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Architecture of a duplex RoF link
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Y. Huang, K. Zeb, P. Poole, X. Zhang, Z. Lu, K. Wu, and J. Yao, “Duplex millimeter-wave over fiber link using
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Downlink:

Two comb lines are selected and filtered (Spacing: 0.2-nm/
25.08 GHz (MMW)).

One comb line is single sideband modulated by a 3-GHz
16-QAM vector signal at a DPMZM.

A 25.08-GHz 16QAM vector signal is generated by beating
the modulated comb line and an adjacent comb line.

The MMW signal is radiated and received using a pair of
horn antenna.

Uplink:

The unmodulated comb line is reused as an optical carrier
for uplink.

A 28 GHz 16QAM vector signal is transmitted and received
using a pair of horn antenna and is downconverter to 3 GHz
and then modulates the reused comb line.

Signals from two links can transmit through one fiber link
by using two circulators.

u Ottawa

an InAs/InP quantum-dash mode-locked laser,"” MWP 2022, Oct. 4-6, 2022



QD mode-locked laser
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(a) Output power versus the injection current of the QD-
MLL,; (b) optical spectrum of the QD-MLL (45 comb lines)
when the injection current is 430 mA. The spacing between
two adjacent comb lines is 25.08 GHz.
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The electrical spectrum of a heterodyning beat
signal at 25.08 GHz and its zoom-in view.
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QD mode-locked laser
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single-sideband phase noise of the microwave beat signal.
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Duplex RoF link experiment - 10 km smF in the duplex mode
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Experimental results-ser
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(a) BERs versus the received optical power for downlink transmission, blue: back-to-back, red: 10 km SMF in the simplex
mode, and pink: 10 km SMF in the duplex mode. (b) BERSs versus the received optical power for uplink transmission, blue:
back-to-back, Red: 10 km SMF in the simplex mode, and ink 10 km SMF in the duplex mode.
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Experimental results
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MIMQO transmission
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MIMQO transmission
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Measured optical spectrum of the QD-MLL (6-dB bandwidth of 12.1 nm with 54 comb lines; (b) filtered
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MIMQO transmission
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(a) The electrical spectrum of a heterodyning
beat signal between two adjacent comb lines at
28.36 GHz and (b) the zoom-in view.
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The electrical spectra of the received signals from the
two receiving antennas. As can be seen, 16QAM
signals at 28.36 GHz are generated.
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MIMO transmission- Algorithm
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The DSP routine at the MIMO receiver includes

« Down-conversion

* Re-sampling

* Frame synchronization

» Matched filtering

o Carrier frequency offset (CFO) compensation

 Gram-Schmidt orthogonalization procedure (GSOP)

» Chromatic-dispersion (CD) compensation

» Clock recovery, MIMO equalization based constant modulus algorithm (CMA)
« Carrier phase recovery based on blind phase search (BPS) algorithm
» Decision-directed least mean square (DD-LMS) algorithm

 BER counting
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MIMO transmission — Experimental results
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(DD-LMS). The measured EVM: (a) 15.59%, (b) 15.69%.
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Phase noise compensation
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» |If the time delay between the two comb lines is not matched, the phase noise of the comb lines would
be transferred to the generated microwave signal to generate a time-delay induced phase noise.

» The time-delay induced phase noise can be eliminated using analog time matching

» Differential phase noise between the two comb lines is generated due to the passive mode locking jitter

» Through phase noise compensation, ttransmission performance is increased for a 10 Gb/s OFDM signal
at 25 GHz over a 10 km single-mode fiber (SMF) and a 2-m wireless link
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Phase noise compensation

Mathematically, two comb lines can be expressed

E1 (t) = pl2rhtaio(t)

E2 (t) = pl27Tta i) iy (1)

 f,,are the optical frequencies

e (1) is the phase noise (due to the finite linewidth) which can be
cancelled if the time delay difference is zero

o y(t)is the differential phase noise between the two comb lines
due to the passive mode locking jitter

u Ottawa 17




Phase noise compensation

E.(t)=E (t)+E,(t+7,)

where 7, Is the time delay between the two comb lines. The combined
signal 1s sent to a RRU to beat at a PD to generate a microwave
signal, with the photocurrent given by

| (t) oc ‘EC (’[)‘2 oC COS(27Z' fot +£A¢(Td )}+Ey(t + rdﬂ+ 0,7, )

where f, = f,-f, is the microwave frequency, and A¢(zy) = d(t+7,)-A(1).

As can be seen the time-delay-induced phase noise A¢(z,) and the
differential phase noise w(z+z,4) between the two comb lines
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Phase noise compensation

* For the transmission of an OFDM signal: the phase noise has two
effects on an OFDM signal: a common phase error (CPE) that is
common to all carriers, and a time varying frequency dependent
error which generates inter-carrier interference (ICl)

e CPE can be solved by estimating the mean phase rotation of each
symbol from dedicated pilot subcarriers and rotating the received
symbol back

 RF-pilot (RFP) phase compensation algorithm can be used to
compensate both CPE and ICI

u Ottawa 19




Phase noise compensation
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Phase noise compensation - Experimental results
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Photonic integrated solution - Architecture
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(a) Schematic diagram of a duplex MMWOF link based on a
IP Integrated transmitter incorporating a QD-MLL. (b) A
picture of the SIP chip.
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Photonic integrated solution
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Photonic integrated solution - downlink
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Photonic integrated solution - uplink
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RoF links for ISAC
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Joint radar and communication (JRC) can be implemented based on:
1) Time-division multiplexing (TDM)

2) Frequency division multiplexing (FDM)

3) Polarization division multiplexing, and

4) Co-time and co-frequency (CTCF)
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Integration of Sensing and Communication n
a W-Band Fiber-Wireless Link Enabled by
Electromagnetic Polarization Multiplexing

Power(dBm)

Mingzheng Lei, Min Zhu, Yuancheng Cai, Miaomiao Fang, Wei Luo, Jiao Zhang, Bingchang Hua,
Yucong Zou, Xiang Liu, Weidong Tong, and Jianjun Yu, Fellow, IEEE, Fellow, Optica
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e A 23-GHz bandwidth linearly chirped microwave waveform (LCMW) and a 23-GBaud 16QAM signal were successfully generated and

transmitted over a wireless distance of 10.8 m. MOF: multi-channel optical filter
e A spatial resolution of up to 15 mm and a data rate as high as 92 Gbit/s were achieved. OMT: Orthomode Transducer

M. Lei et al., "Integration of sensing and communication in a W-band fiber-wireless link enabled by uOttawa
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electromagnetic polarization multiplexing," in Journal of Lightwave Technology, doi: 10.1109/JLT.2023.3280388
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Optics Letters

Photonic super-resolution millimeter-wave joint
radar-communication system using self-coherent

detection
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1.

Conclusion

Increased bandwidth: Optical fibers have a much higher bandwidth compared to
traditional copper cables.

Low loss: Optical fibers have significantly lower transmission losses compared to
copper cables, allowing signals to be transmitted over longer distances.

Immunity to EMI: providing a more reliable and interference-free communication
channel.

Light weight and compact: Optical fibers are lightweight and can be more easily
routed and installed compared to bulky copper cables.

Secure communication: Optical signals transmitted through fiber optic cables are
difficult to tap or intercept.

Various applications: telecommunications, and sensing
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