ITI 1121. Introduction to Computing II
Winter 2021

Assignment 4
(Last modified on March 22, 2021)

Deadline: April 9, 2021, 11:30 pm

Learning objectives

* Working with linked structures
* Working with generics

* Recursive programming

* Exception handling

Introduction

We have already laid most of the groundwork for building decision trees and, at this point, we are only one well-
crafted (recursive) algorithm away from building these trees! The description for Assignment 4 is shorter than those
for the previous assignments, since we have covered most of what we need in these previous assignment descrip-
tions. The amount of coding involved in Assignment 4 is also going to be less than in the previous assignments.
However, the smaller implementation does not mean that you should postpone it! Assignment 4 requires famil-
iarity with both (simple) tree-based linked structures as well as recursive programming. These concepts need
time to digest. We therefore ask that you start working on the assignment as soon as you receive this description.

You will be implementing the following three tasks in Assignment 4. The tasks marked with a * will take more
time to complete.

Task 1*.

Your first task is to build a decision tree for a given dataset. The implementation will be done in the DecisionTree
class (whose template code has been provided to you). The nodes of the decision tree will be instances of the
following (private) nested class in DecisionTree.

private static class Node<E> {
E data;
Node<E>[] children;

Node (E data) {
this.data = data;

}

The DecisionTree class will instantiate this generic class with VirtualDataSet class as type. All the tree nodes
that you will be working with are therefore instances of Node<VirtualDataSet>. The DecisionTree has an instance
variable, named root, which maintains a reference to the root of the tree:

Node<VirtualDataSet> root;

The pesudo-code for the recursive build(. ..) method that you need to write is as follows:

private void build (Node<VirtualDataSet> node) {

1. Edge cases:
1.1. Are node and node.data non-null?

1.2. Does node.data (virtual dataset) have at least one attribute?
1.3. Does node.data have at least one datapoint?

2. Base cases:
2.1. node.data has only one attribute (this attribute has to be
the "class" attribute; we can’t split the data any further)

2.2. The unique value set of node.data’s last attribute, i.e., "class" attribute,
has only one value in its unique value set (there is no uncertainty;
we don’t need to split any further)

2.3. No (non-class) attribute of node.data has more than one unique value
(there is nothing left to split on)

3. Recursive case:
3.1. Let a_max be the attribute in node.data that yields the
best information gain

3.2. Let [partition_0, ..., partition_(n-1)] be the result of splitting
node.data over a_max (note: whether to apply numeric or nominal splitting
depends on whether a_max is numeric or nominal)

3.3. Instantiate the children array of node
3.4. Populate node.children with the partitions resulting from Step 3.2.
(note: children[0] will point to partition_0, children[1] to

partition_1 and so on)

3.5. (Recursive step) For every node.children[i] (0 <= i <= n-1) do:
build(node.children[i])

Task 2*.

Write a toString() method that provides an if-else representation of the decision tree. The toString() method
will call a recursive toString(...) method with the following signature:

private String toString(Node<VirtualDataSet> node, int indentDepth)

We want the if-else representation of a decision tree to be properly indented for readability. As we traverse
deeper into the decision tree, the amount of indentation, captured by the indentDepth parameter, therefore has to
increase (e.g., by one tab or one space). In the DecisionTree class, you have been provided with a simple method
to create the desired indent to use as prefix for different depths during the traversal of the tree.

IMPORTANT: JDK 12 and upward provide an indent(int n) method for Strings. You are NOT allowed to use
this method, as this will necessitate JDK 12+ for compiling your program. For marking, you can expect the TAs
to be using JDK 11 but not higher. If your program does not compile due to using String’s new indent(int n)
method, you are solely responsible for any marks deducted because of non-compilation.

We now illustrate the output returned by the toString() method of the DecisionTree class. Consider the
main(...) method below:

public static void main(String[] args) throws Exception {
ActualDataSet datal = new ActualDataSet(new CSVReader("weather-nominal.csv"));
DecisionTree dtreel = new DecisionTree(datal);

[

System.out.println("#*% Decision tree for weather-nominal.csv x*x*x");
System.out.println();

System.out.println(dtreel);

i

System.out.println("=*% Decision tree for weather-numeric.csv x*x*x");
System.out.println();

ActualDataSet data2 = new ActualDataSet(new CSVReader("weather-numeric.csv"));
DecisionTree dtree2 = new DecisionTree(data2);

System.out.println(dtree2);

The output generated by the above main(...) method is as follows:

+%+ Decision tree for weather-nominal.csv **x

if (outlook is “sunny’) {
if (humidity is "high’) {
class = no
}
else if (humidity is ‘normal’) {
class = yes
}
}

else if (outlook is “overcast’) {
class = yes
}
else if (outlook is ‘rainy’) {
if (windy is 'FALSE") {
class = yes
}
else if (windy is "TRUE") {
class = no

}

Output continued on the next page ...

+x% Decision tree for weather-numeric.csv *x*x

if (outlook is “sunny’) {
if (humidity <= 70) {

play = yes
}
else if (humidity > 70) {
play = no
}
}
else if (outlook is ‘overcast’) {
play = yes
}

else if (outlook is ‘rainy’) {
if (windy is 'FALSE") {

play = yes

}

else if (windy is "TRUE") {
play = no

}

}

To be able to implement the toString(Node<VirtualDataSet> node, int indentDepth) method properly,
you need to take note of three factors:

1. In Assignments 2 and 3, we did not keep track of the split condition in the virtual datasets resulting from
partitioning. Examples of split conditions in the above output are:

’

* outlook is ’sunny’
e windy is 'FALSE’

* humidity <= 70

* humidity > 70

Compared to the reference implementations you were provided with for Assignments 2 and 3, the template
code for Assignment 4 has a slightly updated VirtualDataSet class. Specifically, VirtualDataSet now keeps
track of the split condition that induced the dataset during the partitioning process. You can now obtain the
split condition associated with a (virtual) dataset by simply calling the newly added getCondition() method.
You will therefore not need to change VirtualDataSet.

2. The build(...) method in Task 1 merely manages the splitting process and stops it where the process
cannot or should not continue. That method, however, does not ascribe a decision to the leaf nodes of
the decision tree. The decision (verdict) for each leaf node is computed by the toString() method. For
weather-nominal.csv, the two possible decisions are: (i) class = no and (ii) class = yes. For weather-
numeric.csv, the two possible decisions are: (i) play = no and (ii) play = yes.

If the dataset is noisy or the attributes not chosen properly by the data scientists, the leaf nodes in the decision
tree may have datapoints that disagree on their “class” attribute. In other words, one may have a mix of yeses
and noes in the leaves. In our weather-nominal example, for instance, we could have had situations where
both class = no and class = yes are supported by the datapoints remaining in a given leaf node. For the
purposes of this assignment, if multiple decisions are supported by a leaf node, toString(...) can arbitrarily
pick either of them'.

Note: Your implementation should work on credit-info.csv and diabetes.csv, but we withhold
the output for these two datasets. When we mark Assignment 4, the teams whose implementations
produce correct output for credit-info.csv and diabetes.csv will get a 10% bonus on their As-
signment 4 mark!

1 The reference implementation that you will receive later for Assignment 4 simply returns, for each leaf node, the first value in the unique
value set of the “class” attribute. More nuanced implementations are possible but are beyond the scope of this assignment.

Task 3.

In this task, you will implement exception handling for the methods in DecisionTree, as well as for the methods in
the three classes you developed in Assignment 3. Specifically, the methods in the following four classes require
proper exception for all their edge cases:

* DecisionTree.java (from the current assignment)

* EntropyEvaluator.java (from Assignment 3)

* GainInfoltem.java (from Assignment 3)

* InformationGainCalculator.java’ (from Assignment 3)

For Task 3, we do not anticipate that you will need to define any new exception classes. The exception classes
already provided by Java should suffice. In particular, the following exception classes are probably all that you
need: IO0Exception, I1legalArgumentException, ArrayIndexOutOfBoundsException, I1legalStateException
and NullPointerException.

Implementation

Like in previous assignments, you cannot change any of the signatures of the methods. You cannot add new
public methods or variables either. You can, however, add new private methods to improve the readability or the
organization of your code.

Guidance is provided in the template code in the form of comments. For the DecisionTree class, the locations
where you need to write code have been clearly indicated with an inline comment that reads as follows:

// WRITE YOUR CODE HERE!

For Task 3 (exception handling), you need to decide where and how to update the code, based on what you have
learned during the lectures and the labs. No guidance is provided in the code for exception handling.

Academic Integrity

This part of the assignment is meant to raise awareness concerning plagiarism and academic integrity. Please read
the following documents.

* Academic regulation I-14 - Academic fraud
* Academic integrity

Cases of plagiarism will be dealt with according to the university regulations. By submitting this assignment, you
acknowledge:

1. Thave read the academic regulations regarding academic fraud.

2. Tunderstand the consequences of plagiarism.

3. With the exception of the source code provided by the instructors for this course, all the source code is mine.
4. 1did not collaborate with any other person, with the exception of my partner in the case of team work.

* If you did collaborate with others or obtained source code from the Web, then please list the names of
your collaborators or the source of the information, as well as the nature of the collaboration. Put this
information in the submitted README.txt file. Marks will be deducted proportional to the level of help
provided (from 0 to 100%).

2The main(...) method in InformationGainCalculator is not relevant to Assignment 4. You do not need to implement exception
handling for InformationGainCalculator.main(...). Notice, however, that you do need to implement exception handling for Decision-
Tree.main(...).

https://www.uottawa.ca/administration-and-governance/academic-regulation-14-other-important-information
https://www.uottawa.ca/vice-president-academic/academic-integrity

Rules and regulation

Follow all the directives available on the assignment directives web page.

Submit your assignment through the on-line submission system virtual campus.

You must preferably do the assignment in teams of two, but you can also do the assignment individually.
You must use the provided template classes below.

If you do not follow the instructions, your program will make the automated tests fail and consequently your
assignment will not be graded.

We will be using an automated tool to compare all the assignments against each other (this includes both, the
French and English sections). Submissions that are flagged by this tool will receive the grade of 0.

It is your responsibility to make sure that Brightspace has received your assignment. Late submissions will
not be graded.

Files

You must hand in a zip file (no other file format will be accepted). The name of the top directory has to have the
following form: a4_3000000_3000001, where 3000000 and 3000001 are the student numbers of the team members
submitting the assignment (simply repeat the same number if your team has one member). The name of the
folder starts with the letter “a” (lowercase), followed by the number of the assignment, here 4. The parts are
separated by the underscore (not the hyphen). There are no spaces in the name of the directory. The archive
a4_3000000_3000001.zip contains the files that you can use as a starting point. Your submission must contain the
following files.

README.txt

— A text file that contains the names of the two partners for the assignments, their student ids, section, and
a short description of the assignment (one or two lines).

ActualDataSet.java

Attribute.java

AttributeType.java

CSVReader.java

DataReader.java

DataSet.java

DecisionTree.java (Aside from exception handling, the new code you write in Assignment 4 is localized to
DecisionTree.java)

EntropyEvaluator.java

GainInfoltem.java

InformationGainCalculator.java

StudentInfo.java (Make sure to update the file, so that the display() method shows your personal informa-
tion).

Util.java

VirtualDataSet.java

Questions

For all your questions, please visit the Piazza Web site for this course:

https://piazza.com/uottawa.ca/winter2021/iti1121/home

Last modified: March 22, 2021

http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/directives.html
http://uottawa.brightspace.com
http://www.eecs.uottawa.ca/~gvj/Courses/ITI1121/assignments/04/a4_3000000_3000001.zip
https://piazza.com/uottawa.ca/winter2021/iti1121/home

