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Introduction

• High speed and wideband signal 
transmission over fiber with ultra-low lass

• Simplified base station, all signal 
processing in central office

• For 5/6G applications
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Architecture of a duplex RoF link
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Downlink:
• Two comb lines are selected and filtered (Spacing: 0.2-nm/ 

25.08 GHz (MMW)).
• One comb line is single sideband modulated by a 3-GHz 

16-QAM vector signal at a DPMZM.
• A 25.08-GHz 16QAM vector signal is generated by beating 

the modulated comb line and an adjacent comb line.
• The MMW signal is radiated and received using a pair of 

horn antenna.

Uplink:
• The unmodulated comb line is reused as an optical carrier 

for uplink.
• A 28 GHz 16QAM vector signal is transmitted and received 

using a pair of horn antenna and is downconverter to 3 GHz 
and then modulates the reused comb line.

• Signals from two links can transmit through one fiber link 
by using two circulators.

Y. Huang, K. Zeb, P. Poole, X. Zhang, Z. Lu, K. Wu, and J. Yao, “Duplex millimeter-wave over fiber link using 
an InAs/InP quantum-dash mode-locked laser," MWP 2022, Oct. 4-6, 2022
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(a) Output power versus the injection current of the QD-
MLL; (b) optical spectrum of the QD-MLL (45 comb lines) 
when the injection current is 430 mA. The spacing between 
two adjacent comb lines is 25.08 GHz. 
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The electrical spectrum of a heterodyning beat 
signal at 25.08 GHz and its zoom-in view.

G. Liu, Z. Lu, J. Liu, Y. Mao, M. Vachon, C. Song, P. Barrios, and P. J. Poole, "Passively mode-locked quantum 
dash laser with an aggregate 5.376 Tbit/s PAM-4 transmission capacity," Opt. Express 28, 4587-4593 (2020)
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(a) RIN spectra of the two selected adjacent comb lines with wavelengths at 1532.85 nm and 1533.05 nm. (b) The 
single-sideband phase noise of the microwave beat signal. 

QD mode-locked laser

The phase noise consists 
of two parts: 
1) the phase noise due 

to the time delay 
between the two 
comb lines and 

2) the differential phase 
noise due to passive 
mode locking jitter. 
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Duplex RoF link experiment - 10 km SMF in the duplex mode
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Distance: 10 km SMF + 2 m wireless
RF frequency: 25.08 + 3 GHz
Data rate: 1 Gbaud/s
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(a) BERs versus the received optical power for downlink transmission, blue: back-to-back, red: 10 km SMF in the simplex 
mode, and pink: 10 km SMF in the duplex mode. (b) BERs versus the received optical power for uplink transmission, blue: 
back-to-back, Red: 10 km SMF in the simplex mode, and ink 10 km SMF in the duplex mode.
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EVM= 7.26% EVM= 7.23%EVM= 15.25% EVM= 7.57%
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Constellation diagrams for the downlink and uplink transmission

Experimental results
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(b)(a)

Measured optical spectrum of the QD-MLL (6-dB bandwidth of 12.1 nm with 54 comb lines; (b) filtered 
two comb lines with a frequency spacing of 28.36 GHz.

MIMO transmission
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(a) The electrical spectrum of a heterodyning 
beat signal between two adjacent comb lines at 
28.36 GHz and (b) the zoom-in view.

The electrical spectra of the received signals from the 
two receiving antennas. As can be seen, 16QAM 
signals at 28.36 GHz are generated.
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MIMO transmission- Algorithm

Resample Frame
Sync.

Match
filter

Down-
conversionRx1 CFO

comp. GSOP
CD

Comp.
Clock

recovery

Resample Frame
Sync.

Match
filter

Down-
conversionRx2 CFO

comp. GSOP
CD

Comp.
Clock

recovery

MIMO
equalization

Carrier
phase

recovery

Carrier
phase

recovery

DD-
LMS

DD-
LMS

BER
couting

The DSP routine at the MIMO receiver includes 
• Down-conversion
• Re-sampling
• Frame synchronization
• Matched filtering
• Carrier frequency offset (CFO) compensation
• Gram-Schmidt orthogonalization procedure (GSOP)
• Chromatic-dispersion (CD) compensation
• Clock recovery, MIMO equalization based constant modulus algorithm (CMA) 
• Carrier phase recovery based on blind phase search (BPS) algorithm
• Decision-directed least mean square (DD-LMS) algorithm
• BER counting
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(a) and (b) constellation diagrams before MIMO equalization, (c) 
and (d) constellation diagrams after MIMO equalization.

Constellation diagrams after carrier phase recovery. The 
measured EVM: (a) 17.28%, (b) 17.42%.

Constellation diagrams after Decision-directed least mean square 
(DD-LMS). The measured EVM: (a) 15.59%, (b) 15.69%.

MIMO transmission – Experimental results
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Phase noise compensation
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• If the time delay between the two comb lines is not matched, the phase noise of the comb lines would 
be transferred to the generated microwave signal to generate a time-delay induced phase noise.

• The time-delay induced phase noise can be eliminated using analog time matching 
• Differential phase noise between the two comb lines is generated due to the passive mode locking jitter
• Through phase noise compensation, ttransmission performance is increased for a 10 Gb/s OFDM signal 

at 25 GHz over a 10 km single-mode fiber (SMF) and a 2-m wireless link
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12 ( )
1( ) j f t j tE t e eπ φ=

22 ( ) ( )
2 ( ) j f t j t j tE t e e eπ φ ψ=

• f1,2 are the optical frequencies
• ϕ(t) is the phase noise (due to the finite linewidth) which can be 

cancelled if the time delay difference is zero
• ψ(t) is the differential phase noise between the two comb lines 

due to the passive mode locking jitter

Mathematically, two comb lines can be expressed 

Phase noise compensation



18

( ) ( )1 2( )c dE t E t E t τ= + +

( )2
0 2( ) ( ) cos 2 ( ) ( )c d d dI t E t f t tπ φ τ ψ τ ω τ∝ ∝ + ∆ + + +

where τd is the time delay between the two comb lines. The combined 
signal is sent to a RRU to beat at a PD to generate a microwave 
signal, with the photocurrent given by 

where f0 = f2-f1 is the microwave frequency, and Δϕ(τd) = ϕ(t+τd)-ϕ(t). 
As can be seen the time-delay-induced phase noise Δϕ(τd) and the 
differential phase noise ψ(t+τd) between the two comb lines

Phase noise compensation
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• For the transmission of an OFDM signal: the phase noise has two 
effects on an OFDM signal: a common phase error (CPE) that is 
common to all carriers, and a time varying frequency dependent 
error which generates inter-carrier interference (ICI) 

• CPE can be solved by estimating the mean phase rotation of each 
symbol from dedicated pilot subcarriers and rotating the received 
symbol back

• RF-pilot (RFP) phase compensation algorithm can be used to 
compensate both CPE and ICI

Phase noise compensation
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(a) The optical spectrum of the QD-MLL. (b) The optical spectrum of the two 
selected comb lines. Simulated EVM versus (c) time delay (γR = 0 differential 
phase noise is zero, γO = 4.4 MHz) (time delay phase noise cannot be 
compensated by both algorithms, but it can only be compensated by matched 
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Phase noise compensation

can only be 
compensated by 
matched time delays

can be compensated 
by RFP or CPE based 
approaches
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Photonic integrated solution - Architecture
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(a) Schematic diagram of a duplex MMWoF link based on a 
SiP integrated transmitter incorporating a QD-MLL. (b) A 
picture of the SiP chip.

Distance: 10 km SMF
RF frequency: 42.3 GHz
Data rate: 200 MSym/s 
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generated by the QD-MLL (comb spacing 42.3 GHz), (c) the optical spectrum before 
(blue) and after (red) the SiP chip.

Photonic integrated solution
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Photonic integrated solution - uplink
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RoF links for ISAC

Joint radar and communication (JRC) can be implemented based on：
1) Time-division multiplexing (TDM)
2) Frequency division multiplexing (FDM)
3) Polarization division multiplexing, and 
4) Co-time and co-frequency (CTCF )
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• A 23-GHz bandwidth linearly chirped microwave waveform (LCMW) and a 23-GBaud 16QAM signal were successfully generated and 
transmitted over a wireless distance of 10.8 m. MOF: multi-channel optical filter

• A spatial resolution of up to 15 mm and a data rate as high as 92 Gbit/s were achieved.

M. Lei et al., "Integration of sensing and communication in a W-band fiber-wireless link enabled by 
electromagnetic polarization multiplexing," in Journal of Lightwave Technology, doi: 10.1109/JLT.2023.3280388

two asymmetrical
optical SSB signals 
(i.e., the Sen-OSB and 
Com-OSB)

f

OMT: Orthomode Transducer
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vol. 48, Issue 3, 
pp. 608-611 (2023)
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CS-SSB modulation, upper path

IF JRC signal (chirped + data)

PD1 output, upper path

Communication RX

chirped OFDM
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Received echo signal

De-chirped signal
2πκτ

m’(t)=m(t)-m(t-t)
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Conclusion

1. Increased bandwidth: Optical fibers have a much higher bandwidth compared to 
traditional copper cables.

2. Low loss: Optical fibers have significantly lower transmission losses compared to 
copper cables, allowing signals to be transmitted over longer distances.

3. Immunity to EMI: providing a more reliable and interference-free communication 
channel.

4. Light weight and compact: Optical fibers are lightweight and can be more easily 
routed and installed compared to bulky copper cables.

5. Secure communication: Optical signals transmitted through fiber optic cables are 
difficult to tap or intercept.

6. Various applications: telecommunications, and sensing
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