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Material systems

Three material systems:
1) Indium Phosphide (InP)
2) Silicon Nitride (Si3N,)

3) Silicon on Insulator (SOI)

1) InP:

1 Able to monolithically integrate both active and passive photonic
components

dHigh loss, and large size

 Difficulty to integrate with electronics

uOttawa 3
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Material systems

2) Si5N:

 Very low loss, <0.2 dB/cm

1 No active components such as light sources, modulators, amplifiers and
photodetectors can be supported, thus full monolithic integration is hard to achieve

3) SIP:

1 A technology that allows optical devices to be made economically using the standard
and well-developed CMOS fabrication process

L Most of the optical components, both passive and active, can be fabricated

1 The key advantages include much smaller footprint, low loss, and simple
fabrication process and can be integrated with electronics (analog and dgital)

L No optical amplification and light emission

u Ottawa
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a Silicon photonic gratings

- Chirped Bragg gratings for RF generation

- Phase-shifted gratings for temporal differentiation

- Electrically tunable Fabry-Perot Bragg grating for signal processing

- Fully reconfigurable waveguide Bragg grating for programmable
photonic signal processing

- Electrically programmable equivalent-phase-shifted waveguide Bragg
grating for multichannel signal processing

a Conclusion
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Chirped RF waveform generation
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Chirp-free pulse >
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Chirped microwave pulse can be compressed by matched filtering, widely employed in Radar systems.
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Photonic microwave waveform generation based on OFC2019
spectral shaping and frequency-to-time mapping
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Photonic microwave waveform generation based on OFC2019
spectral shaping and frequency-to-time mapping
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Wavelength-to-time mapping, namely dispersive Fourier transformation, is a fast and
effective way to measure optical spectrum in the time domain.
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On-chip spectral shaper incorporating linearly chirped

waveguide Bragg gratings

Spectral
Shaper

=

—
O
o
9,
(TR
L

R

Offset waveguide

(0

M
/_C> \ Output
N4
Lcsezv% FSR=1/1

—_—

_—

|

LU

u Ottawa

OFC2019

9



On-chip spectral shaper incorporating linearly chirped OFC2019
waveguide Bragg gratings

Adiabatic Linearly Chirped
S-Bend

Input Grating
Grating ‘]“Ill
lm}[\‘JlllL Coupler Taper i
Sllica lll"" : ‘““ll
. Compact Output Grating
- S||ICOn Y-Branch Coupler

inearly Chirped
Grating

I 5 &

S‘iA(,)z = (b)
_ﬁ]ﬁ Eﬁ (a) Schematic layout of the designed on-chip spectral

shaper; (b) Image of the fabricated spectral shaper

“ - captured by a microscope camera.

Perspective view of the proposed on-chip silicon-based
optical spectral shaper. (Inset: (Left) Wire waveguide and
(Right) Rib waveguide)

Spectral
Shaper

W. Zhang and J. P. Yao, J. Lightw. Technol. 33, 5047-5054 (2015). uOttawa




On-chip spectral shaper incorporating linearly chirped OFC2019

waveguide Bragg gratings

As =2N4 A

Sllica

B stlicon

Reflection (dB)

Group Delay (ns)

1.53 1.545 1.56
Wavelength (um)

Perspective view of the proposed LC-WBG. (Inset: Simulated Measured spectral and group delay

fundamental TE mode profile of the rib waveguide with the rib responses of the LC-WBG with the rib

width of 500 nm (left) and 650 nm (right)). width increasing from 500 nm to (a) 550
nm, (b) 600 nm and (c) 650 nm along

the gratings.
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Experimental Results

200 TRTTT T 20
Measured spectral response of an = | UL ADHOA RO TUN |
on-chip spectral shaper when the = . i
length of the offset waveguide is :{ 35 Y.
(Leftli Cz:e\r/s é\gd (right) the length of § <
the LC- :
o T Y l N | Wh WM“W |
] 50
1.53 .538 1546 1.53 1.538 1.546
Wavelength (um) Wavelength (um)
TMLL 0s¢
DCF ‘
PC
OO0 On-Chip «. PD
50 Spectral Shaper

Experimental setup. TMML.: tunable mode lock laser. ISO: Isolator; EDFA: erbium-doped fiber
amplifier. PC: polarization controller. DCF: dispersion compensation fiber. PD: photodetector.

OSC: oscilloscope.
uOttawa




Experimental Results
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Experimental result: (a) the generated LCMW,; (b) experimental
spectrogram curve and numerical instantaneous frequency of the
generated LCMW, and (c) compressed pulse by autocorrelation when
the length of the offset waveguide equates to zero.

OFC2019

-
>

(a)

Amplitude (mA)
o
(0e]

o
()

5 15 25 35
Time (ns)
0.9

30

N
(@)

0.5

[EEN
o

Instantaneous
Frequency (GHz)

Normalized
Amplitude

-400  -200 _ 0O 0
Time (ps)

Experimental result: (a) the generated LCMW, (b) experimental
spectrogram curve and numerical instantaneous frequency of the
generated LCMW, and (c) compressed pulse by autocorrelation when
the length of the offset waveguide equates to the length of LC-WBG.
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Photonic temporal differentiator
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Magnitude and phase response of a differentiator.

Applications: phase to intensity conversion in an optical phase-modulated system.
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Photonic microwave temporal differentiator using an OFC2019
Integrated phase-shifted Bragg grating

Phase-Shifted Bragg Grating

Taper Taper
. Input Grating Output Grating .
coupler coupler

Strip Waveguide — !
Grating Coupler Taper Waveguide

alulala
alalala

(c) (d)
_ _ _ _ (@) Schematic layout. (b) Image of the fabricated
Configuration of the phase-shifted Bragg grating (PSBG)  geyjice. (c) Image of the grating couplers and the strip
in asilicon-on-insulator ridge waveguide. waveguides. (d) Image of the taper waveguides for the
transition between the strip waveguides and ridge
waveguides.

W. Zhang, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett. 26, 2383-2386 (2014). uOttawa
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Experimental Results
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(Left) Measured reflection and transmission spectral responses of the fabricated PSBG
on a ridge waveguide with a designed corrugation width of 125 nm. (Right) Zoom-in
view of the reflection notch and its phase response.
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Experimental Results

Phase-Shifted Bragg
Grating on SOI OSC
A
Wave-Shaper Polarizor PD
PC

Experimental setup. MML: mode lock laser. EDFA: erbium-doped fiber
amplifier. PC: polarization controller. PD: photodetector. OSC: oscilloscope.

1

R
| HEi"rﬁ

10.5;

-150 100 -50 0 50 100 150 -150 -100 -50 O 50 100 150
Time (ps) Time (ps)

(Left) An input Gaussian pulse with an FWHM of 25 ps, and (Right)
the temporally differentiated pulses by simulation and experiment.
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Silicon-based on-chip electrically tunable sidewall
Bragg grating Fabry-Perot filter

WEIFENG ZHANG, NASRIN EHTESHAMI, WEILIN Liu, AND JIANPING YAO™
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W. Zhang, N. Ehteshami, W. Liu, and J. Yao, Opt. Lett. 40, 3153-3156 (2015) uOttawa 20




Silicon-based on-chip electrically tunable phase-shifted OFC2019

waveguide Bragg grating

a)

Power (dBm)
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Measured spectra when a zero bias voltage is applied. The
notch in the reflection band has a 3-dB bandwidth of 46
pm with a Q-factor of 33,500, and an extinction ratio of

16.4 dB.
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Silicon-based on-chip electrically tunable phase-shifted OFC2019
waveguide Bragg grating
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Silicon-based on-chip electrically tunable phase-shifted OFC2019
waveguide Bragg grating

Application 1: Tunable fractional-order Application 2: Tunable optical delay line
photonic temporal differentiator
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The resonance wavelength is shifted. A fixed By incorporating multi-phase-shifted blocks in the
resonance wavelength with a tunable phase-shift is PS-WBG, a delay line with a wider bandwidth
desired. could be realized .
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A fully reconfigurable waveguide Bragg grating for
programmable photonic signal processing

o /o o o (0

Silica Silicon Doped bragg . Grating . ¢ | Signal Ground
-substrate waveguide o gratings ) insulator FP gty S electrode G electrode

W. Zhang and J. P. Yao, Nature Comm., 9, 1396 (2018) uOttawa 25
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Grating design
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Grating design
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Measured reflection and transmission

spectrums.

(@) Reflection and transmission spectrum of
the fabricated grating in the static state;

(b) Notch wavelength shift when the bias
voltages applied to the left and right sub-
gratings vary synchronously;

(c) Extinction ratio tuning while the notch
wavelength is kept unchanged;

(d) Reflection and transmission spectrums
when the grating is reconfigured to be a
uniform grating;

(e) Wavelength tuning of the uniform grating;
(F) Reflection and transmission spectrums
when the device is reconfigured to be a
uniform grating by increasing the cavity loss;
(g) Reflection and transmission spectrums
when the device is reconfigured to be two
independent uniform sub-gratings; and

(h) Reflection and transmission spectrums
when the device is reconfigured to be a

chirped grating.
uOttawa
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Programmable microwave signal processor

RF Input :l 10200... Power Meter—

LEEES
o@e 000
20e | 22 TLS DC Sources PD «—<EDFA
PC2 @ PCl ® ©&© o o o C<

Silicon substrate

The experimental set-up consists of a tunable laser source (TLS), a polarization controller (PC), a
Mach-Zehnder modulator (MZM), an erbium-doped fiber amplifier (EDFA) and a photodetector (PD).
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Experimental demonstration

Function 1: Photonic temporal differentiation Function 2: Microwave time delay
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Equivalent-phase-shifted Bragg grating

v" Conventional phase-shifted waveguide Bragg grating

_ .
g
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Feature size three orders of magnitude larger > easy to fabricate uOttawa 32
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Programmable EPS grating design

On-modulation Off-modulation Sampling period Isolation Lateral PN
grating .. grating ., increment | waveguide . junction
- - - - — - la—— A y————————

Oxide Insulator
con Substrate
.F.“b _S!ab P p+_+ n n+_+ Metal 1 Via 2 Metal 2
Silicon Silicon doping doping doping doping

—,
W. Zhang and J. P. Yao, J. Lightw. Technol., 37, 314-322 (2019). uOttawa
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Programmable EPS grating design

: : Independent Voltage Programmable
Wafer || Grating | m| Doping |m Electrodes = Control = EPS Grating
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Programmable EPS grating design
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Performance evaluation: static state
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Performance evaluation: independent test

v" Applying and tuning a bias voltage to the PN junctions in the on-modulation grating
sections 24— A

W N
N 0
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+3rd channel spectral response tuning

v" Applying and tuning a bias voltage to the PN junctions in the off-modulation grating
sections 24 ‘ ‘ ‘

Optical power
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Performance evaluation: programmability

v 2. Tuning the extinction ratio while
the 3 channel notch wavelength is
maintained unchanged for different
bias voltages.
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Multichannel signal processing: temporal differentiation

1.2 P 1.2
(a) — Exp. (b) —  Exp.
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R Differentiation | & Differentiation
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A multichannel temporal differentiator with a channel spacing of 24 nm is
experimentally demonstrated. The figure shows the measured temporally
differentiated pulses corresponding to a differentiation order of (a) 0.53 at the +5t
channel, and (b) 0.74 at the +7th channel.
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Conclusion

4 Silicon photonics Is a solution for ultra-fast optical signal processing with
reduce the size and cost.

By electrical tuning, a silicon photonic grating can be made programmable
and reconfigurable for various optical or microwave signal processing

 Heterogeneous integration may be needed to produce laser sources and
optical amplifiers using I11-V materials, to achieve monolithic photonic
Integrated signal processing systems (system on chip) - a key challenge for

wide applications of silicon photonics.
Thank you
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