc) and each memory access corresponds to a 
step. In general this depends of the problem.

The complexity of an algorithm is a function of the size of the input (or size of the 
instance). We’ll denote the complexity of algorithm A by CA(n), where n is the 
size of the input.
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Different notions of complexity

In general this
is the notion 
that we use to
characterize the 
complexity of
algorithms 
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• Algorithm “Good Morning”
• For I = 1 to n
• For J = I+1 to n
• ShakeHands(student(I), student(J))

Running time of “Good Morning”: 
Time = (# of HS) x (time/HS) + overhead

Want an expression for T(n), running time of 
“Good Morning” on input of size n. How many handshakes?

n
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n54321

I

J
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n54321
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1

n54321

But do we always characterize the complexity of algorithms with such a 
detail? What is the most important aspect that we care about?

Complexity

T(n) = s(n2- n)/2 + t
s is time for one HS, and t is time for getting organized
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CA2(n) = 5 n ≥ CA1(n) = 0.5 n2   for n ≤ 10

Two algorithms A1&A2
CA1(n) = 0.5 n2

CA2(n) = 5 n
Which one is better?
Better Complexity?

Growth of Functions
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Main question: how the complexity behaves asymptotically –
i.e., when the problem sizes tend to infinity!

Two algorithms A1&A2
CA1(n) = 0.5 n2

CA2(n) = 5 n
Which one is better?
Better Complexity?

Growth of Functions
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Growth of Functions

In general we only worry about growth rates because:

Our main objective is to analyze the cost performance of algorithms 
asymptotically. (reasonable in part because computers get faster
and faster every year.)

Another obstacle to having the exact cost of algorithms is that 
sometimes the algorithms are quite complicated to analyze.

When analyzing an algorithm we are not that interested in the 
exact time the algorithm takes to run – often we only want to 
compare two algorithms for the same problem – the thing that 
makes one algorithm more desirable than another is its growth 
rate relative to the other algorithm’s growth rate.
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Growth of Functions

Algorithm analysis is concerned with:

• Type of function that describes run 
time (we ignore constant factors 
since different machines have 
different speed/cycle

• Large values of n
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Growth of Functions

1.3x1013

century
2x108

century
3855 
century

6.5 
years

58 mn.059s3n

366 
century

35.7 
century

12.7 days17.9 mn1.0s.0001s2n

13 mn5.2 mn1.7 mn24.3s3.2s.1sn5

.216s.125s.064s.027s.008s.001sn3

.0036s.0025s.0016s.0009s.0004s.0001sn2

.00006s.00005s.00004s.00003s.00002s.00001sn

605040302010Size
Complexity

Assuming 106 operations per second



Dr-Zaguia-CSI2101-W08 10

Growth of Functions

n0

c.g(n)

f(n)

n
f(n) = O(g(n))

There exist two constants c and n0 such that  
0 ( ) . ( )f n c g n≤ ≤ for 0n n≥

We say “f(n) is big O of g(n)”
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Growth of Functions

How to prove that 5x + 100 = O(x/2)
Need ∀ x> ___, 5x + 100 ≤ ___ * x/2

Try c=11 and n0= 200

∀ x> 200, 5x + 100 ≤ 11 * x/2
(If x> 200 then x/2 > 100.  Thus 11 * x/2 = 5x + x/2 >5x +100.)
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Growth of Functions

C = 4
k = 1
also
C = 3
k = 2

x2 + 2x + 1 is O(x2)
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Growth of Functions

x2 vs. (x2 + x) 
(x <=20)
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Growth of Functions

x2 vs. (x2 + x) 
(x2 + x) is O(n2)
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Growth of Functions

Very useful: f(n)=aknk + ak-1 nk-1 + ... + a1n + a0 then   f(n) ∈ O(nk)

f(n) ≤ ( |ak| + |ak-1 / n | + ... + |a0 / nk | )  nk

≤ ( |ak| + |ak-1 | + ... + |a0 | )  nk for every n≥1.

Guidelines:
In general, only the largest term in a sum matters. 

a0xn + a1xn-1 + … + an-1x1 + anx0 = O(xn)
n dominates lg n.

n5lg n = O(n6)
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Growth of Functions

1 Constant time

n  Linear time

(n lg n)
n2 Quadratic time

n3

…
2n Exponential time

n! 

List of common functions in increasing O() order:
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Growth of Functions

If we have f(n) ∈ O(g(n)) then we may say too that 
g(n)  ∈ Ω(f(n)) (g(n) is omega of f(n)). 

g(n)  ∈ Ω(f(n)) if and only if there exist constants c and 
n0 such that: g(n)  ≥ c f(n) pour tout  n ≥n0

A function    g(n)  ∈ Θ(f(n)) (g(n) is Theta of f(n)) if
g(n) ∈ O(f(n))  and  g(n) ∈ Ω(f(n)) .

The f(n) and g(n) functions have the same growth rate.
When we write f=O(g), it is like f ≤ g
When we write f= Ω(g), it is like f ≥ g
When we write f= Θ(g), it is like f = g.
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Growth of Functions

n0

c2.g(n)

f(n)

n
f(n) = Θ (g(n))

There exist 3 constants c1,c2 and n0 such that

c1g(n)≤ f(n)≤ c2g(n)

c1.g(n)

for n ≥ n0
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Growth of Functions

0     then  g(n) ∈ O(f(n))
[but g(n)∉ Θ(f(n)]

c >0  then  g(n) ∈ Θ(f(n))

∞ then  g(n) ∈ Ω(f(n)).
[but g(n)∉ Θ(f(n)]

limn → ∞ g(n)/ f(n) =

Use the limit for comparing the order of growth 
of two functions.
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Estimating Functions

Estimate the sum of the first n positive integers
1 + 2 + … + n = n(n+1)/2 = n2/2 + n/2 = Θ (n2)

(1 + 2 + … + n) is Θ (n2)

What about f(n) = n! and log n!
n!= 1*2* … *n  ≤ n*n* …*n = nn. Thus n! is O(nn).
log n! ≤ log nn = n logn. Thus log n! is O(n logn).
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Note: log scale on y axis.


