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Abstract. Detecting the location entities mentioned in Twitter messages is use-
ful in text mining for business, marketing or defence applications. Therefore,
techniques for extracting the location entities from the Twitter textual content are
needed. In this work, we approach this task in a similar manner to the Named En-
tity Recognition (NER) task focused only on locations, but we address a deeper
task: classifying the detected locations into names of cities, provinces/states, and
countries. We approach the task in a novel way, consisting in two stages. In the
first stage, we train Conditional Random Fields (CRF) models with various sets
of features; we collected and annotated our own dataset or training and testing.
In the second stage, we resolve cases when there exist more than one place with
the same name. We propose a set of heuristics for choosing the correct physical
location in these cases. We report good evaluation results for both tasks.

1 Introduction

A system that automatically detects location entities from tweets can en-
able downstream commercial or not-for-profit applications. For example,
automatic detection of event locations for individuals or group of individ-
uals with common interests is important for marketing purposes, and also
for detecting potential threats to public safety.

The extraction of location entities is not a trivial task; we cannot sim-
ply apply keyword matching due to two levels of ambiguities defined by
[1]: geo/non-geo ambiguity and geo/geo ambiguity. Geo/non-geo ambi-
guities happen when a location entity is also a proper name (e.g., Roberta
is a given name and the name of a city in Georgia, United States) or has
a non-geographic meaning (e.g., None is a city in Italy in addition to the
word none when lower case is ignored or when it appears at the beginning
of a sentence). A geo/geo ambiguity occurs when several distinct places
have the same name, as in London, UK; London, ON, Canada; London,
OH, USA; London, TX, USA; London, CA, USA, and a few more in the



USA and other countries. Another example is the country name China
being the name of cities in the United States and in Mexico.

As a consequence of the ambiguities, an intelligent system smarter
than simple keyword matching is required. Specifically, we propose to
address the geo/non-geo ambiguities by defining a named entity recog-
nition task which focuses on locations and ignores other types of named
entities. We train CRF classifiers for specific types of locations, and we
experiment with several types of features, in order to choose the most ap-
propriate ones. To deal with geo/geo ambiguities, we implement several
heuristic disambiguation rules, which are shown to perform reasonably
well. The consequent hybrid model is novel in the social media location
extraction domain. Our contribution consists in the specific way of fram-
ing the problem in the two stages: the extraction of expressions composed
of one or more words that denote locations, followed by the disambigua-
tion to a specific physical location. Another contribution is an annotated
dataset that we made available to other researchers. The fully-annotated
dataset and the source code can be obtained through this link3.

2 Related Work

Before the social media era, researchers focused on extracting locations
from online contents such as news and blogs. [6] named this type of
work location normalization. Their approach used a Maximum-entropy
Markov model (MEMM) to find locations and a set of rules to disam-
biguate them. Their system is reported to have an overall precision of
93.8% on several news report datasets. [1] tried to associate each loca-
tion mention in web pages with the place it refers to; they implemented a
score-based approach to address both geo/non-geo and geo/geo ambigu-
ities. Specifically, lexical evidences supporting the likelihood of a candi-
date location increases its score. When applied to Internet contents, their
algorithm had an accuracy of 81.7%. [14] also focused on web pages;
they assigned a weighted probability to each candidate of a location men-
tioned in a web page; they took into account the other locations in the
same web page and the structural relations between them. [12] assumed
that the true reference of a location is decided by its location prior (e.g.,
Paris is more likely the capital of France) and context prior (e.g., Wash-
ington is more likely the capital of USA if it has ”Wizards” in its con-

3 https://github.com/rex911/locdet



text); they developed a ranking algorithm to find the most likely location
reference based on the two priors, which achieved a precision of 61.34%.

Social media text (especially tweets), is very different from traditional
text, since it usually contains misspellings, slangs and is short in terms of
length. Consequently, detecting locations from social media texts is more
challenging. [2] looked at how to exploit information about location from
French tweets related to medical issues. The locations were detected by
gazetteer lookup and pattern matching to map them to physical locations
using a hierarchy of countries, states/provinces and cities. In case of am-
biguous names, they did not fully disambiguate, but relied on users’ time
zones. They focused on the locations in user’s profile, rather than the
locations in the text of tweets. [11] detected place names in texts in a
multi-lingual setting, and disambiguated them in order to visualize them
on the map.

Statistical techniques were used to resolve ambiguities. For example,
[10] identified the locations referenced in tweets by training a simple log-
near model with just 2 features for geo/non-geo ambiguity and geo/geo
ambiguity; the model achieved a precision of 15.8%. [5] identified lo-
cation mentions in tweets about disasters for GIS applications; they ap-
plied off-the-shelf software, namely, the Stanford NER software to this
task and compared the results to gold standards. [7] also showed that
off-the-shelf NER systems achieve poor results on detecting location ex-
pressions.

3 Dataset

Annotated data are required in order to train our supervised learning sys-
tem. Our work is a special case of the Named Entity Recognition task,
with text being tweets and target Named Entities being specific kinds of
locations. To our knowledge, a corresponding corpus does not yet exist.4

3.1 Data Collection

We used the Twitter API5 to collect our own dataset. Our search queries
were limited to six major cell phone brands, namely iPhone, Android,
Blackberry, Windows Phone, HTC and Samsung. Twitter API allows its
users to filter tweets based on their languages, geographic origins, the

4 [7] recently released a dataset of various kinds of social media data annotated with generic
location expressions, but not with cities, states/provinces, and countries).

5 https://dev.twitter.com



time they were posted, etc. We utilized such functionality to collect only
tweets written in English. Their origins, however, were not constrained,
i.e., we collected tweets from all over the world. We ran the crawler from
June 2013 to November 2013, and eventually collected a total of over 20
million tweets.

3.2 Manual Annotation

The amount of data we collected is overwhelming for manual annotation,
but having annotated training data is essential for any supervised learning
task for location detection. We therefore randomly selected 1000 tweets
from each subset (corresponding to each cellphone brand) of the data,
and obtained 6000 tweets for the manual annotation (more data would
have taken too long to annotate).

We have defined annotation guidelines to facilitate the manual anno-
tation task. [8] defined spatialML: an annotation schema for marking up
references to places in natural language. Our annotation model is a sub-
model of spatialML. The process of manual annotation is described next.

Gazetteer Matching A gazetteer is a list of proper names such as people,
organizations, and locations. Since we are interested only in locations,
we only require a gazetteer of locations. We obtained such a gazetteer
from GeoNames6, which includes additional information such as pop-
ulations and higher level administrative districts of each location. We
also made several modifications, such as the removal of cities with pop-
ulations smaller than 1000 (because otherwise the size of the gazetteer
would be very large, and there are usually very few tweets in the low-
populated areas) and removal of states and provinces outside the U.S.
and Canada; we also allowed the matching of alternative names for loca-
tions. For instance, ATL, which is an alternative name for Atlanta, will
be matched as a city.

We then used GATE’s gazetteer matching module [4] to associate
each entry in our data with all potential locations it refers to, if any. Note
that, in this step, the only information we need from the gazetteer is the
name and the type of each location. GATE has its own gazetteer, but we
replaced it with the GeoNames gazetteer which serves our purpose bet-
ter. The sizes of both gazetteers are listed in Table 1 7. In addition to a

6 http://www.geonames.org
7 The number of countries is larger than 200 because alternative names are counted; the same

for states/provinces and cities.



larger size, the GeoNames contains information such as population, ad-
ministrative division, latitude and longitude, which will be useful later in
Section 5.

Gazetteer Number of countries Number of states and provinces Number of cities

GATE 465 1215 1989
GeoNames 756 129 163285

Table 1: The sizes of the gazetteers.

Manual Filtering The first step is merely a coarse matching mechanism
without any effort made to disambiguate candidate locations. E.g., the
word Georgia would be matched to both the state of Georgia and the
country in Europe.

In the next phase, we arranged for two annotators, who are gradu-
ate students with adequate knowledge of geography, to go through every
entry matched to at least one of locations in the gazetteer list. The anno-
tators are required to identify, first, whether this entry is a location; and
second, what type of location this entry is. In addition, they are also asked
to mark all entities that are location entities, but not detected by GATE
due to misspelling, all capital letters, all small letters, or other causes.
Ultimately, from the 6000 tweets, we obtained 1270 countries, 772 states
or provinces, and 2327 cities.

We split the dataset so that each annotator was assigned one fraction.
In addition, both annotators annotated one subset of the data contain-
ing 1000 tweets, corresponding to the search query of Android phone, in
order to compute an inter-annotator agreement, which turned out to be
88%. The agreement by chance is very low, since any span of text could
be marked, therefore the kappa coefficient that compensates for chance
agreement is close to 0.88. The agreement between the manual annota-
tions and those of the initial GATE gazetteer matcher in the previous step
was 0.56 and 0.47, respectively for each annotator.

Annotation of True Locations Up to this point, we have identified locations
and their types, i.e., geo/non-geo ambiguities are resolved, but geo/geo
ambiguities still exist. For example, we have annotated the token Toronto
as a city, but it is not clear whether it refers to Toronto, Ontario, Canada



or Toronto, Ohio, USA. Therefore we randomly choose 300 tweets from
the dataset of 6000 tweets and further manually annotated the locations
detected in these 300 tweets with their actual location. The actual lo-
cation is denoted by a numerical ID as the value of an attribute named
trueLoc within the XML tag. An example of annotated tweet is displayed
in Table 2.

Mon Jun 24 23:52:31 +0000 2013
<location locType=’city’, trueLoc=’22321’>Seguin </location>
<location locType=’SP’, trueLoc=’12’>Tx </location>
RT @himawari0127i: #RETWEET#TEAMFAIRYROSE #TMW #TFBJP #500aday #AN-
DROID #JP #FF #Yes #No #RT #ipadgames #TAF #NEW #TRU #TLA #THF 51

Table 2: An example of annotation with the true location.

4 Location Entity Detection

We looked into methods designed for sequential data, because the nature
of our problem is sequential. The different parts of a location such as
country, state/province and city in a tweet are related and often given in a
sequential order, so it seems appropriate to use sequential learning meth-
ods to automatically learn the relations between these parts of locations.
We decided to use CRF as our main machine learning algorithm, because
it achieved good results in similar information extraction tasks.

4.1 Designing Features

Features that are good representations of the data are important to the
performance of a machine learning task. The features that we design for
detecting locations are listed below:

– Bag-of-Words: To start with, we defined a sparse binary feature vector
to represent each training case, i.e., each token in a sequence of tokens;
all values of the feature vector are equal to 0 except one value corre-
sponding to this token is set to 1. This feature representation is often
referred to as Bag-of-Words or unigram features. We will use Bag-of-
Words Features or BOW features to denote them, and the performance
of the classifier that uses these features can be considered as the base-
line in this work.



– Part-of-Speech: The intuition for incorporating Part-of-Speech tags in
a location detection task is straightforward: a location can only be a
noun or a proper noun. Similarly, we define a binary feature vector,
where the value of each element indicates the activation of the corre-
sponding POS tag. We later on denote these features by POS features.

– Left/right: Another possible indicator of whether a token is a location
is its adjacent tokens and POS tags. The intuitive justification for this
features is that locations in text tend to have other locations as neigh-
bours, i.e., Los Angeles, California, USA; and that locations in text tend
to follow prepositions, as in the phrases live in Chicago, University of
Toronto. To make use of information like that, we defined another set
of features that represent the tokens on the left and right side of the
target token and their corresponding POS tags. These features are sim-
ilar to Bag-of-Words and POS features, but instead of representing the
token itself they represent the adjacent tokens. These features are later
on denoted by Window features or WIN features.

– Gazetteer: Finally, a token that appears in the gazetteer is not neces-
sarily a location; by comparison, a token that is truly a location must
match one of the entries in the gazetteer. Thus, we define another bi-
nary feature which indicates whether a token is in the gazetteer. This
feature is denoted by Gazetteer feature or GAZ feature in the succeed-
ing sections.

In order to obtain BOW features and POS features, we preprocessed
the dataset by tokenizing and POS tagging all the tweets. This step was
done using the Twitter NLP and Part-of-Speech Tagging tool [9].

For experimental purposes, we would like to find out the impact each
set of features has on the performance of the model. Therefore, we test
different combinations of features and compare the accuracies of result-
ing models.

4.2 Experiments

Evaluation Metrics We report precision, recall and F-measure for the ex-
tracted location mentions, at both the token and the span level, to evaluate
the overall performance of the trained classifiers. A token is a unit of to-
kenized text, usually a word; a span is a sequence of consecutive tokens.
The evaluation at the span level is stricter.

Experimental Configurations In our experiments, one classifier is trained
and tested for each of the location labels city, SP, and country. For the



learning process, we need to separate training and testing sets. We report
results for 10-fold cross-validation, because a conventional choice for n
is 10. In addition, we report results for separate training and test data (we
chose 70% for training and 30% for testing). Because the data collection
took several months, it is likely that we have both new and old tweets in
the dataset; therefore we performed a random permutation before split-
ting the dataset for training and testing.

We would like to find out the contribution of each set of features in
Section 4.1 to the performance of the model. To achieve a comprehen-
sive comparison, we tested all possible combinations of features plus the
BOW features. In addition, a baseline model which simply predicts a to-
ken or a span as a location if it matches one of the entries in the gazetteer
mentioned in Section 3.2.

We implemented the models using an NLP package named Minor-
Third [3] that provides a CRF module [13] easy to use; the loss function
is the log-likelihood and the learning algorithm is the gradient ascent.
The loss function is convex and the learning algorithm converges fast.

4.3 Results

The results are listed in the following tables. Table 3 shows the results
for countries, Table 4 for states/provinces and Table 5 for cities. To our
knowledge, there is no previous work that extracts locations at these three
levels, thus comparisons with other models are not feasible.

Features
Token Span Separate train-test sets

P R F P R F Token F Span F
Baseline-Gazetteer Matching 0.26 0.64 0.37 0.26 0.63 0.37 — —

Baseline-BOW 0.93 0.83 0.88 0.92 0.82 0.87 0.86 0.84
BOW+POS 0.93 0.84 0.88 0.91 0.83 0.87 0.84 0.85
BOW+GAZ 0.93 0.84 0.88 0.92 0.83 0.87 0.85 0.86
BOW+WIN 0.96 0.82 0.88 0.95 0.82 0.88 0.87 0.88

BOW+POS+ GAZ 0.93 0.84 0.88 0.92 0.83 0.87 0.85 0.86
BOW+WIN+ GAZ 0.95 0.85 0.90 0.95 0.85 0.89 0.90 0.90
BOW+POS+ WIN 0.95 0.82 0.88 0.95 0.82 0.88 0.90 0.90

BOW+POS+ WIN+GAZ 0.95 0.86 0.90 0.95 0.85 0.90 0.92 0.92

Table 3: Performance of the classifiers trained on different features for countries. Column 2 to
column 7 show the results from 10-fold cross validation on the dataset of 6000 tweets; the last
two columns show the results from random split of the dataset where 70% are the train set and

30% are the test set. (Same in Table 4 and Table 5)



Features
Token Span Separate train-test sets

P R F P R F Token F Span F
Baseline-Gazetteer Matching 0.65 0.74 0.69 0.64 0.73 0.68 — —

Baseline-BOW 0.90 0.78 0.84 0.89 0.80 0.84 0.80 0.84
BOW+POS 0.90 0.79 0.84 0.89 0.81 0.85 0.82 0.84
BOW+GAZ 0.88 0.81 0.84 0.89 0.82 0.85 0.79 0.80
BOW+WIN 0.93 0.77 0.84 0.93 0.78 0.85 0.80 0.81

BOW+POS+GAZ 0.90 0.80 0.85 0.90 0.82 0.86 0.78 0.82
BOW+WIN+GAZ 0.91 0.79 0.84 0.91 0.79 0.85 0.83 0.84
BOW+POS+WIN 0.92 0.78 0.85 0.92 0.79 0.85 0.80 0.81

BOW+POS+WIN+GAZ 0.91 0.79 0.85 0.91 0.80 0.85 0.84 0.83

Table 4: Performance of the classifiers trained on different features for SP.

Features
Token Span Separate train-test sets

P R F P R F Token F Span F
Baseline-Gazetteer Matching 0.14 0.71 0.23 0.13 0.68 0.22 — —

Baseline-BOW 0.91 0.59 0.71 0.87 0.56 0.68 0.70 0.68
BOW+POS 0.87 0.60 0.71 0.84 0.55 0.66 0.71 0.68
BOW+GAZ 0.84 0.77 0.80 0.81 0.75 0.78 0.78 0.75
BOW+WIN 0.87 0.71 0.78 0.85 0.69 0.76 0.77 0.77

BOW+POS+GAZ 0.85 0.78 0.81 0.82 0.75 0.78 0.79 0.77
BOW+WIN+GAZ 0.91 0.76 0.82 0.89 0.74 0.81 0.82 0.81
BOW+POS+WIN 0.82 0.76 0.79 0.80 0.75 0.77 0.80 0.79

BOW+POS+WIN+GAZ 0.89 0.77 0.83 0.87 0.75 0.81 0.81 0.82

Table 5: Performance of the classifiers trained on different features for cities.

4.4 Discussion

The results from Table 3, 4 and 5 show that the task of identifying cities
is the most difficult, since the number of countries or states/provinces is
by far smaller. In our gazetteer, there are over 160,000 cities, but only
756 countries and 129 states/provinces, as detailed in Table 1. A lager
number of possible classes generally indicates a larger search space, and
consequently a more difficult task. We also observe that the token level
F-measure and the span level F-measure are quite similar, likely due to
the fact that most location names contain only one word.

We also include the results when one part of the dataset (70%) is used
as training data and the rest (30%) as test data. The results are slightly



different to that of 10-fold cross validation and tend to be lower in terms
of f-measures, likely because less data are used for training. However,
similar trends are observed across feature sets.

The baseline model not surprisingly produces the lowest precision,
recall and f-measure; it suffers specifically from a dramatically low pre-
cision, since it will predict everything contained in the gazetteer to be
a location. By comparing the performance of different combinations
of features, we find out that the differences are most significant for
the classification of cities, and least significant for the classification of
states/provinces, which is consistent with the number of classes for these
two types of locations. We also observe that the simplest features, namely
BOW features, always produce the worst performance at both token level
and span level in all three tasks; on the other hand, the combination of all
features produces the best performance in every task, except for the pre-
diction of states/provinces at span level. These results are not surprising.

We conducted t-tests on the results of models trained on all combina-
tions of features listed in Table 3, 4 and 5. We found that in SP classifi-
cation, no pair of feature combinations yields statistically significant dif-
ference. In city classification, using only BOW features produces signifi-
cantly worse results than any other feature combinations at a 99.9% level
of confidence, except BOW+POS features, while using all features pro-
duces significantly better results than any other feature combinations at a
99% level of confidence, except BOW+GAZ+WIN features. In country
classification, the differences are less significant; where using all features
and using BOW+GAZ+WIN features both yield significantly better re-
sults than 4 of 6 other feature combinations at a 95% level of confidence,
while the difference between them is not significant; unlike in city classi-
fication, the results obtained by using only BOW features is significantly
worse merely than the two best feature combinations mentioned above.

We further looked at the t-tests results of city classification to analyze
what impact each feature set has on the final results. When adding POS
features to a feature combination, the results might improve, but never
statistically significantly; by contrast, they always significantly improve
when GAZ features or WIN features are added. These are consistent with
our previous observations.

4.5 Error Analysis

We went through the predictions made by the location entity detection
model, picked some typical errors made by it, and looked into the



possible causes of these errors.

Example 1:

Mon Jul 01 14:46:09 +0000 2013
Seoul
yellow cell phones family in South Korea #phone #mobile #yellow #samsung http://t.

co/lpsLgepcCW

Example 2:

Sun Sep 08 06:28:50 +0000 2013
minnesnowta .
So I think Steve Jobs’ ghost saw me admiring the Samsung Galaxy 4 and now is messing
with my phone. Stupid Steve Jobs. #iphone

In Example 1, the model predicted ”Korea” as a country, instead of
”South Korea”. A possible explanation is that in the training data there
are several cases containing ”Korea” alone, which leads the model to
favour ”Korea” over ”South Korea”.

In Example 2, the token ”minnesnowta” is quite clearly a reference to
”Minnesota”, which the model failed to predict. Despite the fact that we
allow the model to recognize nicknames of locations, these nicknames
come from the GeoNames gazetteer; any other nicknames will not be
known to the model. On the other hand, if we treat ”minnesnowta” as
a misspelled ”Minnesota”, it shows that we can resolve the issue of un-
known nicknames by handling misspellings in a better way.

5 Location Disambiguation

5.1 Methods

In the previous section, we have identified the locations in Twitter mes-
sages and their types; however, the information about these locations is
still ambiguous. In this section, we describe the heuristics that we use to
identify the unique actual location referred to by an ambiguous location
name. These heuristics rely on information about the type, geographic



hierarchy, latitude and longitude, and population of a certain location,
which we obtained from the GeoNames Gazetteer. The disambiguation
process is divided into 5 steps, as follows:

1. Retrieving candidates. A list of locations whose names are matched
by the location name we intend to disambiguate are selected from the
gazetteer. We call these locations candidates. After step 1, if no candi-
dates are found, disambiguation is terminated; otherwise we continue
to step 2.

2. Type filtering. The actual location’s type must agree with the type that
is tagged in the previous step where we apply the location detection
model; therefore, we remove any candidates whose types differ from
the tagged type from the list of candidates. E.g., if the location we wish
to disambiguate is Ontario tagged as a city, then Ontario as a province
of Canada is removed from the list of candidates, because its type SP
differs from our target type. After step 2, if no candidates remain in the
list, disambiguation is terminated; if there is only one candidate left,
this location is returned as the actual location; otherwise we continue
to step 3.

3. Checking adjacent locations. It is common for users to put related
locations together in a hierarchical way, e.g., Los Angeles, Califor-
nia, USA. We check adjacent tokens of the target location name; if
a candidate’s geographic hierarchy matches any adjacent tokens, this
candidate is added to a temporary list. After step 3, if the temporary
list contains only one candidate, this candidate is returned as the actual
location. Otherwise we continue to step 4 with the list of candidates
reset.

4. Checking global context. Locations mentioned in a document are ge-
ographically correlated [6]. In this step, we first look for other tokens
tagged as a location in the Twitter message; if none is found, we con-
tinue to step 5; otherwise, we disambiguate these context locations.
After we obtain a list of locations from the context, we calculate the
sum of their distances to a candidate location and return the candidate
with minimal sum of distances.

5. Default sense. If none of the previous steps can decide a unique lo-
cation, we return the candidate with largest population (based on the
assumption that most tweets talk about large urban areas).



5.2 Experiments and Results

We ran the location disambiguation algorithm described above. In order
to evaluate how each step (more specifically, step 3 and 4, since other
steps are mandatory) contributes to the disambiguation accuracy, we also
deactivated optional steps and compared the results.

Deactivated steps Accuracy
None 95.5 %

Adjacent locations 93.7 %
Global context 98.2 %

Adjacent locations + context locations 96.4 %
Table 6: Results on the subset of 300 tweets annotated with disambiguated locations.

The results of different location disambiguation configurations are
displayed in Table 6, where we evaluate the performance of the model by
accuracy, which is defined as the proportion of correctly disambiguated
locations. By analyzing them, we can see that when going through all
steps, we get an accuracy of 95.5%, while by simply making sure the
type of the candidate is correct and choosing the default location with
the largest population, we achieve a better accuracy. The best result is
obtained by using the adjacent locations, which turns out to be 98.2%
accurate. Thus we conclude that adjacent locations help disambiguation,
while locations in the global context do not. Therefore the assumption
made by [6] that the locations in the global context help the inference of
a target location does not hold for Twitter messages, mainly due to their
short nature.

5.3 Error Analysis

Similar to Section 4.5, this section presents an example of errors made
by the location disambiguation model in Example 3. In this example,
the disambiguation rules correctly predicted ”NYC” as ”New York City,
New York, United States”; however, ”San Francisco” was predicted as
”San Francisco, Atlantida, Honduras”, which differs from the annotated
ground truth. The error is caused by step 4 of the disambiguation rules
that uses contextual locations for prediction; San Francisco of Honduras
is 3055 kilometres away from the contextual location New York City,
while San Francisco of California, which is the true location, is 4129



kilometres away. This indicates the fact that a more sophisticated way of
dealing with the context in tweets is required to decide how it impacts
the true locations of the detected entities.

6 Conclusion and Future Work

In this paper, we looked for location entities in tweets. We extracted dif-
ferent types of features for this task and did experiments to measure their
usefulness. We trained CRF classifiers that were able to achieve a very
good performance. We also defined disambiguation rules based on a few
heuristics which turned out to work well. In addition, the data we col-
lected and annotated is made available to other researchers to test their
models and to compare with ours.

We identify two main directions of future work. First, the simple rule-
based disambiguation approach does not handle issues like misspellings
well, and can be replaced by a machine learning approach, although this
requires more annotated training data. Second, since in the current model,
we consider only states and provinces in the United States and Canada,
we need to extend the model to include states, provinces, or regions in
other countries as well. Lastly, deep learning models were shown to be
able to learn helpful document level as well as word level representations,
which can be fed into a sequential tagging model; we plan to experiment
with this approach in the future.

References

1. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-Where: Geotagging Web Content. In:
Proceedings of the 27th annual international conference on Research and development in
information retrieval - SIGIR ’04. pp. 273–280. ACM Press, New York, New York, USA
(Jul 2004), http://dl.acm.org/citation.cfm?id=1008992.1009040

2. Bouillot, F., Poncelet, P., Roche, M.: How and why exploit tweet ’ s location information ?
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