Sudy of oscillationsin admission control
algorithm for web servers

Zhengdao Xu

A Thesis submitted to the Faculty of Graduate Sudies and Postdoctor al
Sudiesin partial fulfillment of the requirement for the degree of

Master of Computer Science

May 2003

Ottawa-Carleton I ngtitute for Computer Science
School of Information Technology and Engineering
University of Ottawa

Ottawa, Ontario, Canada

© Zhengdao Xu, 2003

Abstract

In recent years, the advance of the Internet technology and e-commence applications
becomes the motivation for the devel opment of scalable server brokerage architectures for

the purpose of load sharing.

There are many on-going researches and proposed solutions in solving this problem, but
our project focus on providing the satisfactory QoS with the brokerage architecture.
Besides the load sharing among all the servers in the server pool the brokerage
architecture has to guarantee the response time provided by the web server since it is an
important factor for user satisfaction. But in the earlier server selection agorithm of the
brokerage architecture, a threshold is used to decide whether to accept/rgject users
depending on the current response time. A problem with this approach is that oscillations
occur. Due to the abrupt manner of accepting/rejecting user, the system experiences
unavoidable oscillations in terms of the response time, the number of users in the system

and even the utilization of the servers.

The work of this thesis is oriented towards solving the problem of system performance
oscillations. We first establish the relationship between the number of usersin the system
and the average response time. Then we study a theoretical model of the oscillation of the
number of users in the system. Then we propose a probabilistic approach to admission
control where the probability of rejecting anew user increases as the load increases. Using
the theoretical model, we prove that with a probabilistic approach, the oscillations will

normally be suppressed, and the number of usersin the system reaches a stable point. We

also test the effect of different probability functions and the impact of different
inter-observation time intervals on the oscillation by careful simulation experiment.
Finally, the probabilistic approach is used to provide differentiated classes of service to
different user groups. We show that the probabilistic approach provides better

performance than the on-off decision approach.

Acknowledgements

| would like to express my sincere gratitude to my supervisor, Professor Gregor V.
Bochmann. His insightful conversations about the ideas in this project and helpful

comments on my work inspired me greatly during the whole process of my project.

| thank PhD student Mohamed-Val M. Salem for giving me alot of help on the CSIM18
simulation library tool and building up the prototype of the broker, which made it possible

to start my project.

| also thank everybody in the DSR group. They constantly encouraged me and gave me
good suggestions.

Finally, I’d like to thank my wife, Zhao Min, who always supports me through difficulties

and shares the same dream with me.

Table of contents
Abstract
Acknowledgements
Table of content
Table of figures

1. Introduction

1.1 Objective and contribution of thisthesis

1.2 Organization

2. Load sharing control for web servers

2.1 Overview of related work
2.1.1 Serversare picked up by clients
2.1.2 Distribute the workload by the DNS

2.1.3 Using an anycast resolver to distribute the wor kload

2.1.4 Weaknesses of the above approaches
2.2 Brokerage architecture
2.2.1 Introduction to the brokerage architecture

2.2.2 Load sharing in the brokerage architecture

2.2.3 Dynamic properties of the brokerage architecture

2.2.4 Something to be improved

3. Simulation principles and tools

3.1 Simulation principles
3.1.1 Modélling principles
3.1.2 Procedure of simulation

3.2 Simulation tools

3.2.1 Introduction to CSIM 18

26

30
32

35
37
41
41

1

13
15

17

17
17
18
22
23
25

28

34

34

3.2.2 Simulation components (classes) in CSIM 18 42

3.2.3 The accuracy of thesimulation in CSIM 18 44
3.2.4 Random number generation 46
3.2.5A simple example of using simulation engine CSIM 18 47

3.3 Simulation model for the brokerage architecture 50

4. Therelationship between theresponse time and the number of

usersin the system 54
5. The problem of performance oscillations 58
5.1 Introduction to the oscillation problem 58
5.2 Simulation result of the oscillation 59
5.3 System control 62

5.4 Thetheoretical model of the oscillation of the number of users

in the system 68
6. Probabilistic approach of the admission control 75
6.1 Probabilistic admission control 75
6.2 The study of the theoretical model of the probabilistic approach 77
6.3 Simulation Result 82
6.3.1 The evaluation of different probability functions 82

6.3.2 The effect of different probability functions on the oscillations 90

6.3.3 Putting an upper limit to the server selection algorithm 97
7. Probabilistic approach used on differentiated classes of users 100

7.1 Using different probability functionsfor each of the user groups 100

7.2 Using one combined probability function for different user groups 104

8. Conclusionsand future work 113

8.1 Conclusions

8.2 Futurework
9. Reference

10. Appendix

(A) Fundamentalsfor MATLAB

113
115

116

120

120

Table of figures

CHAPTER 2
Figure 1. Approach using DNS to distribute client requests
Figure 2. Basic architecture (from [4])

Figure 3. Two brokers communicate to balance the load between two clusters [21]

CHAPTER 3
Figure 4. Procedure in simulation study (from [7])

Figure 5. ON/OFF model used in SURGE (from [5])

CHAPTER 4
Figure 6. The response time as a function of the number of usersin the system
Figure 7. The server utilization as afunction of the number of users admitted

Figure 8. The utilization as a function of response time

CHAPTER 5

19

27

31

40

51

55

55

56

Figure 9. The oscillation of the number of users and response time when inter-observation time

equals 100 seconds

60

Figure 10. The oscillation of the number of users and response time when inter-observation time

equals 40 seconds

Figure 11. Industrial control system (inspired by [22])

Figure 12. Liquid level control system (inspired by [22] and [23])

Figure 13. Liquid level oscillating with on-off control (inspired by [22] and [23])
Figure 14. Theoretical model of the number of users when it increases, f(t)
Figure 15. Theoretical model of the number of users when it decreases, fqoun(t)

Figure 16. Theoretical model of oscillation

61

63

64

66

69

70

71

Figure 17. Theoretical model of oscillation (start at 50s) 73

Figure 18. The effect of the threshold to the oscillation (low threshold) 73
Figure 19. The effect of the threshold to the oscillation (high threshold) 74
CHAPTER 6

Figure 20. Probability function 76
Figure 21. The oscillation gets stable at the stable point 80
Figure 22. The stable point on the response time curve 81
Figure 23. Probability functions 83
Figure 24. Average response time using different probability functions 84

Figure 25. The average response time for different probability functions when the
inter-observation time equals 10, 60, 100 seconds, respectively 86
Figure 26. The average number of users for different probability functions when inter-observation
time equals 10, 60, 100 seconds respectively 87
Figure 27. Server Utilization 88
Figure 28. The utilization as a function of response time for different probabilistic functions 89
Figure 29. Acceptance percentage 89

Figure 30. The effect of different probability functions on the oscillation of the number of users

91
Figure 31. The power spectrums of oscillation of the number of users 92
Figure 32. The oscillation of the number of users and its power spectrum 96
Figure 33. The controlled oscillation with the user limit of 620 98
Figure 34. The oscillation without user limit 98
Figure 35. The controlled oscillation when the user incoming rateis low 99

CHAPTER 7

Figure 36. The probability function used for two groups of users

101

Figure 37. Percentage of users accepted 102

Figure 38. Percentage of users accepted of probabilistic approach for different inter-observation

time 103

Figure 39. Percentage of users accepted of on-off approach for different inter-observation time

103
Figure 40. The calculated probability for both groups of userswhen o= 3 107
Figure 41. The calculated probability for both groups of users when o = 1/3 108

Figure 42. Percentage of A-users accepted (compared with two probability function approach)
109

Figure 43. Percentage of B-users accepted (compared with two probability function approach)
109

Figure 44. Mean response time of the users using different approaches m

10

1. Introduction

With the exponential expansion of the Internet infrastructure, many Internet-based
businesses are experiencing a fast growth, especially in the e-commerce context, and
multimedia applications like video-on-demand. Those applications either have a large
number of clients, or need to transmit a vast amount of data. They put heavy stress onto

the web servers and pose a great challenge to the QoS that is promised to the clients.

The capacity of one server is very limited. For a large electronic merchant, millions of
requests per second are expected. To handle those requests, hundreds and thousand
machines are needed. And also a complex electronic commerce application usually
consists of cooperating pieces of software located on different machines, and they are not
even geographically together. Those separations of software are usually functional.
Different machine can handle different details to support an electronic shopping model,
some for interaction with customers (web page server), some for database (like users
personal profiles), some for security (like in registration and banking). To a large extent,
they need the system to scale to alarge number of users. Another issueis quality of service.
Nowadays, lots of customers do electronic shopping. They will submit the purchase
request of some advertised goods to web servers. The server has to make responses to
those requests. In the user’s point of view, the response time is defined as the time the user
spends waiting for the request to be completed. It depends on alot of factorslike the server
speed, the network bandwidth, size of files and processing time for ciphering/deciphering
etc. The response time has a direct impact on user satisfaction and the reputation of the

merchant sites. So the maximum of the response time becomes a basic measure of QoS.

In this context, some questions are posed here: on the one hand, how can we distribute the

requests from the clients evenly among all the web servers; and on the other hand, how can

1

we dtill provide satisfactory QoS even during the time of heavy load. There have already
been quite a few research efforts coping with these problems for optimising the system
performance and decreasing the response time. We will examine some of them in detall
shortly. Unfortunately, those approaches have not taken the oscillation of the system
performance into consideration, so when the workload is high, the response time will
sometimes become very long (a long waiting time), and sometimes very short (higher
percentage of user rejection). That is exactly why we use a probabilistic approach in our
project. Although such agradual approach (also called proportional control) has long been
used as a way of system control in industry, it is the first time to be used for admission
control for web servers, so far as we know. In this new approach, each time a user comes
to ask for admission, the broker will grant it with some probability based on the current
measured response time. By doing this, we no longer admit or reject all users; the users are
always accepted by some percentage, which depends on the workload of the system. In
this thesis, we start with studying the nature of the performance oscillations by
establishing its theoretical model; with some mathematical proof, we show that the
probabilistic approach suppresses the oscillation and the performance reaches a so-called
“stable point”. Then we study the probabilistic approach further in a more realistic setting

by simulation studies.

Since many distributed applications are expected to provide different levels of service to
different classes of users (for example, the e-commerce system should distinguish between
acasual user and aregistered user, those registered user should receive the best servicein
terms of the priority of acceptance and reasonable response time), we use the probabilistic
approach to provide differentiated services to different user groups. Through simulation
studies, we show that its performance is better than the on-off approach. In the following,

we briefly list the contributions and give an outline of the thesis.

12

1.1 Objective and contribution of thisthesis

1. We use a probabilistic approach for admission control to the web servers rather than
the simple on-off algorithm in order to avoid performance oscillations and provide the

desired quality of serviceto the client.

2. We established the relationship between the average response time/server utilization
and the number of users in the system by means of the simulation experiments. Based

on these results, a reasonable cut-off point is chosen.

3. A theoretical model of the oscillation of the number of users in the system with the
on-off decision-making approach is established. By studying the theoretical model,
the amplitude of the oscillation can be computed and the nature of the oscillation is

well understood.

4. A theoretica model of the oscillation of the number of users in the system with the
probabilistic approach is established and studies. We prove that with the probabilistic
approach, the oscillation will normally be suppressed and the performance reaches a

so-called stable point.
5. The effect of the probability functions with different slopes on the avoidance of
oscillation is tested, and we find that a more gradual probability function eliminates

the oscillation better than aless gradual probability function.

6. Through simulation experiments, we show that with a given probability function, a

13

smaller inter-observation time period can also eliminate the oscillation.

Since the number of users in the system is a direct indication of the system response
time, we test the efficiency of using an upper limit of the number of users and
conclude through the simulation result that the upper number of users in the system
has an effect of avoiding oscillations only when the workload of the client

reaches/exceeds that limit.

We show that the probabilistic approach of admission control can be used for two
differentiated classes of users: one group with higher priority and another one with
lower priority. We show that with the probabilistic approach, the QoS provided to the
higher priority user group is much better than when we use the traditional on-off

threshold approach.

We propose a combined probability function approach to provide the different QoS to
differentiated classes of users. This approach has the advantage over the two
probability function approach, in that with the single probability function approach,
for a given combined user incoming rate, the resulting response time is predictable

regardless of the composition change of the different groups.

14

1.2 Organization

Following is the organization of this thesis paper:

CHAPTER 2: Load sharing control for web servers: In this chapter, we review related
work on providing scalable architecture for web servers. The basic brokerage architecture,

its dynamic behaviour are also introduced here.

CHAPTER 3: Simulation principles and tools. In this chapter, some of the very basic
principles of simulation modelling are reviewed, and the simulation tool CSIM18 is
introduced. We also give a simple code example of a queuing system. Finaly, the

simulation model used in our project is studied.

CHAPTER 4: The relationship between the response time and the number of users
in the system: In this chapter, The relationship between the response time and the number
of usersin the system is established here. How the threshold is chosen is also discussed.

CHAPTER 5: The problem of performance oscillation: The problem of the
performance oscillation (to be more specific, the oscillation of the number of usersin the
system) is studied. Specifically, we study the theoretical model of the oscillation of the
number of usersin the system in the cut-off threshold case. Some basic principles of the
system control are also introduced in this chapter, which give us the hint of solving the

problem of oscillation using the system control method.

CHAPTER 6: Probabilistic approach to admission control: The detailed design of the
probabilistic algorithm for gradual user rejection is given. A careful mathematical study of

15

the oscillation in the probabilistic approach is also provided. The performance of this
probabilistic approach is evaluated by simulation studies. All the results are collected and

presented.

CHAPTER 7: Probabilistic approach used for differentiated classes of users: The
probabilistic approach is used on two groups of users, by either using two probability
functions on each of them or using a single probability function but treating users
differently according to the class to which they belong. The difference of these two

approachesis also studied.

CHAPTER 8: Conclusions and future works:. Finally, a conclusion for our project is

drawn, and some possible future works are mentioned.

16

2 Load sharing for web servers

In this chapter, we review the approaches to the load sharing of web servers. We first start
with the overview of related work in providing load-sharing function to the web servers
and how they cope with performance oscillations. And after a brief introduction of the
brokerage architecture of [4], weintroduce its|oad sharing and dynamic properties. Thisis
important for us, sincein this project, we base our study on the brokerage architecture. By
dealing with the problem of oscillations in the brokerage system, we hope to provide a
satisfactory QoS to the users without sacrificing its nice properties of load sharing and

scalability.

2.1 Overview of related work

The research of how to distribute the large number of clients among a group of replicated
serversin order to provide satisfactory quality of service has be around for over a decade.
The goa is to dlocate servers to the clients in such a way that the response time
experienced by the clientsis minimized. Quite alot of efforts have been made according to
specific optimization criteria, and lots of different approaches have been published, some

of which will be discussed in the following.

21.1 Serversarepicked up by clients

Some of the load sharing approaches are very rudimental. One of them broadcasts a list of
servers, from which the clients has to pick the best one. The difficulty of this approach is
how the client can know which server is the “best”. A server geographically closer does
not necessarily guarantee a shorter response time. Also, whenever the configuration of the

serversis changed (server down, or anew server added), some site hasto be aware of this,

17

and anew server list has to be broadcast. Although not impossible, this method is not very

scalable.

2.1.2 Distributethe workload by the DNS

Another approach uses the DNS (Domain Name System) to return the |P address of one
server among the server pool when it is queried about the IP address of the website. But
the DNS does not usually keep performance information about servers. Usualy, it can
only distribute the servers to each client in a round robin manner. It is realy a bad
approach if the computing capacity of the serversvaries, in which case a slower server get
the same workload as afaster one. Also most DNS control only avery small portion of the
server requests (actually only the initial name to IP address resolution requests), as show
in the Figure 1. The local name servers (LNS), the intermediate name servers (INS) and
even the clients (C) themselves can usually cache the result of the previous address
resolution and the same requests will never go back to the DNS that controls the
multi-server (WS) domain. Address caching bypasses the remote DNS, and therefore
limits the control of the DNS, and makes the server performance independent of the DNS

decisions[12]. Thisis exactly where the difficulty lies.

18

@?(@/@

LSS LMSAG

— A ddress request

— Page request

W53

W52
Distributed Web System

C: Client, LNS: Local Name Server, LG: Local Gateway, INS: Intermediate Name Server, DNS:
Domain Name Server, WSn: Web Server number n

Figure 1. Approach using DNSto distribute client requests

According to the work accomplished by Michele Colgjanni et al [12], this problem can be
solved by providing a TTL (time to live) to every name server (from INS to LNS) along
the path from the DNS to the client when the DNS returns the IP address of the chosen
web server to the client. The name to address mapping is kept in the database at the
intermediate name server and the local name server only for a time period specified by
TTL. After the period TTL, this mapping entry is smply deleted, and the next request
should again be forwarded to the remote DNS. By doing this, the DNS gets more control

over the flow on the network. Based on this idea, several possible server-scheduling

19

algorithms that are extended on the DNS asin the following.

Based on the source of information used by the DNS, the DNS scheduling algorithms can
be classified into three categories; namely (1) the algorithms using domain information, (2)
the algorithms using load information from the web servers, and (3) the agorithms
combining both domain and server information. We briefly describe these algorithms as

follows.

(2) Algorithms using domain information

Two-tier-Round-Robin (RR2)

Based on the fact that the hidden load weight (average number of web requests from the
domain per name-to-address mapping) of the clients under each LG (Local Gateway) can
be very different, this algorithm partitions the domain under different LGs roughly into
two classes, i.e. hot (with higher hidden load weight), and normal (with moderate hidden
load weight). The round robin scheduling is used on the LGs under each class. RR2
algorithm avoids assigning too many requests from hot class domains to the same server,

and therefore it tends to average the load to every server in the pool.

Dynamically Accumulated Load (DAL)

In every measurement period, DNS accumulates the hidden load weight of every
assignment for each web server in avariable bin. And the web server with the lowest bin
value is chosen when the address resolution is requested. The bin valueisincreased by the
hidden load weight of that LG afterwards to represent the increased load that will arrive.

(2) Algorithmsusing load infor mation on web servers

20

Lowest Utilization (LU)
The web server utilization (in the most recent measured interval) is used for the server
selection purpose, the server with the lowest utilization is chosen during address

resolution.

Lowest among Past and Present Utilizations (LPPU)
Like the LU algorithm, only several recent measures are used, and each one is weighed

with different weight value (with the most recent measure being the highest).

(3) Algorithms combining domain and server infor mation

Snglethreshold (Thrl)

Basically, this approach use the RR2 or DAL algorithm, but it aso keeps track of thealarm
message coming from any of the web servers which announces that its utilization has
exceeded a certain threshold, and excludes them from the candidate list. These overloaded
web servers will not be assigned to any domain until their workload drops back below the

threshold at which moment another message will be sent to the DNS to notify this.

Double threshold (Thr2)

Similar to the Thrl agorithm, but to avoid the performance thrashing, this algorithm uses
a second threshold (lower than the upper one) to tell when the excluded server should be
“re-activated”. In this way, the newly included server will not be excluded again too soon

during the time of heavy load.

Temporal threshold (ThrT)
Same as the Thrl algorithm, except that the re-activation of the server is triggered by a

21

timer, which specifies a period of time long enough for the excluded server to finish its

currently assigned load.

These algorithms are quite simple to implement, and the expiration of the name-to-address
mapping enables the DNS to get back more control over the network flow, thus realize the

load balance.

2.1.3 Using an anycast resolver to distribute the wor kload

The most recent technique is to make use of the anycast domain names (ADNS) [13]. Such
a name identifies a group of IP addresses of the replicated servers. It is assumed that an
anycast resolver stands between the clients and the servers, and maps the ADN into the P
address of one of the servers. The web service request is started with the anycast query,
and the resolver responds with a server |P address. Then the client talks to this assigned
server until he finishes. To guarantee the quality of service, the performance information
associated with each server has to be maintained in a performance database. This
information is used for the purpose of server selection. Upon this basic anycast
architecture, some extensions have been proposed. Among them, one study [9] worth
noticing is done by Z. Fei, S. Bhattacharjee et al from Georgia Institute of Technology.
Their approach deals not only with the problem of providing reasonable response time to

the client, but also with the problem of performance oscillation.

In their anycasting system architecture, they use a hybrid of Push/Probe techniquesto keep
the performance information of the servers updated. They use the concept of a so-called
“set of equivalent servers (ES)” to pick up agood quality server from the server pool. For
the push algorithm on the server side, the server pushes the performance information to the

resolver whenever the change of the measured performance exceeds some predefined

22

threshold. The probing mechanism isrealized by aprobing agent, which is co-located with
the resolver. Thisagent periodically queries awell-known file on the server to measure the
real performance of the server. The reason to separate the functions of probing and
resolving and put them on two different sites is that they want the resolver to be
server-protocol independent. But the probing agent still has to be aware of the protocol on

the server side.

To insure a reasonable response time for the clients and to prevent the clients from
oscillating among different servers (some servers may be favored at one time and
over-loaded at another time), they use the idea of a set of equivalent servers (ES) to define
a set of serversin the server pool, which can still provide good quality of service. And
when queried by the client, the resolver randomly picks up one server in the ES, and sends
back its IP address. The ES group is re-calculated each time some server pushes
performance data to the resolver. Their ES computing algorithm [9] keeps two thresholds
Tj and 1, for response time to control when a server can be included into the ES and when it
should be kicked out owing to its poor service. 7; and t, are caled joining threshold and

leaving threshold, respectively.

2.1.4 Weaknesses of the above approaches
The approaches described above can distribute the workload to different servers, thus

realizing load-sharing control. But they each have some weakness as described below.

(a) Serversare picked up by the clients

Despite the difficulty of broadcasting the new server list, and the poor scalability, this
approach defines the “best” server by some threshold of the response time. Servers whose
response time is below that threshold are all “best”. But thisinevitably incurs the problem

of performance oscillation. At one point in time, a server may be considered to be the best,

23

and al the clients will choose that server sinceit is believed to provide best service at that
time. Soon after, it is very heavily loaded and excluded from the “best” choices. As the
server switches back and forth between the “best” and “not best”, the workload of the

server varies periodically between heavy and low.

(b) Distribute the workload by the DNS

The weakness of this algorithms s that the classification into the hot and normal domains
isstill too rough ameasure, the actual requests/mapping of individuals under each domain
can be very different. Also they use the utilization of the server as a measure of the
threshold rather than the response time of the client’s perspective. The quality of service
provided to the clients is surely not a very serious issue under consideration. And most
importantly, the abrupt switch at the threshold to re-activate or deactivate a server will

cause workload oscillations on the server side similar to the previous approach.

(c) Using an anycast resolver to distribute the workload

Complicated as it is, there are still some disadvantages in this approach. First of all, the
server protocol must be modified to add the push function, this affects its scalability.
Secondly, the server push mechanism only measures the server performance, and probing
checks the performance of the network links as well. However, it is not clear how this
information can be combined to make it useful. Finaly, the equivalent server set is
maintained by joining and leaving thresholds, which dumps out, and pulls in servers
abruptly, therefore, the workload oscillation is unavoidable. Even though the authors
claimed that by choosing larger thresholds t; and t, (make |'Cj -1 larger), the oscillation
could be minimized. But in our perspective, a larger threshold t; and t, means keeping
larger number of servers in the ES set, which implies that we sometimes have to keep

servers with less good service quality in the ES set and thus degrade the quality we

24

provide. This is actually an approach, which trades the stable performance at the server
side with bad quality of service on the client side. This approach works well with low to
moderate server loads, but uncontrolled oscillations are unavoidable when the load

becomes high.

To conclude, al the above approaches fail to take the stability of system performance
under consideration. They all use the threshold to dump out the clients. Due to the abrupt
nature of the threshold, the workload oscillation among the serversis very hard to avoid.
The effect of this kind of on-off decision depending on a threshold can be so bad that in
one time interval too many users may rush into the system and the response time soon
becomesintolerable, and in the next interval not a single user can be admitted, resulting in
very low server utilization. So in our project, we will focus on how to avoid the
performance oscillations, yet without impairing the system scalability. In particular, we
will use the brokerage architecture, which is introduced below as our basic system
architecture; by improving its server selection algorithm, we can eliminate the oscillations,

and provide satisfactory QoS to the clients.

2.2 Brokerage architecture

The brokerage architecture was first introduced in Mohamed-Vall M. Salem’s paper “A
Scalable Load-Sharing Architecture for Distributed Applications’ [4]. In this proposed
architecture, a delegate server, so-called broker, is used to distribute the client requests
among different serversin its server pool. By implementing some load-sharing algorithms
that assign the servers to different clients depending on some rules, no server will be
overwhelmed by too heavy load while others have few requests. Several server selection

algorithms will be briefly discussed in section 2.2.2. In section 2.2.3, we introduce the

25

dynamic property that makes the brokerage architecture scale.

2.2.1 Introduction to the brokerage architecture

In this section, we make a brief introduction to the brokerage architecture, which is shown

in the figure below [4].

In the following Figure 2, the broker is dedicated to assign the client the IP address of the
server (from the server pool) that is granted to this client for the duration of a session. It
has the responsibility to control the admission of the clients depending on some criteria
that isimplemented in the server selection algorithm. Since the response timeis one of the
major factors to customer satisfaction, we use it as a criteria for the admission decision.
The main function of the broker is load balancing among the servers in its pool and
monitoring the response time of these servers. The load balancing is well studied in
Salem’'s work [4], so in this project, we focus on the impact of performance monitoring,
and in particular the impact of the observation time period. We notice that the broker
considers the server pool as a single working unit, and within this unit al servers are
equally treated in the case of homogeneous servers. In our simulation study, since the
performance monitoring aspect and the observation time period are independent of the
number of serversin the pool, we consider in the following, for smplicity, that the server

pool contains asingle server.

26

Or5 Server side

Storel.com | 1.1.2.¢ Server pool
StoreZ.com [1.1.1y ;Elfr'-ire;;a
i ;
~
Session
Storel.com? 1.1.2.¢ //r} F,':E.r:e;%_ . N
y ST
e
o
/}/ Manitaring
y X server
' Broker
Clent P11 2¢c

Wehich serer?

Figure 2. Basic architecture (from [4])

The brokerage architecture works as follows. After the client gets the IP address of the
broker from the DNS server, he uses this |P address to ask the broker for the server’s
address. The broker will either accept this user or turn his request down, depending on the
current load of the web servers. If the admission is granted, the IP address of the server
will be sent to the client. And then the client is allowed to send any number of HTTP
requests to the assigned server. In Salem’s work [4], he uses the idea of quantum, which
defines the time period this server assignment is valid. But later we realized that in the
guantum-based approach, we dump out users already in the system when the load is high
without letting them finish their session. Imagine how unreasonable it is to dump out a
client who has already been browsing on this web site for half an hour, and is just waiting
for the last web page to finish. So in this project, we try to improve our brokerage model
by removing the quantum control and to reject only new users that are not yet in the
system. Once admitted, clientswill be allowed to stay until they finish. So in the following
discussion, we do not use the quantum time, no user who is already in the system will be

dumped out due to the long response time. Every user admitted will successfully finish all

27

his requests no matter how bad the current response timeis.

On the server side, every server keeps track of the average responsetimeit is experiencing,
and pushes this data periodically to the broker (in practice, these data can also be collected
by the broker by probing the servers). These data help the broker to make server selection
decision. The time period between the collections of these response time data is called
inter-observation time. It has a pre-defined value, and indicates how closely the broker
keeps watching the performance of the servers. The determination of the inter-observation
time is up to the administrative management; it should be chosen properly. If it istoo long,
the admission control over the system will be too loose; and if it istoo short, the workload
of data collection can be too heavy for both broker and servers. An improper length of the
inter-observation time and the on-off decision making server selection algorithm are two
major factors that contribute to the instability of the system performance, as we will see
later. In Section 6.3.2 we are trying to find out an appropriate inter-observation time by

simulation experiment.

2.2.2 Load sharingin the brokerage architecture

The goa of load sharing control is to balance the workload of each server in the
multi-server pool so that no server will be overloaded or under-utilized. In terms of load
sharing control, the brokerage architecture performs exceptionally well. In Mohamed-Vall
M. Salem’s work, the load sharing function of the broker has been very well studied. Two
kinds of algorithms, namely static algorithms and dynamic algorithms (depending on
whether the run-time performance measurements are used or not), are discussed and

compared. We briefly list these algorithms and shortly describe their operations here.

Satic Algorithms (run-time performance measurements are not used in the server

28

selection decision)

(A) Round Robin (RR) — Servers are selected in a cyclic order.

(B) Weighted Round Robin (WRR) — Cyclic order is used, but the faster servers are more

frequently selected than the slower ones.

Dynamic Algorithms (run-time performance measurements are used in the server
selection decision)
(C) Least Active Session (LAS): The number of sessions assigned to each server can be

estimated and recorded by the broker, and the server with least active sessionsis selected.

(D) Least Utilization (LU): The utilization of the server is recorded by each server and
periodically transferred to the broker and the server with least utilization is selected.

The experiment shows that RR is faster and easier to implement, but it only works well
where all servers have the same capacity. WRR has the advantage of simplicity, and is
very effective in balancing the load among the serversif the available capacities at various
servers do not change very frequently. In cases where the available capacities at various
servers change frequently, an adaptive mechanism like LAS or LU will be a good
aternative. Better than RR and WRR algorithms, LAS and LU do not have to know the
speed of each server, which can aso change from time to time and might be very difficult
to measure. What is more, these algorithms do not care how many servers there are in the
domain; the scheduling is based on the current status of the server instead of the specific

server configuration.

29

With these algorithms, the load-sharing problem among servers can be solved pretty well.

Every server gets a compatible workload, and no one will be extremely heavily loaded.

2.2.3 Dynamic properties of the brokerage architecture

Compared with other methods of load balancing, the great strength of the brokerage
system lies in its dynamic nature of configuration. We deem this an important asset that
makes our system truly distinguishable and outwits the other approaches we discussed in
Section 2.1.

Concerning its dynamic properties, first of all, the configuration of the broker is very
flexible; the broker can be co-located on the server side, and under the same management
as the replicated servers. But thisis not absolutely necessary, it could be placed anywhere
on the global scale. Severa different web sites can even share the same broker. Usually,
we suggest that the web site that has very heavy workload manages the broker of his own,

only those web sites with comparatively low workload justify the sharing of a broker.

Secondly, the brokerage system could scale up to a system of replicated brokers when the
web reguests from the clients exceed the number where a single broker can no longer
support them. This multi-broker architecture is also studied in Mohamed Salem’s work
[21]. In the multi-broker system, besides the normal function of distributing requests
under its own domain (adomain is usually geographically based in order to minimize the
delay on the network), the brokers also need to communicate and cooperate with each

other so as to balance the load globally. In the Figure 3, we show two independent clusters

30

of serversin the multiple broker architecture.

Broker &
e
Cluster A

Cluster B

Figure 3. Two brokers communicate to balance the load between two cluster s [21]

To allow the exchange of the load status between the brokers, they are managed in a group.
A special protocol is needed for a broker to join or leave the group. A simple protocol isto
broadcast a join/leave message when a broker joins/leaves the group, so that every
member knows who is the newcomer/leaver. And every member in the group exchanges
its status information periodically. Each of them will ask other broker for help when its
load exceeds some predefined threshold. The broker that receives a request for help can
either return the address of a server under its domain, or smply send back a rejection
message. It isalso possible that the broker forwards the request to other brokers, but in that

case a more complicated protocol is needed to prevent endless loops.

Depending on how the threshold is set, the server selection method can be classified as
“static global least utilized algorithm” (using a predefined threshold) and “ dynamic global
least utilized algorithm” (using the overall average of the utilization of all the clusters as
the threshold). Simulation experiments show that the multi-broker system significantly
improves the load balance of all the clusters. And the dynamic algorithm has better

performance than the static one.

31

The multi-broker architecture makes the system scale very well. A single broker can
balance the load under its domain, and several brokers can cooperate and share the load
among severa domains. In this way, the geographic barrier to the resource allocation is

broken and all the sites work as awhole.

2.2.4 Something to be improved

In the brokerage approach, the broker can guarantee the QoS provided to the client by
putting an upper limit to the response time [1]. Whenever the current response time
exceeds some pre-defined upper limit, no user can be admitted to the system. In this way,
we can control the maximum response time the server will provide. And also if we set
different upper limits to different user groups, we can provide a differentiated QoS to
different classes of users. But there is still aweakness in this approach: because the server
can only report its current response time to the broker periodically (say every minute), for
each timeinterval the broker will either admit all the users (if the threshold is not reached)
or rgject all the requests (if the threshold is exceeded), thus introducing an oscillation of
the number of users and response time in the system. We will discuss such oscillation in

detail in Chapter 5.

Despite of the disadvantage of the performance oscillation, the brokerage system is till
very flexible, sinceit does not need support from the DNS. It ismore like, yet simpler than,
the anycasting approaches. But in the brokerage system, we only need one delegate server
to act as a broker; there is no need of the anycast resolver and probing agent. And it is
worth noticing that the brokerage architecture can be used not only on web servers, but
also in any distributed application, any service provided on the web. So in our project, we

decided to use the brokerage system as the basic architecture to inherit all these

32

advantages and improve its scheduling algorithm to avoid oscillations.

33

3. Simulation principles and tools

In our project, the simulation is the basic tool we use to study the performance of the
server selection algorithm. So we feel obliged to make some introduction to the basic
simulation principles and simulation tools we used in the project in this chapter, which

may help the readers to understand our work much better.

3.1 Simulation principles

The study of simulation is to build a (smulation) model, which is executed to imitate the
operation of a real-world process or system over time in order to solve the real-world
problems [7]. It has long been considered as an important methodology in the field of

industrial, management, and research.

Simulation helps us to solve the “what if” question in an efficient and economical manner,
allowing us to speed up or slow down the process for athorough checkup and diagnosis. It
also makesit easy to make changes or corrections to explore all the different possibilities,
which would be extremely expensive to realize in the real system. There are quite a few
application areas of the simulation, including simulation of manufacturing and material
handling systems, simulation of automobile industry and transportation systems,
simulation of healthcare and service systems, and even the simulation in the military field.
In all these fields, simulation is an indispensable tool to find all kinds of answers for the

real world.

Simulation generally consists of three phases, namely the design of a model, model
execution, and the analysis of the data obtained from the execution. In the phase of model

design, we have to define a concept model according to the knowledge of the real system.

Then we should consider the model execution where some mathematic languages are
chosen to express the concept model. Also in this phase we should consider a proper
simulation toolkits. There are many simulation toolkits, and we should decide the one
most suitable for our purpose. After the model execution, some results may come up, and
then we should start the final phase - the analysis. During the analysis phase, the data of
simulation results are put together, maybe in some visualized way; and statistical analysis
are made, which allows us to better understand the nature of the system and make further
inferences. At this stage, the verification (process to make sure that the
concept/mathematic model corresponds precisely to the real system) and validation (the
process to check whether the output of our concept model is exactly what we have
expected in the real system) can also be made. The results are taken as feedback to further
improve or correct the concept model. In this chapter, we will introduce some basic
notions of the simulation principles and the simulation tools we used in our brokerage

service project.

3.1.1 Modeling principles

In the ssimulation world, one of the most important concepts is the modeling. A model is
actually a representation of the real-world system. Designing a model is more like an art
than a technology because there can be many ways we can abstract the conceptual model
from areal system. There is ssimply no best model, therefore any model complex enough
to represent all the details of the system that are necessary for the problem under
investigation is a good model. Models showing too many details, or not including factors

that will alter the simulation results are not good ones.

Depending on the nature of the occurrence of the simulation event, the ssmulation models

can be classified into three categories: namely discrete model, continuous model, and the

35

combined model [7]. A discrete model is a model with dependent variables that change
only at distinct points in simulated time (so called event times). A continuous simulation
model has dependent variables that change continuously over time (usualy they can be
represented by some forms of differential equations). A combined model simply consists
of dependent variables that may change discretely or continuously. The discrete model is
good at modeling the system where the state of the system changes at discrete point of
time, like the problem of resource management, queuing, and any problems that can be
modeled by a finite state automata (FSA). The continuous model is usualy used in
modeling the problems, having variables that can be defined by some mathematic equation

and changes continuously over time, like physical experiment, laws of nature etc.

According to the nature of the problem to be modeled, and from the real life experience,
we can roughly conclude some of the most often used typical models as follows:
conceptual models, discrete event models, functional models, constraint models, spatial

models, and multimodels etc. [8] We introduce them briefly here:

Conceptua models: models containing components that cannot be clearly identified in
terms of system-theoretic categories such as states, events, and functions are called
conceptual models. A conceptual model is very abstract and vague and considered to be a
very high-level system model; it will normally progress to some more detailed

system-theoretic models.

Discrete event models: a declarative model contains two primary components: states and
events. It is especially suitable for mimicking the behavior of the real system whose action

is considered to be the transition from one state to another.

Functional models: a functional model contains two primary components. functions and

36

variables. The function works on some input variables and produces some output, which
may be used as an input for another function. It can be used in the situation where the

problem can be defined as a series of functions, like the law of physics.

Constraint models; a constraint model is similar to the functional model, but it focuses
more on the balance and causality of the variablesin the system. They are usually defined

in terms of some equations and are very powerful to represent laws of nature.

Spatial models. a spatial model deals with the decomposition of space, with clear
boundaries, and is useful to fragment the whole system into small pieces, and model each

of them in the divide-and-conquer way.

Multimodels: multimodels are composed of several models listed above. Real-world

systems are usually too complex to be portrayed as a single simple model.

To design the simulation model, we start with analyzing the concept model of the real
system, and break the whole system into a number of smaller abstract modules depending
on itsfunctionality. Finally, we choose a proper model to represent each of these modules.
Since no rules can be followed to choose a model, sometimes we have to use some

heuristic approaches to make decisions.

3.1.2 Procedure of simulation

Generally speaking, there are some commonly followed steps in the simulation study (as
stated in [7]). The flow of these steps is shown in the following figures and the brief

explanation of each step islisted as below.

37

Problem formulation: the very first step in the simulation study, which provides a precise

statement of the real problem.

Setting of objectives and overall project plan: the preparation of the proposal, which

states the goal, schedule, cost etc. of the simulation work.

Model conceptualization: defines an abstracts conceptua model and mathematical
relationship of the components of the real system.

Data collection: the real system data that is required by the simulation model is collected
in this step.

Model trandation: to transate from the conceptua model to the operational model

simulated on the computer.

Verified?: to determine whether the operational model built in the previous step performs

properly.

Validated?: the comparison of the conceptual model and the real system is made to see if

the conceptual model is the accurate representation of the real system.

Experimental design: to design for each scenario the number of runs, the run length, the

initial parameters of the run etc.

Production runs and analysis: to estimate the performance of the scenarios

38

More runs?: analysis from the previous production runs, to see if more runs are needed.

Documentation and reporting: adequate documentation and reporting is clearly

necessary for the simulation model reuse, and modification.

I mplementation: the documentation produced in the previous step help people to make

implementation decisions for the real system.

These steps are usually followed in every simulation project. Sometimes some steps might

not seem very necessary in a specific project, but following these procedures is definitely

helpful and makes your simulation model less error prone, especialy in alarge project.

39

Problem
formulation

Zetting of
ohjectives
and averall
project plan

¥

¥

hodel

conceptualization
¥

¥

Data
collection

[
r.*.-u

hodel
translation

Ho

Tes

Ho
Walidated?

Figure 4. Procedurein simulation study (from [7])

l Yes

Ho

F

Experimental
design

Production runs

and analysis

Documerntstion
and reporting

Implementation

I 1

40

3.2 Simulation tools

There are too many simulation tools available, we should choose the one that is most
appropriate to serve our purpose. In our project, we used the CSIM 18 simulation package
to do the job because of its convenience to use (written in C++) and fast execution speed.

Here we present some basic knowledge needed to understand this simulation tool.

3.2.1 Introduction to CSIM 18

In our project, we used the simulation engine CSIM 18 to do all the experimental tests. The
CSIM 18 simulation engine is developed by Mesquite Software, Inc. Austin, Texas. And it
isakind of general-purpose model-building simulation toolkit, which enables developers
to build up process-oriented, discrete-event simulation models. The model can be any real
life model from a simple queuing system to an atomic bombing experiment. All kinds of
details like the interrelationships of components, scheduling rules and message exchanges
can be represented in the model. After we create a computer simulation program, which
accurately realizes the simulation system model, the CSIM 18 engine can easily collect all

the statistical datathat is necessary for the analysis.

The CSIM18 simulation engine is very compact and efficient, and can be embedded into
any code written in C/C++, so the users do not have to learn a particular programming
language for CSIM18. Like C++, the simulation engine itself is object oriented, thus it
provides a convenient and easy-to-use interfaces. It provides alibrary of classes, methods,
and functions, which enable us to implement general simulation models. By inheriting the
base class of the simulation engine, the user can easily modify and extend the behavior of

the basic models to simplify the realization of more complicated systems.

41

Furthermore, the CSIM 18 simulation engine isamulti-platform library. According to what
is claimed by Mesquite [6], this simulation package has versions that are compatible with
operating systems such as Windows 3.1, Windows 95, Windows NT, OS2 Warp and
Linux. It also has versions on amost al UNIX workstations, including Sun SPARC
(SunOS and Solaris), DEC Alpha (with OSF/1), HP PA (with HP/UX), IBM RS/6000
(with AIX), SGI workstations and Power Mac (with the Metroworks C++ compiler). It is
really convenient to transfer the simulation system from one platform to another. We do

not have to do any change in the code, recompiling the origina code is enough.

3.2.2 Simulation components (classes) in CSIM 18

There are a number of simulation components (classes) provided by CSIM18. We now

briefly introduce the most important ones:

Processes. A CSIM process is an independent thread (lightweight process), which can
mimic certain activities of an entity; several processes can appear to be executing
simultaneously, although they are actually executing sequentialy on the processor. Just
like areal process, a CSIM process can be in the states of ready, active, holding (allowing
simulation time to pass), and waiting (for some event to happen). Their transitions are
controlled by certain methods provided by the process class. Process has a priority for

execution; different processes may have different priorities.

Facilities: A CSIM facility isaresource that istypically "used" by processes in the model;
Usually a facility consists of a server and a queue used for the processes waiting to be
served by the server. A multi-server facility has a single queue for several servers. During

the time of heavy load, the processes are queued up for access to a server. Processes with

42

higher priorities are queued ahead of the process with lower priority.

Storages: A storage is a resource that can be allocated to the processes. It consists of a
counter (amount of storage) and a queue used for queuing the processes waiting for
storages. Storages can be set to be synchronous, which means several of them can be
alocated in the same clock cycle. When the storage unit is insufficient to allocate to any
process, the process will simply wait in line until other processes release the storage unit

that is previously allocated.

Events: An event is used to synchronize the behavior of different processes, and it hastwo
states: occurred or not occurred. A process can be suspended when waiting for a
not-occurred event and it also can be resumed when that event occurs. The state of an

event can be and usually is set by some other processes.

Mailboxes: A mailbox is used to exchange information between processes. Any process
can send a message to or receive a message from a mailbox. A mailbox maintains two
FIFO queue, one for incoming messages, and the other for waiting processes. When a
message arrives and there is no process waiting for it, the message will go to the message
gueue waiting to be picked up. On the other hand, if a process execute a receive action
while there is no message in the message queue or the mailbox is empty, the process will

wait until there is some message coming in.

Tables: A table is an object that is used to collect individual data values and to report its
statistical properties generated from that table. The properties of the report include mean,
variance (and standard deviation), standard deviation, coefficient of variation, minimum,
maximum, and the number of observations, etc. The report also support features like

histogram, which reports the relative frequency of specified ranges of values, confidence

43

intervals with which we can estimate the accuracy of some values collected, and moving

window (which determine the sample size) etc.

Qtables: A Qtableis pretty much the same as atable described above, except that it is used
solely to collect integer values (e.g. number of clients, queue lengths) and to report their

statistical properties.

Meters: A Meter is used to measure the flow rate of entities passing a certain point in the

system module and to keep track of the times between successive passages.

Boxes: A Box is used to collect data of time spent in a specified entity, and the number of

processes inside the box.

With these basic classes, the simulation modeling and the result data collection become an
easy job. Users only need to focus their attention on the model itself rather than many
tedious details.

3.2.3 The accuracy of the simulation in CSIM 18

The CSIM 18 simulation engine has the facilities to reach a pre-defined accuracy of some
estimation. No one can run a simulation model for a indefinitely long period of time.
Sometimes the expected accuracy of some value can never be reached. In other words, the
“truevalue” of some estimation will never be known in agiven period of time. That iswhy
we need a way in our simulation engine to tell us whether a given accuracy of the
simulation result can be achieved. If yes, how long will it take before such accuracy can be
achieved? Fortunately, CSIM18 provides such techniques as confidence intervals and

run-length control, which alow us to cope with these difficulties.

In short, a confidence interval is arange of valuesin which an estimated value is believed
to fall with a high probability. That range is usually considered to be the “best guess’ of

true value. Here we show atypical report for confidence interval.

results of run length control using confidenceintervals

cpu time limit 606.0 accuracy requested 5.000000
cpu time used 606.6 accuracy achieved 5.000000

95.0% confidence interval: 642.699255 +/- 4.404560 = [638.294695, 647.103815]

The above report shows that we have 95% confidence that the collected data values fall
into the range of [638.294695, 647.103815]. It is worthwhile to mention that the method
of batch is used to compute confidence intervals. And by default, CSIM18 simulation

engine provides us confidence levels of 90%, 95% or 98% respectively.

Next, we need to determine how long our simulation model should run. CSIM 18 provides
run-length control, which can determine when the level of confidence has been reached.
With run-length control, the simulation program will keep running until a specified
accuracy isachieved, or until a predefined simulation time limit has elapsed. That isto say,
in some circumstances, the execution can be ceased, but the confidence level is not yet
achieved. Thefinal report will show whether the termination of the execution is due to the
simulation model being converged to some level of accuracy or simply the maximum CPU
time is exceeded. This function enables us to execute our simulation program in an

efficient way, and within a reasonable amount of time and computational cost.

3.2.4 Random number generation

45

In any simulation program, random number generation is an important part. A random
number generator should produce random number series (called stream in CSIM18)
without any recognizable pattern. Unfortunately, there is no true random number generator
up to now. Most generators today only provide pseudo-random number because they
produce a series of random numbers in which the number values are calculated from the
previous numbers. The very first random number depends on a so-called seed. Different

seeds can produce different series of random numbers.

In our simulation model, we use the random number generator to produces values such as
inter-arrival time of customers, the number of files each customer hopes to download, the
number of objects in each file, and the size of the object. They are all random numbers
following some kinds of distributions. We will describe them shortly. These distributions
describing the user behavior are carefully studied and explained by Paul Barford [5]. Here
we simply use his research results to build up the model of our own. The CSIM18
simulation library provides both continuous (real) and discrete (integer) random numbers
series from up to 18 distributions, including uniform, beta, exponential, gamma, erlang,
weibull, normal, cauchy, poisson, geometric, and binomial etc. These functions make the
simulation tool really handy in designing random aspect of the simulation models. The
change of seeds can be realized by the “reseed” function, which gives us a different series
of random number still following the same distribution. Reseed enables us to find more
stable and accurate result independent of any particular sequence of random numbers,

which makes our simulation results more convincing.

We show a piece of code of random number generation in the following. It generates two
random numbers 10000 (NUM_SAMPLES) times, one follows an exponential

distribution with the mean of 1.0 (MEAN), while the other follows a uniform distribution

46

within the range [0.1, 10000.0] (JUNIF_LOW, UNIF_HIGH]). It also records them in the
tables exp_distribution and unif_distribution respectively.

#define NUM_SAMPLES 10000
#define MEAN 1.0

#define UNIF_LOW 0.1

#define UNIF_HIGH 10000.0

table *exp_distribution;

table *unif_distribution;

i=0;

while(++ < NUM_SAMPLES) {
exp_distribution->record(exponential (MEAN));
unif_distribution->record(uniform(UNIF_LOW, UNIF_HIGH));

3.2.5 A simple example of using the simulation engine CSIM 18

To see how this tool works, we show in the following an example of CSIM18 simulation

engine used in a queuing system.

This program simulates a queuing system with only one server (facility). There will be
5000 customers coming in and waiting to be served. Theinter-arrival time of the customer
follows an exponential distribution with the mean of 2 (IAR_TM) seconds, and the length
of service time also follows an exponential distribution with the mean of 1 (SRV_TM)
second. The function customer() mimics the behavior of a customer, coming in, being
served and leaving. At the same time, the variable thl (of type table) records how long this
customer stays in the system or the customer’s response time (the time from when he
enters the system to when he leaves), the variable f (of type facility) records how much
timeit takes for the server to serve the customers, and gtbl (of type ghistogram, almost the

same as a gtable) counts the number of the customersin the system.

47

/I C++/CSIM Model of M/M/1 queue

#include "cpp.h"

#define NARS 5000
#definelAR_TM 2.0
#define SRV_TM 1.0

event done("done");
facility f("facility");
table tbl("response time");

ghistogram qtbl ("number in system", 101);

int cnt;

void customer();

/I class definitions

/I the event named done
[/ the facility named f
// table of response time

I/ count of remaining processes

extern "C" void sim(int, char **);

void sim(int argc, char *argv[])

{

set_model_name("M/M/1 Queue");

create("sm");
cnt = NARS;

for(inti = 1; i <= NARS; i++) {
hold(expntl(IAR_TM)); [l interarrival interval

customer();

}

done.wait();

report();
mdlstat();

void customer()

{
doubletl;

create("cust");
t1 = clock;
qgtbl.note_entry();

/I generate next customer
// wait for last customer to depart

// model report
/I model statistics

[/ arriving customer

/I record start time
/I note arrival

/I ghistogram of number in system

48

f.reserve(); I/ reserve facility
hold(expntl (SRV_TM));
f.release();
tbl.record(clock - t1);
qgtbl.note_exit();
if(--cnt ==0)
done.set();

/I serviceinterval
/I release facility

/I record response time
/I note departure

/I if last customer, set done

After we run the simulation program, we can get the following output. It shows statistics

of the facility summary of the server (like utilizations, response time etc), a table of

response time, and a table of the customer number in the system (or the queue length

because the customers are served in the FCFS order) in the form of a histogram.

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count
facility fcfs 0.99206 0.494 0.49793 0.99059 1.98943 5000
TABLE 1: responsetime

minimum 0.000145 mean 1.989433

maximum 14.273079 variance 3.813342

range 14.272934 standard deviation 1.952778

observations 5000 coefficient of var 0.981575
QTABLE 1: number in system

initial 0 minimum 0 mean 0.990590

final 0 maximum 13 variance 1.937727

entries 5000 range 13 standard deviation 1.392022

exits 5000 coeff of variation 1.405246

cumulative
number total time proportion proportion

49

0 5081.38161 0.506030 0.506030 *H*FHFFAAA KKK KA A KA KK
1 2426.95194 0.241688 0.747718 ****xxxxxx
2 1238.22169 0.123308 0.871027 *****
3 667.95025 0.066518 0.937545 ***
4 350.00001 0.034855 0972399 *
5 152.62571 0.015199 0.987599 *
6 69.33696 0.006905 0.994504
7 25.09331 0.002499 0.997003
8 9.84005 0.000980 0.997982
9 10.69388 0.001065 0.999047
>= 10 9.56521 0.000953 1.000000

3.3 Simulation model for the brokerage ar chitecture

As part of our simulation model, a realistic web workload needs to be created (for
example, astream of HTTP requests that the real web server users generate), and it is used
to evaluate the performance of our brokerage system. Web workload simulation became a
topic under research years ago. Basically, there are two ways of generating a typical web
workload, namely the trace-based approach and the analytic approach [5]. The trace-based
approach takes the workload as a black box. It simply mimics the workload by replaying
the recorded past workload. Although it is very easy to be realized by simulation tools, it
hardly reveals any insight into the system behavior. The analytic approach uses the
mathematical models to simulate different characteristics of the workload. But the
challenge of this approach lies in the difficulty of combining a large number of
mathematical characteristics into a single stream of HT TP request. Paul Barford and Mark
Crovellafrom Boston University have done alot of work in thisfield, and they even built
up a simulation tool SURGE (Scalable URL Reference Generator) for workload
generation [5], which has both of the following two major characteristics, user equivalents

and certain model distribution, as explained in the following.

50

User Equivalents: The workload generated by the generator should roughly correspond to
the workload of some known number of users. SURGE realizes this by creating a set of
processes; each mimics one user by endlessly alternating between web page requests and
user think time. Each web page request consists of the transmission of multiple file
requests (web objects), as shown in the following chart. OFF stands for the idle time when
there is no message transmitted on line. Active OFF is the time between the transmissions
of two objects, while the inactive OFF is the duration between two web page requests
(called “think time” in our model). The web page requests, the length of idle time and
object size must follow certain distributions and exhibit properties of the real web users.

[5]

Page URL Embedded tem URL Active OFF

| =

LIEL 1|OFF| URL 2| OFF[URL 3| OFF

Inactive i
— — Time
oFF

OH Object

User Regquests Feguested Fage User Requess
Fage Feceived MNext Page

Figure 5. ON/OFF model used in SURGE (from [5])

Distribution Models: In the study of the workload distribution model, they mainly
focused on the discussion of the distribution of several major workload characteristics. file
sizes, request sizes, popularity, embedded references, temporal locality, and OFF times.
These properties have been proved to be ubiquitous and comply with empirical
measurements. More and more researches on network traffic nowadays are based on these
models, and they are surely becoming more and more popular. The mathematical rationale
behind these distributions is discussed in severa papers [15-20], and is beyond the scope

of thisthesis, but we do use these results to build our simul ation models.

51

As explained before, to make the matter ssmpler, our ssimulation is done on just one server,
and one broker, which controls the admission of new users. We keep generating new
clients with certain time interval (called inter-arrival time). To be more precise, the
inter-arrival time follows an exponential distribution with a certain mean. So the arrival of
the incoming user is a Poisson process. Each client will launch on average a certain
number web page requests. However, before they start the first web page request, they ask
the broker for admission permission, and the server id. After it is accepted, the client goes
fetching the web pages he wants just as required by HTTP 1.0 (the result can be easily
extended to pipelining model of HTTP 1.1 according to [5]). Within each web page, there
are a certain number of embedded objects (such as images, wave files, text file etc), which
also follows some distribution as illustrated in the following table. After the client gets the
web page and processes them, he starts the think time before he fetches the next one. The
response time is calculated based on each fetched object, and the mean of the response
time during the whole inter-observation time is sent periodically to the broker for the

purpose of admission control.

Notice that the way we build our model and the parameters we use are largely based on
Paul Barford's work [5]. Here we list some of the important parameters in the following

table:

Parameter Description

Server speed 10°® second/byte

Inter-arrival time of the client exponentia distribution with a certain mean

Total number of pages each client requests exponentia distribution (mean = 36)

Number of embedded objects per page Pareto distribution (o = 2.43, k=2.3)

Object size (in octets) Bounded Pareto distribution (o = 1.25, k = 1800,
p =10°)

Object processing time (in seconds) Weibull distribution (o0 = 0.146, 3=0.382)

User think time (in seconds) Pareto distribution (o = 1.5, k=3)

52

Table 1. Thedistribution model used in project

53

4. The relationship between the response time and the number of users

in the system

Asobvious asit is, the response time of the system should be related to the number of the
users in the system. The more users there are, the longer the response time will be. The
relationship between the response time and the number of users in the system is a very
basic fact that we want to reveal, and use in our later chapters. So we discuss this before

we start the study of the oscillation.

To fully study this relationship, we made a little modification in our simulation model,
which keeps the number of usersin the system at a constant value, and measures the mean
response time of the server. We use one process to watch the number of users. It creates a
new customer whenever the current number of users is smaller than a predefined value.
And we measure the mean response time when the system becomes stable. Notice that we
do not reject any of the customers and there is no constant customer-incoming rate either;
we add one user whenever one user leaves the server. By doing this, we only want to
reveal the relationship between the number of users and the mean response time on the one
hand, and the server utilization on the other hand. Our measurements are plotted in Figure

6 and figure 7:

response time

35 /
3
25 | /
2
15 A /
1
" +MJ’//
0 : : :

100 200 300 400 500 600 700 800 900 1000

response time

number of users

Figure6. Theresponsetime asa function of the number of usersin the system

utilization

12

0.8

0.6

0.4

Server utilization

0.2

100 200 300 400 500 600 700 800 900 1000

number of users

Figure 7. The server utilization asa function of the number of usersadmitted

From the above figure, we see that in the range between 500 and 1000 users, the response
time is a linear function of the number of users in the system. And the slope of the
response timein the Figure 6 indicates the ratio between the response time and the number
of usersin the system (response time/ number of users), which correspondsto the average

time the server spends on every user, or average service time. In the above figure, it is

55

around (3.7-0.5)/(1000-500) = 0.006 second/user.

We can also combine the above two measurements to get the relationship between the

response time and the server utilization. It is shown in the following figure.

utilization

1.2

&
4

0.8 /‘/—"f
0.4 /
0.2 /

0 0.04 0.06 0.14 0.47 1.15 1.79 2.29 2.51 2.69

server utilization

response time

Figure8. Theutilization asa function of responsetime

The above discussion shows that as the number of users increases in the system, the
response time will grow forever without any upper limit, while the server utilization would
be 1. If the number of users could grow without any admission control, there is no way we
can provide a guaranteed response time to the client. So at some point we have to choose
the so-called cut-off point; below that point the server can accept more users while above

that, no one would be admitted.

Now comes the question: to provide the satisfactory QoS, where should we choose the
cut-off point? We can make our decision from the given knowledge of the response time
and server utilizations. It isreally very hard to decide solely on the response time; different
customers may have different sense of what is atolerable response time, different kinds of

web services have different requirements for a reasonable response time (IP phone and

56

video-on-demand definitely need fast response time, while web banking service maybe
can tolerate slower response time etc). From some literature and surveys, we find that 1.5
seconds response time seems to be a reasonable upper bound most people agree on for

recent web services.

Taking the server utilization into consideration, it is not difficult to see that if the
utilization approaches 100%, there is not much improvement the server can make anymore.
So in our project, we decide to choose the cut-off point before the server utilization
becomes saturated. To be more specific, in the above simulation setting, we choose the
cut-off point to be 620 users, which corresponding to the response time of 1.3 seconds and
the utilization of 95%. In our probabilistic approach of admission control, we also take this
cut-off point into consideration when we choose a probability function. In practical
applications, people can choose their own cut-off point depending on the server speed,

type of service etc.

57

5. The problem of performance oscillations

5.1 Introduction to the oscillation problem

As we have mentioned in the previous chapter, the abrupt user rejection at the upper
threshold, and the manner of periodical data collection by the broker contribute to the

oscillation of the server performance.

At one point of time, there are very few usersin the system, and the average response time
of the server islow (below the threshold), so the server accept all the new users; in the next
inter-observation time period, many users will enter the system; if the user incoming rate
is high enough, soon the server will be overloaded in the next inter-observation time
interval, making the average response time exceed the threshold, and the system stop
accepting new users; the number of usersin the system keeps dropping; sooner or later, the
average response time will drop below the threshold again and a new round of oscillation
starts again. Accompanied with the oscillation of the number of users and the response
time is the oscillation of server utilization. As we will see in the next section, the

utilization of the server oscillates as time goes by.

On the server side, the broker can observe and control the response time, the number of
users, and the utilization, etc. To the broker, the fluctuation of these performance data is
surely an undesirable situation. Fluctuation of the utilization signals a waste of CPU time
(especialy for the one with longer inter-observation time), while fluctuation of response
time implies the suffering of end users. In one way or the other, the broker has to rule out

such oscillations so as to provide a stable quality of service.

58

In the next two sections, we will present the simulation result of the oscillations. And then,
the theoretical model of the oscillation is studied. With this theoretical model, people can

better understand this oscillation problem, thus can avoid it.

5.2 Simulation result of the oscillation

Here we show two groups of results from our simulation experiment to illustrate the
problem of oscillation. They present not only the oscillation of the number of usersin the
system but also the response time and utilization of the server as afunction of time. In this
experiment, our simulation model keeps the average customer inter-arrival time at 0.1
second (actually it follows an exponentia distribution with the mean of 0.1 second). We
use only one server with the speed 10°® Bytes/second, and with other settings being the
same as shown in the Chapter 3.3. Here we chose threshold to be 1.3s, which means when
the server response time is below 1.3 second, we accept all user requests; otherwise we
regject all of them. The Figure 9 shows the oscillation when the inter-observation time
equals 100 seconds, while the Figure 10 shows the similar results for the case that the

inter-observation time equal's 40 seconds

900

800

700+

B00 -

400 -

400 -

300 H

number of users in the system

200

100

0 . . L
17 175 18 18 19 195 2 206 21 215 22

Time in second (inter-observation time = 100s) <10t

(@)

59

response time

)
(8] i)
T
)
L

i
T
I

I
1

Response time & utilization of hte server

1 1 1 1 1 1 1 1
175 18 185 8 18% 2 206 21 215 22

1
Time in second (inter-observation time = 100s) w10t

[

N th

e e
L

(b)
Figure 9. The oscillation of the number of users and response time when inter-observation time equals

100 seconds

900 T T T T T T T T T

oo
=
=
T
|

|

=

=
T

a7}
=
=
——F
T

5]
=
=
T
|

User # in the system
o) (5] e
[} = [}
(] _ (]
T T T
L 1 1

=
=
T
|

=

1 1 1 1 1 1 1 1 1
175 18 18 18 19 2 2058 21 215 22

Time in second (inter-observation time = 40s) w1t

-

(@)

60

response tine -

(i
n
T

]
T

|
=1
T
i
——

Response time & utilization of the semer
(8]
T

o
in
T
1

D 1 1 1 1 1 1 1 1 1
1.9 17 18 18 1% 1% 2 Zos 21 215 22
Time in second (inter-observation time = 40s) w1t

(b)

Figure 10. The oscillation of the number of users and response time when inter-observation time
equals 40 seconds

From the results of these figures, we can clearly observe the oscillation of the number of
users, the response time, and the server utilization of both cases. Notice the difference in
the amplitude of the oscillation: for 100s inter-observation time, the oscillation is
exacerbated (with large amplitude and long period). We will discuss the effect of the

inter-observation time on the oscillation in the following section.

What worth noticing is that, for the clients, the only quality of service of the website they
are aware of is the response time. But in our later chapters, we will focus mainly on the
study of the oscillation of the number of usersin the system. There are several reasons that
we use the number of users rather than the response time to study the oscillation of the
system performance. First of all, the number of usersin the system has a strong indication
to the response time the system is experiencing as illustrated in the previous Chapter 4.
Secondly, when the value of the response timeis varying between 0.1s and 3s, the value of
the number of usersis changing between 100 and 800. Any variation in the response time
looks just like the statistical noise due to their small value, but the oscillation of the

number of usersisvery clear and easy to identify. What is more, it is more convenient to

61

model the number of user in the system rather than model the response time. So in the later
chapters, we will study mainly the nature of the oscillation of the number of users and the

waysto avoid it. The oscillation of response time and utilization are very similar.

5.3 System control

In this section, we will give a brief introduction to system control (see for instance [22]),
because admission control is, in general, a system control. In fact, the probabilistic control
proposed in this thesis is very similar to ideas that have been used for system control in
other fields of applications. But so far as we know, thisisthefirst timefor it to be used on

web service admission control.

System control is not something new; it is an extremely important and integral part of
modern manufacturing and industrial processes. It is widely used for various automatic
controllers. For example, system control is essential in the operations of controlling
pressure, temperature, humidity, viscosity, and flow of processindustries, and it also plays
avital role in missile-guidance systems, space-vehicle systems etc. Nowadays, the theory
of system control iswell understood by many engineers and scientists. In practice they use

it to attain optimal performance of dynamic systems and improve productivity.

In Figure 11, we show a block diagram of a standard industrial control system. The part in
the dashed-line box is the automatic controller. It detects the actuating error signa e at
very low power level and amplifiesit using amplifier. The amplified signal u is fed to the
actuator (could be a valve or electric motor etc.), which produces the input to the plant.

The output of the plant is measured by the sensor, which changes the output into a suitable

62

variable comparable to the reference input signal. These components form a closed-loop

system that iswidely used in industry.

Lutomatic controlley

o e

| Error detector

Reference
It |

—
(3
point | 1 Actuating |
L error sighal o
T— — — — [Cersor |e
Sensor (e

Figure 11. Industrial control system (inspired by [22])

As an example, we consider a liquid level control system, as shown in the Figure 12. In
this system, the flow of liquid is controlled by avalve. The input signal to the valveis an
electronic current u(t) (determined by the controller), which is converted into a pressure
applied on the valve and changes its stem position. The stem position of the valve controls
the amount of flow q(t) that goes into the tank. The height of the liquid in the tank h(t) is
measured in some way (we could use pressure of the liquid instead of measuring the
height directly, because height = pressure / liquid density / g) and is fed back to the
controller. The outflow of the tank is go(t). go(t) is a function that depends on the liquid
height. To be more exact go(t) = h(t)/R, where R represents the pipe restrictance. The goa
of this control system isto maintain the height/level of the liquid at a constant value. The
actuating error e(t) is the difference between the actually liquid level and this expected

level.

63

Control signal
ugt)

Pfftii‘htﬂm’el Flow out o {1
T

R

Figure 12. Liquid level control system (inspired by [22] and [23])

Roughly speaking, we can classify the industrial controllers into six categories according
to their control actions, namely three basic types of controllers. two-position (or on-off)
controllers, proportional controllers, integral controllers;, and three controllers with
combined actions. proportional-plus-integra controllers, proportional-plus-derivative
controllers and proportional-plus-integral -plus-derivative controllers ([22]). Here we will

make a brief introduction to the basic controllers.

Two-position or on-off controllers

In this type of controller system, the actuator has only two fixed positions. The output of
the controller u(t) is either a maximum or a minimum value, depending on the reference
input e(t). Such acontroller issimple and inexpensive. Takethe liquid level control system
as an example: since the output of the controller u(t) is either a maximum or a minimum
value, the qi(t) will also switch between its maximum or a minimum value, depending on
whether g(t) is positive (meaning the level is below the threshold), or negative (meaning
the level is above the threshold).

Proportional controllers
For a controller with proportional control action, the output of the controller u(t) is
proportional to the actuating error e(t). That is u(t) = K, * &(t), while K, is termed the

proportional gain. In this case, the difference of the actual liquid level and the expected

level isamplified and directly fed to the valve.

Integral controllers
In this controller system, the output of the controller u(t) is changed at a rate proportional
to the actuating error e(t). That isdu(t)/dt = K; * e(t), where K; is an adjustable constant. In

this case, when the value of e(t) is double, the value of u(t) will change twice as fast.

To study control systems we must model the dynamic system and analyze its dynamic
characteristics. Generally speaking, a mathematical model of a dynamic system is defined
as a set of differential equations that represents the dynamics of the system. Those
equations can be obtained by using physical laws governing the system, like Newton’'s law
for mechanical system or Kirchhoff’s law for electrical systems. Because, people may
have different perspective on the system, the mathematical model they use may not be
unique. Sometimes we may not find the absolutely correct mathematical model, but we
want it to be as accurate as possible. After analyzing these equations, we can get a better

understanding of the system behavior and thus optimize the control.

Take the liquid level control system as an example again. The interesting question is how
we can keep the liquid height at some constant level hy,. The simple on-off approach isto
set up two thresholds hy and hy, (hy = hy + € = hy, - € for some small value €) and check the
height regularly according to some inter-observation period. If the height is below the
level hy, then the controller changes g;i(t) to its maximum possible value and fill the tank to
the level hy and then stops the inflow (qgi(t) = 0). In that case, with the control signal
oscillating between on and off, qi(t) is forever oscillating between its maximum value and
0. Therefore the liquid height in the tank is also oscillating in a differential gap between h
and hp. Actualy the curve of the height follows one of two exponential curves, one

corresponding to the filling curve and the other to the emptying curve as show in the

65

Figure 13. This approach is referred as two-position or on-off control mentioned above.
And it isthe exact correspondence to the on-off approach used for admission control of the
web servers.
hit)
[

Differential

\ =l

hef NN
\ ES

a

Figure 13. Liquid level oscillating with on-off control (inspired by [22] and [23])

Is there any way we could stop this oscillation? Let us model the system using physical
principles. The equation governing the change in the liquid volumeis

rate of change of volume of liquid = inflow -outflow

That is

d(h(t)*A)/dt = qi(t) - qo(t) = A * dh(t)/dt =q(t) - h(t)/R

A is a constant cross-sectional area of the tank. The above equation has one first-order
derivative, dh/dt; so this system ismodeled by afirst-order differential equation.

Solving this equation, with the initial condition that if t = 0, h(t) = hy, and taking gi(t) as
some constant value, we can get h(t) as afunction of t and g;(t).

h(t) = G()*R + (hn- G(H*R) * €

If we want to keep the liquid height at constant value hy,, when the whole system isin a
stable state, which implies t—-o, we need to balance the following contrain.

hm = G(0)*R + (hm - G()*R) * O (t—o0, €4 0)

That leads to qi(t) = hy/R. So with the initial state that the liquid level isat hy, if we keep
theinflow at h,/R, theliquid level will remain constant. Thisis a so-called stable state that

optimizes the system control, and avoids the oscillation of the liquid level between hy and

66

h, which occurs when we use the threshold approach. This approach is referred to as
proportional control action ([22]), because the controlled inflow is proportiona to the
height hy, of the liquid in the tank. It also corresponds to the probabilistic approach that

can be used in our server admission control algorithm, aswe will see |ater.

The example given aboveisaway of analysis used extensively in many fields of industrial
control. Relating the theory of system control with our project, we want to know whether
it is possible that we could control the admission of the users visiting the web server in
such away that on one hand, there is no oscillation in the performance, and on the other,
the server is still providing a satisfactory response time to the users that are admitted. To
realize this, it is not appropriate to accept al users or rgject al users suddenly, but we
should be able to accept some percentage of users, so that the number of users accepted
would always be exactly what the system can handle. This is exactly the idea of the

proportional liquid level control.

We would like to note that we came up with the probabilistic approach used for web server
admission control before reviewing the theory of system control, such asdescribed in [22].
Only later, did we realize that similar ideas have been around in system control. And it is
true (as far as we know) that thisis the first time that such ideas have been used for web

server admission control. In that sense, our work is still independent and original.

In the next chapter, we will introduce the probabilistic admission control approach used

for the web servers.

67

5.4 Thetheoretical model of the oscillation of the number of usersin the system

To better understand the situation of the oscillation in the system, let us consider an ideal
theoretical model of the number of usersin the system. Since the arrivals of the new users
are considered to be independent, so they are the Poisson process. It iswell know that, for
Poisson process arrival events, the inter-arrival time should follow an exponential
distribution. After being accepted, the users will stay in the system and is served for some
period of time (the session time aso follows an exponential distribution), and then leave
the system. For simplification, we can consider that, in every time instant thereisacertain
percentage of users leaving the system. The more the users are in the system, the more the

users are about to leave. Thisis quite intuitive, and complied with the simulation outcome.

To start studying the model, we will use the following notations for convenience:

y: the number of usersin the system
r.: the arrival rate of the incoming users
pi: the rate of usersthat will leave the system

t: thetime

Since the change of number of users dy in some small time interval dt equals the number
of incoming users minus the number of leaving users, we can easily come up with the
following differential equation:

dy=ra*dt—-y*pdt or dy/dt=-y*p+r,

By solving the above differential equation, we get
v=tlpmtc® e_plt

Here c is some constant value, which can be computed from the initial conditions. In the

68

initial state, for t = 0, if there are yo usersin the system, that isy = yo, we get ¢ = yo-rdp.
Replacing c by yo -rd/p in the above equation, we get the following:

¥= fup (t:' = ra-'llpl + I:_')-FI:I - f.au'llpl,:'ﬂc E_plt

In the case that r,= 10 users/second, and p, = 0.01, and y, = 0, y = 1000* (1 — €®°). This

curveisshown in Figure 14:

1200

= 1000*1 — -001t
1000 - y t-e)

go0 |
500
sl f

200}

The nurnber of users in the system without adrission contral

1 1 1 1 1
0 200 400 600 800 1000 1200
Time in second (incoming rate = 10, leaving rate = 0.01)

Figure 14. Theoretical model of the number of userswhen it increases, fy(t)

As we can see from the above figure, when the system gets stable, or as t—<, y reaches

the value of 1000.

To compute the number of users leaving the system during the time interval of dt when
there are no users coming into the system, we can set r, = 0 in the above differential
eguation and get

dy =—y*p dt

By solving the above equation, we get

69

y = faoun(t) = Yo*e™' (with someinitia valuey, for the number of users)

Taking yo = 1000, and p; = 0.01 (the same value as above), the number of users in the

0.01t

systemisgiven by 1000*e ", as shown in Figure 15.

1200 | E

1000 - E

oo

=

=
T

o

[}

[
T

1000% 00T

e

=

=
T

[}

[}

[
T

The nurmber of users remaining in the system

] 200 400 GO0 800 1000 1200
Time T {incoming rate O, leaving rate 0.071, initial number 1000)

Figure 15. Theoretical model of the number of userswhen it decreases, fgoun(t)

Equipped with the above theoretical model, we now address the problem of the oscillation
of the number of users in the system using the abrupt cut-off algorithms. Suppose the
cut-off point is 450 in the number of users in the system, which means we reject all new
users when the number of usersin the system exceeds 450; and we further assume that the
inter-observation period T is very long, like 100 second; the other parameters are kept the
same as above, r,= 10, p= 0.01 etc. We start the admission control somewhere after the
system is getting stable (the number of users is approaching 1000). See the example in
Figure 16.

After the broker sees 1000 users in the system, it immediately cuts off all the incoming
new users. So in the next inter-observation period T, no user will come in and the system

follows the function fgown(t) (the solid line in the following figure). From the figure of the

70

of function fgwn(t), we can see within 100 second the number of users in the system can
drop from 1000 to around 360. That is 640 users will leave the system in 100 second. But
360 is below the cut-off point of 450, which again turns on the admission of new users
during the next inter-observation period, and the system follows the function of fy,(t) (the
dashed line in the following figure)... This kind of oscillation will go on forever with

these two functions switching back and forth.

mathematic model of oscillation
T T T

1200 F

Starting point of observation
1000

o

=)

[}
T

/

£

i

3

iy

=

=
T

[N}

[}

[
T

|
|
|
cut-off paint of 450 l f
|
|
|
|
|

\(;
|
|

Cscillation ofthe number of users in the systermn {in red)
[n3]
=
[mm]

|

|

|

|

1 1 1
] 200 400 B00 800 1000 1200
Time in second

o] 1 | |

Figure 16. Theoretical model of oscillation

To compute the amplitude of the oscillation, we need to know the change of the number of
usersin every inter-observation period. In our ideal theoretical model, when the oscillation
IS getting stable, the upper bound and the lower bound of the oscillation are expected to
reach their asymptotic limit. To get the value of the amplitude at this asymptotic limit, we
denote the amplitude of the oscillation as A, and suppose that the oscillation is varying
from L to A+L, where L is considered to be the lowest bound of the oscillation below the

given threshold.

In one timeinterval of T, the number of users will increase by the amplitude of A; that is

71

fup(T) —fup(0) =Aforyo =L ; that is

L- o)k (6PU T 1) =4

And then the number of userswill decrease from L+A to L inthe next timeinterval T.

-pr*T . .
foown(T) = L, s0 (ATL3*e" " =1 (hereygin function fewn(t) equals to the upper bound
L+A)

By solving the above two equations fup(T) — fup(0) = A and fgown (T) = L, we can compute
A; itisgivenin the following expression.

g
A =rdpr (1P Dyp1ae UL
and
L = tafpr* e PIT i(1+e _pI*T}
Taking the previous values for p; (0.01) r, (10), and T (100), we can compute A as 464,
which coincides with what is shown in the above figure! But this formula depends on one
assumption, that is, the decreasing and increasing of number of users should alternate

between adjacent observation intervals. However, this depends on the threshold chosen

and is not true for very high and low thresholds, as discussed below.

. -p1*T. -pr*T
Notice that when T—eo, (1-e+ W1+ ™5y 1 o9 A r/p and L =0;onthe

i —pl*T ‘P'I*T .

other hand, when T—0,, t1-¢ M(1lte) —0,s0A - 0and L = 0.5*r/p. Notice
A only dependson T, r,, pi and does not depend on the starting point of the observation. In
the following, we show an example of starting observation at the time point of 50s. Aswe

can see, the amplitude does not change too much.

72

mathematic model of ascillaton (start at 50s)

1200 E

ohservation point

w
=
=
i
_=
@
& 1000+ e
£ L~
=
oy
=
& a0t (1
2 / /
= /
5 Jirai e
5 BOOF |/ |\ [Iy 1
- i 4] . JI’I \ cut off point of 450
2 o} A \ i ! .
S i I |
=
=
= 2t .
£
=
o
'] 0 1 1 1 1 1
i 200 400 B0 800 1000 1200

Tirme in second

Figure 17. Theoretical model of oscillation (start at 505)

Now we start to check how the choice of threshold may effect the oscillations. In the
following figures, we show the oscillations when the threshold is 200 and 800,
respectively.

The effect of threshold to the oscillation

1200 1

[

=

=)
T

= R
L
2 d
£ 80t i
A
z
2 GO0 E
& H } /
5 ; ! /
2 H
g 400t .
= ! ; ;
o \ \E_; cut-oft pomt
0 : L
0 200 400 £00 g00 1000 1200

Tine m second (ncorming rate 10, leaving rate 0.01)

Figure18. Theeffect of thethreshold to the oscillation (low threshold)

73

The effect of thresheld to the oscillation

1200 1

[

=

=)
T

//

200 cut-off point

B00 - 1

number of users m the system

aonf i / -

200} -

1
0 200 400 GO0 800 1000 1200
Time m second (incormng rate 10, leaving rate 0.01)

Figure19. The effect of the threshold to the oscillation (high threshold)

The above figures show that when the threshold is chosen to be quite low, like 200, the
system needs more time (twice as long as the inter-observation time) to serve users before
the number of users drops below the threshold. On the opposite, when it is chosen to be
quite high, like 800, then the system needs more time to let new users coming into the
system before the threshold is exceeded. In both case, the period of the oscillation
becomes 3T. Notice that the period of the oscillation can be even longer (4T, 5T...) if we
choose even higher/lower thresholds. The amplitude also becomes larger as the period

increases.

74

6. Probabilistic approach of admission control

In this chapter, we introduce a probabilistic admission control for the web servers. We start
with the study of the theoretical model of the probabilistic admission control and prove
that it has the advantage over the on-off approach used before. And then the simulation

results are presented and discussed.

6.1 Probabilistic admission control

Before we introduce the probabilistic approach, we would like to clarify onething. That is
when to use the number of users and when to use the response time as a criterion for
admission. From the previous chapter, we know that there is a relationship between the
number of users and the response time. This relationship also depends on the speed of the
server. Thefaster the server is, the lesstime is needed to serve each user and vice versa. So
there is no point of using the number of users in the system to control the admission in
reality. The number of users suitable for afaster server would be far too much for a slower
one. Using the number of users in the system for the admission control will apparently
impair the scalability and undermine all the effect we made. But on the other hand, due to
the convenience of making a theoretical model of system oscillations using the number of
users, we sometimes have to use it in order to get a good understanding of the subject
under investigation. So in this thesis, although we use the number of users in our
theoretical model to determine whether or not to accept a new user, in reality, we use the
average response time as an important index to control the admission. In this way, the
algorithm does not have to care about the speed of the server, thus it can be implemented

in ageneral environment without the knowledge of the capacity of each specific server.

75

In our probabilistic approach, to avoid system oscillation, each user no longer gets a
yes/no answer; instead they are admitted by some probability. And this probability Pis a
function of the current response time r of the server. In this thesis, we assume that the

function Pis a piecewise linear one, like:
1{ifr=a)

Porvilt)= r-ai(b-a)(ifa<r=h)
0(ifr=b)
where a and b are two constants which indicate at which response time to start partial

rgjection and at which response time all users will be rejected, respectively.

The following figure shows this function, for a= 1.2sand b = 3.6s.

Probahility
=

start end

0 1.2 36
Response time

Figure 20. Probability function

With this function, we start to reject user requests when the response time exceeds 1.2
seconds. The longer the responsetimeiis, the less likely the user requests will be accepted.
When it exceeds 3.6 seconds no requests can be admitted anymore. Notice that the
probability function is not limited to a linear function, it could also be exponential or of

any other forms. The administrator could adjust it depending on the specia needs.

The broker checks the current average response time of the serversin its domain. When a

client request comes, the broker picks up one server according to some criterion (like LAS,

76

LU in[4]), and then it calcul ates an acceptance probability from the current response time.

Using this probability, the broker randomly grants or rejects the request.

The advantage of this approach over the previous on-off decision approach is that we can
reject or accept user gradually rather than abruptly. By using this probabilistic admission
control algorithm and choosing proper inter-observation time, we hope to avoid the

oscillation in the system, as we will discuss later.

6.2 The study of the theoretical model of the probabilistic approach

Now we further on discuss the theoretical model of Section 5.4 where we now use the
probabilistic approach to determine whether to accept users or not. Here, we again use the
number of users (rather than the response time) to make admission decisions, since by
using the number of users we can easily derive the mathematic formula of the workload.
Besides, we aready know the relationship between the response time and the number of
users; it is not very difficult to trandate the number of users into the response time of the

system.

We use the same notations in Chapter 5. The only difference is that here we use a linear
probability function P = (b-y)/(b-a) to control the admission. Herey isthe number of users
in the system, a and b are the integers indicating when to start rejection and when Pis 0,
respectively; aso notice that wheny > b, P=0, and wheny < a, P= 1. To make sense, a
and b should be smaller than the number of users the system can reach without admission

control, namely ry/p; , sowehaveO<a<b<ryp .

7

Again we start with the following differential equation:

dy =ry* P*dt—y *p dt for ye [ab] @
dy=—y*p dt for y>b @
dy =ra*dt—y *p dt for a>y ©)

It isclear that the solutionsfor @ and @ are fgown(t) and fyp(t) respectively, as mentioned in

the Chapter 5. By solving the differential equations @, we get

v =b¥*r,fr, + p*b-a)) +c * E"ira + pr¥*ib-an*ti(b-a)

Here c is some constant value, which can be determined from the initial value of the

equation. Theinitial stateis at the time point wherey = a; becausey € [a, b] in ©. From

thisinitial state, we can get © = @-D*ra/ratpr(b-a))) / (1-a*pyy) /PO T 1)

Since P< 1 wheny isintherange|a, b], we conclude that with the number of userswithin
the range [a, b], the speed of the increase of the number of user with the probabilistic

approach is slower than with the on-off approach.

From the solution of the differential equation ®, whent — « , the second termin 'y will
vanish, thus ygane = b*rd/(ra+ pi * (b-a)). We call this a stable point, it can also be
computed based on the fact that when a stable situation is reached, the number of
incoming users equals the number of usersleaving (ra* P=y*p, where P= (b-y)/(b-a)). In
the ideal model, the oscillation of the number of users will not go on forever, it will finally
become stable at this point. It is not difficult to proof that if p < r,, then a< ygape <b. That
isthe stable point is somewhere between aand b, not necessary in the middle, (a+b)/2. The
stable point is drifting between a and b depending on the workload. If the workload is
really high, or rdp; — oo, then y«anie = b; the stable point will be at point b.

78

The above equation is based on the very ideal condition, where we assume that we can
check the system performance at any point in time. But in the real system, it isnot possible
to do so; the broker checks performance data only periodicaly. If at a given point, the
broker computes the probability as P, then in the next time interval, P has to be used
without change. Here, we take P as a variable dependent on the number of usersy at the

last observation time point.

Again by solving the differential equation:
dy =ry* P*dt—y *p dt
we get the number of users

¥ = P*rp+ (Yo - P¥ryp) * o PI
Although observations are made only at the observation time points, the probabilistic
approach will be able to suppress the oscillation, and stabilize it at the stable point. In the
following figure, we show an example generated with Matlab, which shows that the
oscillation is dampening out within several inter-observation time periods, and finally

stays at the stable point ygaple-

In this example, we choose the same setting asin Section 5.4 (r,= 10, py = 0.01), a= 200, b
= 800. We apply the probabilistic admission control after 200 seconds. Asit is show in the
figure, within 10 inter-observation time periods, the oscillation is totally wiped out and the

system reaches the stable point ygapie = b*ry/(ra+ p * (b-a)) = 500.

79

The oscillation stops at the stable point with P200, 280073

1200 - ']
T
= 1000
Al - [
4 / ul
)
5 so0f i
b
£,
4 800 \\
E sﬁ;ble point « / N - P
7 -
2 4oap ' -
o 4
i :
e i
E zo0f .
e

0
0 200 400 B0 B0 1000 1200

Time in second

Figure2l. Theoscillation gets stable at the stable point

We note that the length of the inter-observation time has to be chosen short enough such
that the oscillation of the number of users will not go beyond the limits a and b. With a
long inter-observation time period, the oscillation may go beyond the range of aand b, and
the oscillation is unavoidable in this case. This happens if the observed number of users
aternates between a value above b and a value below a, thus leading to alternate

probabilities equal to 0 and 1.

Let us study the effect of oscillation on the following figure. Thisis a figure showing the

relationship between the response time and the number of users in the system, which has

been discussed in Chapter 4.

80

response time

4 -
354
3_
Ez.j-__________
-
E stable point |
5-1.5- |
1 |
0.5 1 stable point d_,a-‘:_,//| |a |b
0 e[| T : : .

b
m 20 30 40 30 40 W0 30 %0 10|

numher of users

Figure22. Thestable point on theresponsetime curve

If we choose the a and b as 300 and 550, respectively, the number of usersin the system
will oscillate from 300 to 550, and finally it will become stable at the stable point ygapie =
440 (taking pi=0.01,r;=10 without loss of generality). From the curve of the response time,
440 users correspond to the response time of around 0.25 seconds. We represent this stable
point on the curve as an asterisk in the above figure. Consider if we use the on-off
approach, then the number of users will forever oscillate between 300 and 550, and the
average number of users will be around 425, which corresponds to the response time
around 0.5 second (represented by a period in the figure). This is exactly where the
improvement of our probabilistic approach is. It reduced the response time from 0.5s

(on-off approach) to 0.25s (with probabilistic approach).

Take alook at another example where we have (a, b) = (600, 800). In this case, Ygapie= 667;
we would expect that the stable point corresponds to the response time of 1.6s (represented
by a asterisk in the figure). And there is not too much improvement compared with the

on-off approach, because in this range the curve is strait. We note that in this case (with the

81

larger values of aand b), the response time already exceeds 1.3slimit, the server is already
fully loaded (server utilization equal 1), and there is no point in choosing such a large
value for a and b. We conclude that, by avoiding oscillations, the probabilistic approach
provides better average response time within the critical operating point when the load is

close to 100%.

Needless to say, since we have proved that the stable point exists in the ideal theoretical
model. In the redlistic world, we would like to use the probabilistic approach, so that the

stable condition can be reached, and thus oscillations can be avoided.

6.3 Simulation Result

In this section, we present the simulation experiments we have done, and their results.

6.3.1 The evaluation of different probability functions

To study the gradual probability approach for controlling the admission of new users, thus
controlling the response time and server utilization of the system, we first study the
behavior of different probability functions over asingle group of users, and for avariety of
user arrival rates, which is expressed by the mean inter-arrival time between users. The
probability to accept users is a function P, (r) of the response time r, as defined in

Section 6.1.

The values a and b indicate the measured response time where the broker starts to reject

users, and where no user can be accepted (or P = 0), respectively. In the following

82

simulation test, we use 3 different probability functions Po1 25(r), Po7, 1.9(r) and Py 1.3(r),
shown in the following figure. For the purpose of comparison, we aso give one extreme
case, where there is no admission control at all, which means P is aways equals to 1.
Notice that function Py 3 13(r) is exactly the on-off decision approach, which was used in
Salem’s paper [1]. By doing asimulation, we can get the average server response time, the
server utilization, and acceptance percentage for different probability functions, and we

hope to find out which probability function has advantages over the others.
N PiResponse time)

Un1 0713 19 25
Response time

Probability

Figure23. Probability functions

The following chart shows the simulation result for the mean response time with different
admission control functions. The results are plotted against the inter-arrival time, for an

inter-observation time that equals 10 seconds.

83

R(IAT)

4 -
35 4 :
/ —e— response time
3 without control
25 4 —— response time
withP0.12.5

response time
15 1 2 with P 0.7 1.9
1 4 response time
05 with P 1.3 1.3
: A
PSS =

151311090.7050301

average response time
N

inter-arrival time

Figure24. Averageresponsetime using different probability functions

Notice that somewhere for an inter-arrival time near 0.2s, the three lines with access
control meet at a point where the response time equals 1.3s. It is no surprise to us, since
this corresponds to the intersection of 3 lines in the figure of the probability functions. In
other words, this intersection is caused by the fact that when the average response time
equals 1.3s, all three probabilistic functions produce the same probability value - 50%. We
can see that for inter-arrival times larger than 0.2s, the average response time is less than
1.3s (for all 3 probability functions), while the probability functions Py 7, 1.9(r) and P13, 1.3(f)
reject less users than the function Py 1 25(r), thus resulting in a higher average response
time. Following the same reasoning, we can explain why for inter-arrival times less than

0.2s, the response time for the first two functions is less than the function Py 1, 25(r).

Near the point of 0.8s, there is a sudden increase of response time for the probability
functions Py 7, 1.9(r) and P13, 1.3(r), while the response time for probability function Py 25(r)
grows smoothly. This is because the first two probability functions are less gradual, and

they start to rgject users only when the response time approaches 1 second; so in the point

around 0.8s they do not effectively reject users, resulting in a sharp increase in the
response time, which actually corresponding to the situation without admission control.
We can also see that the performance without admission control isreally bad; the response

time will grow very large, providing intolerable QoS.

In the above test, we use the inter-observation time of 10 seconds. To understand the effect
of different inter-observation times on the average response time, we have done the same
simulations with different inter-observation times, namely for 10, 60, and 100 seconds. We

show the resulting response times in the following figures:

P0.125
2
) Al —e— inter-observation
g 15 time 100
o —— inter-observation
2] 1 i y '
§_ / time 60
8 05 - " inter-observation
/"/n/ time 10

olrn-—nn-
15 1.3 1.1 0.9 0.7 0.5 0.3 0.1

inter-arrival time

@
P0.71.9
1.6
ry
® i: f —&— inter-observation
e~ , time 100
= 1
b —B— inter-observation
c 08 ' time 60
2 06
3 0.4 | inter-observation
02 | time 10
ol n r
1513 11 09 0.7 05 03 0.1
inter-arrival time
(b)

85

response time

1.6

P1313

14

12

0.8 -
0.6 -
0.4 -
0.2 -

A

A A Al

1513 11 09 0.7 05 03 0.1

inter-arrival time

—e— inter-observation
time 100

—@— inter-observation
time 60

inter-observation
time 10

(©)

Figure 25. The average response time for different probability functions when the inter-observation

time equals 10, 60, 100 seconds, respectively

We go on checking the number of usersin the system with different inter-observation time.

nunber of users

800

P0.125

700
600
500

J/V A
/L‘/L‘/'

JY

400
300

200
100

1.51.31.1090.7050.30.1
inter-arrival tinme

—&—inter-
observati on
tine 100

——inter-
observati on
tinme 60
inter-
observati on
tine 10

(@)

86

P07 1.9
700 Y
«» 600 1 vl 7| [—e—inter-
§ 500 - /"/"/ obser vat i on
- 400 e tinme 100
o 300 { Y W—inter-
o I observati on
€ 200 tine 60
c
100 inter-
0 ‘ ‘ ‘ ‘ ‘ ‘ . observati on
1.51.31.10.90.70.50.30.1 tine 10
inter-arrival tinme
(b)
P 1.3 1.3
»n 700
E 600 ‘A':';'d —o—inter-
S 500 y observati on
— tine 100
= 400 i _
= 3007" r B—inter-
© 200 observati on
'g 100 - tine 60
S 0 e e inter-
w M A o~ W oM o observation
4 4 4 0o o o o o tine 10
inter-arrival time
(©)

Figure 26. The average number of users for different probability functions when inter-observation

time equals 10, 60, 100 seconds respectively

By doing the same simulation for various inter-observation time intervals, we find that for
different inter-observation time periods, with more gradual probability functions, Po 1, 25(r)
and P o7 19(r), there is not much change in both their response time and the average
number of the usersin the system. But for the abrupt probability functions, P13 1.3(r), with
the increase of the inter-observation time, athough the response time does not
substantially changed, the average number of users is dropping. This means that the
average service time for each user is increased. Therefore here we can conclude that the

length of the inter-observation time does not have a significant effect on the performance

87

of a more gradual probability function; but it does deteriorate the performance for the

abrupt probability functions.

In the following chart, we show the utilization of the server with and without the gradual

probabilistic control, plotted against the inter-arrival time, for an inter-observation time

equals 10s.
U(IAT)
1.2
1 —e— utilization without
=" control
0.8 4 = | _=— uilization with P
g -/ .
2 p= 0.125
< 0.6 - / o)
= j utilization with P
5041 0.71.9
utilization with P
0.2 1313
15131109 07 05 030.1
inter-arrival time

Figure27. Server Utilization

Here we notice that in the range of inter-arrival times between 1.1 and 0.4, the server
utilization with the probability function Pg; 25(r), is alittle bit lower than the utilization
with the other two probability functions. This can be explained as follows: from the above
Figure 24, for the inter-arrival times 1.1s~0.4s, the response time of the server is below
1.3s for all the probability functions; and within that range ([Os, 1.39]), the probability
function Pg 1, 25(r) rejects more users than the other two probability functions. This results

initsalower utilization.

We can also plot the server utilization against the response time and get the following

figure; these lines are very much similar.

88

utilization vs. response time
1.2
1] —e&— utilization without
- _ "M control
o Nt ! . . .
= 0.8 4 r¢& —— utilization with P
N 0.125
= 0.6 o)
> utilization with P
2 04 0.71.9
2 00 utilization with P
: 1.31.3
02 04 06 08 1 12 14 16
response time

Figure28. The utilization asa function of response time for different probabilistic functions

The following figure shows the average acceptance probability of the server with gradual

probabilistic control, plotted against the inter-arrival time, for an inter-observation time

equals 10s.
acceptance percentage (IAT)
1.2 —&— % of acceptance

& 1 on ave without
8 1 PP ——%——0—¢
< control
g 0.8 1 —m— % of acceptance P
2 : 0.125
® 0.6 - -\
g \
‘% 04 1 u % of acceptance P
3] 0.71.9
o 0.2
IS

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ % of acceptance P

15 1.3 1.1 09 0.7 05 03 0.1 1313
inter-arrival time

Figure29. Acceptance percentage

89

We see that the curves representing the acceptance percentage using the probability
function Py 7, 1.9(r) and Py 3 1.3(r) are alittle bit higher than the percentage of the acceptance
for the probability function Py 25(r). The reason for this is that for the large range of
inter-arrival times, all the functions can give an average response time lower than 1.3s, in
which range the probability function Py 25(r) will produce a smaller probability value

than the other two probability functions.

6.3.2 The effect of different probability functions on the oscillations

To reveal the effect of different probability functions on the oscillation of the number of
users in the system, we further check the amplitude and period of the oscillation for
various inter-observation times. In this simulation we set the user inter-arrival time to 0.1s
and the inter-observation time equals 100s, the probability functions are Py 1. 25(r), Po7, 1.9(r)

and P 3 1.3(r) respectively. And we show the simulation result as follows:

0
=
[}

i}
=
[}

]
=
[}

(a3}
=
[}

MNurnber of users in the system
=) (48] £ [ay]
[= =)
[am] [am] [am] [am]

=
[}

D 1 1 1 1 1 1
[IR:] 09 1 1.1 1.2 1.3 1.4 14
Time in second (inter-observation time = 100, P 0.1, 2.5) 7 1D4

(@)

90

800 ‘1
700+
=
8
£ BO0 |
@
L)
=
= 500
w
o
£ 400
5
2 300f
£
=
=
200+
100 -
D 1 1 1 1 1 Il
0.8 08 1 1.1 12 1.3 1.4 14
Time in second (inter-observation time = 100, PO.7, 1.9) « 10"
(b)
800
800
700
E
g
£, 600
)
o
=
c 500
)
o
£ 400
b=
2 300}
=
=
=
200
100
D 1 1 1 1 Il 1
08 049 1 1.1 12 1.3 1.4 15
Time in second (inter-observation time = 100, P 1.3, 1.3) T
(©)

Figure 30. The effect of different probability functions on the oscillation of the number of users

The figures above show that, as the curve of the probability function gets steeper, the
oscillation of the number of usersin the system increases. The amplitude of the oscillation

isincreased from 240 (for Po 1, 25(r)) to 800 (for P13 1.3(r)).

To measure the period of the oscillation, we used the technical computing tool MATLAB
(see appendix) to analyze frequency of the oscillations. After applying the FFT (Fast

91

Fourier transform) algorithm on a large number of sample points, we get the frequency
power spectrum of the signal, and the frequency of the curve is the frequency where the
power spectrum gets its highest value. Other spikes in the chart can be considered as
harmonics and noise, and the noise part can be smoothed out as we include more and more
sample data into the calculation. After applying the FFT (fast Fourier transform) to the
above sample points for the probability function P13 13(r), we can get the frequency

power spectra, as shown in the following figure.

25

Power

0ar B

. u.“Amm

0 . .
0 0001 0002 0003 0.004 0005 0006 0007 0008 0009 001
freq(Hz) (inter-obseration time = 1005, P 1.31.3)

Figure 31. The power spectrums of oscillation of the number of users
The frequency where the power spectrum gets its highest value is 0.003497 in this
example, so the period equals 285.98 (the inverse of the frequency).

In the following simulations, we measured the amplitude, standard deviation, mean,
frequency and the period of the number of users in the system for different probability
functions with different inter-observation times (60s, 40s, 20s, 10s, and 5s), when the

inter-arrival time equals 0.1s, and list the simulation result in the following table:

92

inter-observation time = 100s
prabability function used
PO125

FOY159

F1313

inter-ohservation time = B0s
prabability function used
FO125

FO719

P1313

inter-obsereation time = 40z
probability function used
PO125

FO7 159

F1313

inter-obsereation time = 20s
prabability function used
PO125

PO719

P1313

inter-ohservation tirme = 10s
prabability function used
FO125

PO7 19

P1313

inter-obsereation time = s
probability function used
FO125

FO719

F1313

amplitude
240
560
g0

amplitude
200
350
A00

amplitude
200
3aa
450

amplitude
150
200
400

amplitude
120
150
320

amplitude
a7

140

220

standard deviation mean period frequency
523 671 328.3 0.00305
1934 KEO& 292 0.00342

208.33) 578 28595 0.003457

standard deviation mean period frequency
459 B3 2499 0.004
78.86 BAY 2184 0.004575

117 B35 177 .95 0.00562

standard deviation mean period frequency
44,32 B4 22996 0.00435
78.09 Bd6 130.07 0.0077
115.53 B27 135.5 0.0074

standard deviation 'mean period frequency
41.02) BY4 undetectable undetectable
A4.BZ BSY 109 67 0.00912
g33.2¢ B43 10577 0.00345

standard deviation 'mean period frequency
376 B78 undetectable undetectable
45 3 B5.7 undetectable undetectable
768 Ba0 100 0.m

standard deviation mean period frequency
35.1 BYE undetectable undetectable
413 BB4 undetectable undetectable
B3.7 BED undetectable undetectable

Table 2. Oscillations of the number of usersin the system

We can see from the above table, for a given inter-observation time period, the more

gradual the probability functions are (like P o1, 25(r)), the lower the frequency and the

longer the period the oscillation will have. A more gradual probability function also leads

to asmaller standard deviation, that is, aless severe oscillation. This means the oscillation

is somewhat dampened out by using a gradual probability function.

Besides, for a given probability function, the period and the amplitude of the oscillation

93

depend on the inter-observation time. The longer the inter-observation time, the larger is
the amplitude and the longer the period. As the inter-observation time decreases, the
standard deviation also decreases. This is quite consistent with the decreasing of the
amplitude in the second column in the above table. But the mean increases, which implies

increased server utilization.

When the inter-observation time decreased to acertain value (like 20 secondsfor Pg 1, 25(r),
10 seconds for Pz, 19(r), and 5 seconds for P13 13(r)) there is no perceivable period
anymore; the whole curve looks just like statistical noise. We call this value a “stable
value” for inter-observation time. If the inter-observation time is chosen to be this “stable
value’, the oscillation would not show any regular period anymore and we can only
observe statistical fluctuations of the number of users, thus the oscillation is considered to
be avoided. This “stable value” depends on the specific probability function, the more
gradual the probability function is, and the larger the stable value will be. An
inter-observation time smaller than the “stable value” will surely also rule out the
oscillation, but the server has to notify its current response time to the broker so frequently
that the broker may become the bottleneck if there are many servers involved. There is
always the trade-off between how well the oscillation can be coped with and how much
time the broker has to spend in correcting the performance data from the servers. It hardly

seems worthwhile using very small inter-observation timesin readlity.

The figure below shows the oscillation of the number of users (left side) and its power
spectrum after the application of the fast Fourier transform (right side) for the probability
function Poz 19(r) when user inter-arrival time is 0.1 second. As we can see, when the
inter-observation time decreased to 10s there is no perceived period anymore; the whole

curve looks just like statistical noise.

94

1000

number of users in the system
N W o= O @
=2 =2 =2 = =
5 8 8 8 8

=]
=]

({inter-ohservation time = 100s)

315

32

g45 23 33 34 345 35
Time in second +

(@)

950

850

750

E50

550

nurnber of users in the systam

450

350

{inter-observation time = B0s)

L
4.4

I
4.45

L L
45 455 46 465 47 475
Time in secand w10t

(©

950

850

~
fii}
=]

i
o
=]

nurnber of users in the system
o
&
=]

450

350

{inter-ohservation time = 40s)

32

L
3.2

. L .
e 3.35 34 3.45 el
Tire in second w10t

(€)

(b)

(d)

(f)

Power

Pawer

|

0002

0.004 0.006 0.008

freq (Hz) 100s

0.01

0012

w10

0.005

L Al

L
001 0.0s
freg(Hz) 60s

0.02

0.025

0.005

0.01 0.015
freq{Hz) 40s

0.02

0.025

95

o
=1
=]

{inter-ohservation time = 205)

@
o=
=]

.

n

5
2 7e0)
3
e 2r
= 700
£
= 5
é G0 E15
5
£ et hl
=
=
50 |
ol 05t
280 : . : ‘ sl
g . ‘
8l 82 T3 2 da.a 9 34 o 0.005] 0.015 0.0z 0.025 003
Ime In gecan %10 fl’Eq(HZ) s
750 1 T T T T T T T] . 1D4
(inter-ohsenation time = 10s) 8
740
71
720
:
@ 700 Br
3
£ Ban 5
S
£ 60 2,
e 2
=1 o
5 G40
5 3
2
£ 620 1
E
= 2
600 |
580 | 1 1
560 | L L L L | L - 0 ikl . L L L
9200 9400 9600 9800 10000 10200 10400 10500 0 0o 002 003 004 005 006 007 008 009
Time in second fregq(Hz) 108
(i) ()

Figure 32. The oscillation of the number of usersand its power spectrum

To conclude, as the above results show, the less steep probability function works better
than a steeper one, in terms of its smooth control over the number of user in the system.
With agradual probability function, the oscillation will have smaller amplitude at the price
of starting to reject users earlier. For the same inter-observation time, the on-off decision
approach isreally the worst, since it contributes more to the unstabl e performance, and the
response time can sometimes go very high (e.g. when inter-observation time equal 100
second, for Py313(r), as the user number varies between 200 to 1000, the response time
varies from 0.1s to 3.5s, while under the same conditions, but for the gradual probability

function Po1.25(r), the number of users varies from 550 to 800, which corresponds to a

96

response time between 0.8sto 2.4s).

6.3.3 Putting an upper limit to the server selection algorithm

From the previous sections, since we already know that there is some kind of relationship
between the number of users admitted to the system and the response time, we wish to
know whether putting an upper limit to the number of users that can be admitted would do

any good for the system response time.

In the following simulation experiment, we still use the probability function Py 7 19(r), the
inter-observation time set to be 20 seconds and we al so set up an upper limit of the number
of users as 620. That means whenever the number of usersin the system exceeds 620, we
will reect all the newcomers. We know that when 620 users are in the system, the
response time should reach around 1.3s (R(620) = 1.3s). In the first test, we set the user
inter-arrival time as 0.1s; we get the test result in Figure 33. As expected, the average
response time of the system is exactly around 1.3s; the number of users in the system is
strictly below 620. Compare it with the simulation result without an upper user limit
(Figure 34), other settings being the same; the oscillation of the system with the upper

limit is much better than that without any upper limit check.

97

16
[zu] J

14

5 =00]

z, 1.2

b3

M o

= 400 £

=

» 3

B 5

S ao0r 508

5 2

2 05

§ 200+
0.4

mor sl
i) L I L I L I I I I 0 L L L L L L I L L
0 02 04 0B 08 1 12 14 1B 18 2 0 02 04 08 08 1 2014 1B 18
Time in second (inter-arfival time = 015, user imit =620) ;5 Time in second (inter-arrival time = 0.1s, user limit = 620) ¢
(@ (b)

Figure 33. The controlled oscillation with the user limit of 620

860 20
750l 18
16 ‘

£ B50 ”
3
% | 14
o 550 o
E =1
o 450 i
& g 1
= o
S a0t =
% 08
E]
= 2601 06

160 F 04

50 L L L L L L L L L 02 L L L L L

il 02 04 0B 08 1 12 14 16 18 2 0 02 04 0B 08 1 12 14 1B 18 2
Time in second (inter-arrival time = 0.1s, no user limit) T Time in second (inter-arrival time = 0.1s, no user limit) w10
@ (b)

Figure 34. The oscillation without user limit

When we set the user inter-arrival time as 0.4s, which is alower incoming rate than 0.15s,
we get the following simulation result (Figure 35). The oscillation of the number of users
and the response time become more severe than that when inter-arrival time equals 0.1s.
Obvioudly, thisis because, with 0.4s inter-arrival time, the load is not high enough so that
the upper limit of 620 can hardly be reached, therefore, this upper limit has aimost no
effect on oscillation avoidance. But in this case, the oscillation is really not a big issue as

long as the response timeis still low.

98

o
@

nurnber of users in the system
response time
o
=2

<}
=}
=]
o
=

=]
=]
o
b

=]

\ \ L . . . L L
o 0.5 1 18 2 25 0.5 1 15 2 25
Time in second (inter-artival time = 0.4, user limit = 620) «10° Time in second (inter-arrival time = 0.4, user limit =620) T

(@ (b)

Figure 35. The controlled oscillation when the user incoming rateislow

o

The conclusion here is that the upper limitation of the number of usersin the system has
the effect of preventing oscillation only when the working load approaches or exceeds the
upper limit. Below that level, although the oscillation isinevitable, the mean response time

is still tolerable.

99

7. Probabilistic approach used on differentiated classes of users

In the previous chapter, we studied the effect of probabilistic admission control on asingle
group of users. In this chapter, we will study the probabilistic approach used on two
groups of users, where one group has a priority over the other. In this situation, we reject
the users from the lower priority group while still providing satisfactory QoS to the users
from higher priority group when the load is high. By doing this, we realize differentiated

services for different user groups.

7.1 Using different probability functionsfor each of the user groups

To study the performance of our probabilistic approach for two differentiated user groups,
user group A with higher priority and user group B with lower priority, we decide to use
two different probability functions for each of these user groups, as defined in Section 6.1.
User A: P05, 155(r)

User B: Po,55, 1,05(I')
We compare this probabilistic approach with the abrupt on-off approach using two

different thresholds for the two user groups (0.8s for group B and 1.3s for group A). We
show these probability functionsin the Figure 36

100

Probability functions for group A and group B

\

1
*, I
- N
z A
= y | group A,
= s \{\ ———— group B
o
0.4 4 I,
Ly

I:I T T T T T T T

0 01020304050607 2,09 1 1112153141516 17
response time

Figure 36. The probability function used for two groups of users

Since group A are the users with higher priority, also called “€elite group”, they should have
access priority over group B users. Therefore we start to reject usersin group A only after
the response time exceeds 1.05s, at which moment all requests from usersin group B have
already been turned down (that is P = 0 for user group B). Group B is the lower priority
user group; it is the first one to be deprived of the right to access the servers. We start to
reject group B users when the response time exceeds 0.55s. By the time the response time

exceeds 1.05s, no user from group B will be accepted anymore.

The abrupt threshold algorithm is simpler. User in group B will be rejected if the response
time exceeds 0.8s; users from all user groups will be rejected when the response time

exceeds 1.3s.

We test the user acceptance probability over a variety of customer arrival rates (for the
customer inter-arrival time ranging from 0.7s to 0.05s, and among them, half come from

group A and half comes from group B). In this setting we use the inter-observation time

101

10sto reduce the oscillations and the result is shown in Figure 37. (We use the notation Pa

b c d to represent two probability function approach with probability functions P,y and

I:)b,c)

Percentage of users accepted

- —e—P0551.051.05155A
g —m—P0551.051.051558B
§ P0.80.81313A
E P0.80.81313B

inter-arrival time

Figure37. Percentage of usersaccepted

This probabilistic approach exhibits a clear the privilege for A-users over B-usersin terms
of the acceptance percentage. While both group enjoy the same response time provided by
the system, the probability of accepting A-users is substantially higher than for B-users,
especially for higher user arrival rates. For the abrupt on-off switch algorithm, the priority
of A-users over B-users is not so clearly identifiable compared with the probabilistic
approach. This is surely because the on-off switch algorithm does not suppress the
oscillation of the response time very well, which undermines the differentiation between

the two groups of users.

We have done the same simulation for various inter-observation times (10s, 60s, 100s) for

102

both approaches as shown in Figure 38 and 39; we find that with shorter inter-observation

period, the priority of the A-usersis more distinguishable. This is expected, since shorter

inter-observation period means smaller oscillations.

Percentage of acceptar

Probabilistic P 0.55 1.05 1.05 1.55

—e— A inter-observation time

10s

—m— B inter-observation time
10s

A inter-observation time

60s

B inter-observation time
60s

—¥— A inter-observation time
100s

—e— B inter-observation time
100s

inter-arrival time

Figure 38. Percentage of users accepted of probabilistic approach for different

inter-observation

time
Abrupt rejection P0.80.81.3 1.3
1.2
T —e— A inter-observation time
5 i
% 10s
8 08 —m— B inter-observation time
_‘E 10s
3 0.6 X A inter-observation time
& 60s
§ 04 4 B inter-observation time
5] 60s
& 02 _ o
—%— A inter-observation time
0 T T T T T T lOOS
—e— B inter-observation time
S ° oF & oF 100s
inter-arrival time

Figure39. Percentage of usersaccepted of on-off approach for different inter-observation time

103

7.2 Using one combined probability function for several user groups

In the previous section, we used different probability function for each user group. With
that approach, the system administrator should deliberately choose one probability
function for each user group, and we do not have an idea of the overall performance of the
system. Take the example of the previous section, even with the given probability function,
and known combined rate of incoming users, it is still impossible to tell what the response
time the system will be, because the response time also depends on the incoming rates of
each of the user groups. In this section we introduce another approach to gradually reject
users from different groups using only one probability function, while still keeping the
priority of the “elite” user group. With a single probability function, one can get easily the

idea about the overall admission control of the system.

The principle of using a single combined probability function is as follows. First, we
compute the probability value P of accepting incoming users (for all classes) from the
current response time according to some given probability function (the so-called
combined probability function). In this step we do not distinguish between different user
classes. Then with the knowledge of the relative incoming rates for the different user
classes, we compute the probability of accepting a user from each of the groups. Because
there is no way to know in advance the incoming rate of each of the classes in the next
inter-observation period, we use the incoming rate measured during the previous
inter-observation period as an approximation for the next one. This means that we make an
assumption that the user’s incoming rates for different groups do not change frequently,

which isanormal situation for most web services.

Just like in the previous section, we consider here the problem of provide differentiated

104

service to two groups of users, namely group A with higher priority and group B with

lower priority. To formally describe the algorithm, we use some notations as follows:

NA = the number of users from group A in the next observation time interval, (an

estimation over the previous record)

NB = the number of users from group B in the next observation time interval, (an

estimation over the previous record)

Pai = the total probability of accepting users, computed from the probability function P,
b(r), that is Pa = Pa b(r)

Pa = probability to accept usersin classA

Ps = probability to accept usersin class B

Since the total number of users accepted in the next observation time interval equals Py *
(NA + NB), and it is contributed by two parts, namely the users accepted in group A
(estimated number = P, *NA) and the users accepted in group B (estimated number = Pg *
NB). Therefore the following equation should hold:

Pa *NA + Pg * NB = Py * (NA + NB)

Because of higher priority for class A users, Pa should always be bigger than Ps. To be
more specific, when Py, equals 1, Pa and Ps should both be equal to 1.To keep the balance
of the above equation, if Py is decreasing, Ps should decrease before Pa decreases, we
assume that Pa can not decrease until Pg gets to 0. More formally, we have the following

constraints:

105

if Pe>0,thenPy=1
if PA<1,thenPg=0

From the above equation Pa *NA + Pg * NB = Py * (NA + NB), and these constraints we

can compute P, and Ps. We have the following two cases to consider:

Case 1: if NA <= Py * (NA + NB)
PA =1 ;
Pg = (Pai * (NA + NB) — NA)/NB;

Case2: if NA> Py * (NA + NB)
Pa =Pa * (NA + NB)/NA;
Pe=0;

We see that the values of Pa and Pg depend on the relative ratio of NA and NB.

Let us suppose that NA = o*NB, then the computation of the above two cases can be
rewritten as:
If o/(0+1) <= Py
Pa=1;
Pg = Pai * (0+1) —o;
else
Pa = Pai * (0+1)/ o;
Ps=0;

If the incoming rates of the two user groups are the same, that is o = 1, and the probability

function is chosen to be Pgss, 1.55(f), then we will get for P4 and Pg exactly the functions

106

shown in Figure 36 (Pa = P 105, 155(f), Ps = Poss 155(r)); in that case, we would not
perceive any difference in the performance between this approach and the approach with

the two probability functionsin Section 7.1.

But the situations are changed when the incoming rates of the two user groups are not the
same. In the following figures, the combined probability function is still chosen to be Pgss,
155(r); we show the calculated P and Ps when o equals 3 (when NA = 3*NB) and 1/3
(when NA = NB/3), respectively. Clearly they are quite different from Figure 36. When o
equals 3, that is, the number of A-users is three times the B-users, the combined
probabilistic approach tends to reject group B users very quickly, while group A users are
rejected very slowly (compared with the two probability functions approach). Thisis quite
reasonable since we have far more A-users than B-users. Not very surprisingly, when o
equals 1/3, there are more B-users than A-users; it tends to reect group B users very

slowly, while group A users are rejected very quickly.

T {Calculated probability for group A and B when =3

group A,
oy e ———- group B
E; 06 \‘u,l P(0.55,1.55)
} 0.4 + 'l\
0.2 4

0 01020304050607 208 1 111213141516 17
response time

Figure40. Thecalculated probability for both groups of userswhen oo =3

107

Calculated prohahility for group A and B when o=1/3

[}
[e2a)
1

group A,

———- group B

prabahility
)
(=0

— P(0.55,1.55)

e
Ia
1

]
[3]
1

I:I T T T T T T T T

0 01020304050607 2,09 1 111213141516 17
response time

Figure4l. The calculated probability for both groups of userswhen o = 1/3

In the following simulation, we test the percentage of user acceptance over a variety of
customer incoming rates (for the customer inter-arrival time ranging from 0.7s to 0.05s),
using a single probability function P gss 155 (r); the combined probability function
approach calculates the total probability P4 by Poss, 155 (1) first, and then computes the Pa
and Pg. After running the same simulation for different o (o0 = 1, 3 and 1/3,), we get the
results in the Figures 42 and 43. For comparison, we also plot the results obtained using
two probability functions as defined in Section 7.1, and to avoid oscillations we set the

inter-observation time as 10 seconds.

108

percentag

Per centage of A-user s accepted for different alpha

—e—P0551051.05155A
adpha=1

—m—P0551.051.051.55A
apha=3

P0551.051.051.55A
apha=1/3

P0.551.55A dpha=1

—%— P 0.551.55A dpha=3

—e—P0.551.55A dpha=
13

inter-arrival time

Figure42. Percentage of A-usersaccepted (compared with two probability function approach)

Per centage of B-user s accepted for differ ent alpha

percentag

inter-arrival time

—e—P0551051.051558B
adpha=1

—m—PO0551.051.051.55B
apha=3

P0551.051.051.55B
apha=1/3

P0.551.55B dpha=1

—%—P0.551.55B dpha=3

—e— P 0.551.55B dpha=
13

Figure43. Percentage of B-usersaccepted (compared with two probability function approach)

109

Asisshown in the above figures, when o equals 1, the percentage of acceptance using one
probability function is pretty similar to the result when we use two probability functions
for each of the user groups. Thisis because with o0 =1, the incoming rates of usersin both
group are the same, and the calculated acceptance percentages of A-users and B-users are
exactly the same as given in the two probability function approach, therefore resulting in a
similar performance. When o equals 3, with combined probability function, both
percentages of accepting A-user and B-users become smaller due to the calculated
acceptance percentages (see Figure 40). Similarly, when o equals 1/3, both percentages of
accepting A-user and B-users become larger. Notice that when o equals 3 (or 1/3), with
two probability functions, the percentages of accepting A-user and B-users also gets
smaller (larger), but not as small (large) as using the combined probability function
approach. This means that the two probability functions approach can not adjust to the
workload change of different user groups as quickly as the combined probability function

approach, which further effects its performance as we will see below.
To see the difference in performance between these two approaches, we compare the

resulting response time between two function and combined function approaches, for

various values of o.. The results are shown in Figure 44.

110

For different probabilistic approaches and different alpha

—e—P0551.051.051.55
dpha=1

—m—P0551.051.051.55
dpha=3

P0.551.051.051.55
dpha=1/3

P 0.55 1.55 dpha=1

response tim

—x— P 0.55 1.55 dpha=3

QL L 2 O —e— P 055155 dpha=1/3

inter-arrival time

Figure44. Mean responsetime of the users using different approaches

As we can see, as the user arrival rate increases, for both approaches, the response time
grows very smoothly. For the combined function approach, no matter what the value of o
is, the average response time measured is amost the same. But with the two function
approach, the average response time also depends on the value of o the larger is o, the

higher will be the response time of the system.

Regarding these simulation results, we can clearly see the advantage of the combined
function approach: even if the arrival rates of A-users and B-users are different (o # 1), the
combined function approach will still result in the same response time as long as the
arrival rate of usersin total is the same. But for the function approach, the response time
also depends on the value of o. If o > 1, we will get a dlightly higher average response

time, and if oo < 1, we will get aslightly lower average response time

The disadvantage of the combined function approach is: the estimation of the incoming

rate of the users in the next observation period is difficult. Here we use the number of

m

incoming users in the previous observation period as an approximation. If the incoming
rate of the users changes frequently from one time interval to another, this estimation is no

longer accurate; thus the efficiency of this approach may be questionable.

112

8. Conclusions and future work

8.1 Conclusions

Quality of service of web servers has long been a hot research area in recent years. The
problem that we consider here is how can we provide satisfactory response time to the
clients during the time of heavy workload. We started with the discussion of severa
related approaches for dealing with the problem and show that although to some extent a
reasonable response time can be realized, those approaches cannot deal with the problem
of performance oscillations. To solve this problem, we have improved the original server
brokerage model described in Salem'’s paper, and invited a new probabilistic approach to

reject user requests, and avoided the oscillations of the server performance.

The major results of our work are the following:

1) Based on simulations, we show the existence of oscillations of the performance of the
server, the response time, the number of usersin the system and the server utilization etc.
We established a theoretical model for the number of users in the system, and using this
model we explained that the oscillation is caused by abrupt behavior of the on-off
decision-making server selection algorithm that accepts or refuses the incoming user

according to some threshold.

2) Based on the theoretica model of the oscillations, we showed that a probabilistic
approach that accepts users gradually, will suppress the oscillations, and eventually leads
the system to a so-called “ stable point”.

3) We tested the effect of different probability functions on admission control. Our

113

simulation experiments reveal that a more gradual probability function has the advantage
over a probability function with a sudden change in terms of performance stability. With a
more gradual probability function, the amplitude of the oscillation is smaller, and the

frequency of the oscillation is aso lower.

4) We showed that for a given user incoming rate of users, and a given probability function,
decreasing the inter-observation time will improve the oscillation. A smaller
inter-observation time period decreases the amplitude of the oscillation. In fact, if the
inter-observation time is decreased to some “ stable value’, there is no perceivable regular

oscillation anymore, the whole curve looks just like statistic noise.

5) We explored the behavior when an upper limit to the number of users that can be
accepted by the system is given. Simulations show that this approach will eliminate the
oscillation only when the user-incoming rate is approaching or exceeding this limit. It has

no effect on the oscillations when the workload does not reach that limit.

6) Finally, some considerations are given for this probabilistic approach for a system with
severa categories of users with different priorities for accessing the system. In that case,
we consider two groups of users, namely group A (with higher priority) and group B (with
lower priority). The goal is to provide satisfactory response time to the A-user and reject
B-user when the workload is high. Our simulation results clearly show that our
probabilistic approach has the advantage over the on-off decision approach in providing

differentiated service to different user groups.

114

8.2 Futurework

Despite the achievement mentioned above, we realize that there is still much work in this
area waiting to be done. Some possible areas that can be improved are listed in the

following.

1) We realize that when the workload is not heavy, the system does not need to check the
performance of the servers very frequently. This issue is important because frequent
transmission of performance data will increase the workload of the broker and the data
throughput between the servers and the broker. One could therefore consider whether it is
better, if we constantly change the inter-observation time depending on the current
user-incoming rate. The higher the rate, the shorter the inter-observation time should be set.
In this way, the frequency of the observations by the broker is adjusted to the need rather

than being fixed in advance.

2) We also can change the way that the performance data is collected. The broker may
collect the performance data by probing the serversinstead of the performance data being
pushed by the server. We still do not know which way is better. By probing, the broker has
the solely control of when to collect the performance data, the servers do not have to care

about this, but the workload on the broker will be increased.

115

9. References

[1] M.-V. M. Salem, G v. Bochmann and J. W. Wong, Server selection for differentiated

classes of users.

[2] G Bochmann, B. Kerherve, Mohamed-Vall M. Salem, "Quality of Service
Management Issues in E-Commerce Applications’, In Electronic Commerce Technology
Trends: challenges and Opportunities, Weidong Kou and Yelena Yesha, eds. IBM Press,
February 2000, Chapter 14.

[3] G v. Bochmann, B. Kerhervé, H. Lutfiyya, M. Salem and H. Ye, Introducing QoS
into electronic commerce applications, Proc. of Second International Symposium on
Electronic Commerce, April 2001, Hong Kong, China, published as "Electronic
Commerce Technologies', LNCS 2004, Springer Verlag, pp. 138-147.

[4] M.-V. Mohamed-Salem, J. W. Wong and G. v. Bochmann, A scalable load-sharing
architecture for distributed applications, Proc. 9th IEEE Conference on Software,
Telecommunications and Computer Networks, SoftCom 2001, October 2001, pp.
147-755.

[5] Paul Barford and Marck Crovella, “Generating Representative Web Workload for
Network and Server Performance Evaluation”, in Proceeding of the 1998 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems, pp. 151-160, July 1998.

[6] Website of Mesguite Software, Inc. www.mesguite.com

116

[7] Jerry Banks “Handbook of simulation principles, methodology, advances, applications,

and practice” Engineering & Management Press

[8] Paul A. Fishwick “Smulation Model Design and Execution: Building Digital Worlds”

[9] Zongming Fei, Samrat Bhattacharjee, Ellen W. Zegura, Mostafa H. Ammar ” A novel
server selection technique for improving the response time of a replicated service”. In

Proceedings of INFOCOM 98, 1998

[10] Yong Meng TEO, Rassul AYANI “Comparison of load balancing strategies on
cluster-based web servers’

[11] Martin F. Arlitt Carey L. Williamson "Web server workload characterization: the
search for Invariant (Extended version)” 1996 ACM SIGMETRICS Conference,
Philadelphia, PA, May 1996.

[12] Michele Colgjanni, Philip S. Yu and Daniel M.Dias “Analysis of task assignment
policies in scalable distributed web-server systems’, published in IEEE Transactions on

Parallel and Distributed Systems, val. 9, no. 6, June 1998

[13] S.Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and Z. Fei, “ Application layer
anycasting” INFOCOM 97, 1997

[14] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, Z. Fei: “Application Layer
Anycasting”, In Proceedings of INFOCOM 97, 1997

[15] Virgilio Almeida, AzerBestavros, Mark Crovella, and Adriana de Oliveira.

117

Characterizing reference locality in the WMAW. In Proceedings of 1996 International
Conference on Parallel and Distributed Information Systems (PDIS 96), pages 92-103,
December 1996

[16] M. F. Arlitt and C. L. Williamson. Web server workload characterization: The search
for invariants. In Proceeding of the ACM SIGMETRICS '96 Conference, Philadelphia,
PA, April 1996.

[17] Tim Bray. Measuring the web. In Fifth International World Wide Web Conference,
Paris, France, May 1996.

[18] C. A. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of www client-based
traces. Technical Report TR-95-010, Boston University Department of Computer Science
April 1995

[19] M. E. Crovellaand A. Bestavros. Self-similarity in world wide web traffic: Evidence
and possible causes. In Proceedings of the 1996 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, May 1996.

[20] G K. Zipf. Human Behavior and the Principle of Least-Effort, Addison-Wesley,
Cambridge, MA, 1949

[21] Mohamed-Vall, Gregor v. Bochamann, Johnny Wong “Scaling Server Selection

Using a Multi-Broker Architecture”

[22] Katsuhiko Ogata “Modern Control Engineering” Prentice Hall

[23] Jacqueline Wilkie, Michael Johnson, Reza Katebi Control Engineering “An

118

Introductory Course” Some pages can be downloaded from Palgrave Macmillan at
http://www.pal grave.com/science/engineering/wilkie/sample/0333_77129X cha05sample.
paf

119

10. Appendix

(A) Fundamentalsfor MATLAB

1. Somebrief introduction to MATLAB

In our project, we used MATLAB to measure frequency of a given signa (the number of
users in the system), so we fedl it necessary to give some introduction of the MATLAB

tool and give an example code used to calculate the frequency.

The MATLAB is a language of technical computing developed by the MathWorks Inc.
MATLAB providesthe function of mathematical computing, visualization, and a powerful
language, a flexible environment for technical computing. The scientific personnel use
MATLAB to explore data, design algorithms, and develop applications. It presents the
data in a visualized way, and helps to identify subtle problems and give insight into the
subject under study. What is more, MATLAB’s internal interfaces enable us to access and
import data from instruments, files, external databases and programs. We can even
integrate external routines written in C, C++, Fortran, and Java into the MATLAB
applications. It is used in nearly al areas of research, industries and government.
Following are the basic components of the MATLAB, and its key features (from

www.mathworks.com).

MATLAB includestoolsfor:

. Data acquisition
. Data analysis and exploration

. Visualization and image processing

120

. Algorithm prototyping and devel opment

. Modeling and simulation

. Programming and application development

Key Features

. Numeric computing for quick and accurate results

. Graphicsto visualize and analyze your data

. Interactive language and programming environment

. Tools for building custom GUIs

. Integrate with external applications comprised of C, C++, Fortran, Java, COM

components and Excel

Support for importing data from files and external devices and for using low-level

file I/O (plus access to databases and additional hardware via add-on products)

Conversion of MATLAB applications to C and C++ with the Compiler

MATLAB presents data result in a specialized high-quality graphic form, which facilitates
a better observation and understanding. Here we list some of the basic graphic features

provided (from www.mathworks.com).

. 2-D and 3-D plot types such asline, log, histogram, function, mesh, surface, sphere,
and patch objects

. Support for triangulated and girded data

. Volume visualization for viewing scalar and vector data

. Image display and file /O

. Interactive plot annotation and editing

121

. OpenGL rendering supported with hardware and software

. Quiver, ribbon, scatter, bar, pie, and stem plots

. Animation (movies) and sound

. Multiple light sources for colored surfaces

. Camera-based viewing and perspective control

. Interactive and programmatic control of individual plot attributes, such as line,

axes, figure, legend, and paper

. Flat, Gouraud, and Phong lighting

. Point-and-click GUI-building tools and programming API

. Importing common graphical file formats such as EPS, TIFF, JPEG PNG BMP,
HDF, AVI, and PCX

. Printing and exporting graphics to other applications, such as Word and
PowerPoint, in avariety of popular formats to share your results with colleagues

. Extended support for image processing and geographic mapping applications
through add-on toolboxes

For the mathematic computations, MATLAB provides many functions. Below are some of

the exampl es (from www.mathworks.com).

. Matrices and linear algebra -matrix arithmetic, linear equations, eigenvalues,
singular values, and matrix factorizations
. Polynomials and interpolation -- standard polynomia operations such as

polynomial roots, evaluation, differentiation, curve fitting and partial fraction

expansion
. Signal processing - digital filters, fast Fourier transforms (FFTs), and convolution
. Data analysis and statistics - descriptive statistics, data pre-processing, regression,

curve fitting, datafiltering

122

. Function functions -- MATLAB functions that work with mathematical functions
instead of numeric arrays, including plotting, optimization, zero finding, and
numerical integration (quadrature)

. Differential equations - solving differential equation problems including: initial
value problems for ordinary differential equations (ODES) and differential-algebraic
equations (DAES), delay differential equations, boundary value problems for ODEs,
and initial-boundary value problems for systems of parabolic and éliptic partial
differential equations (PDES)

. Sparse matrices - covering both specialized and general mathematical operations,

including iterative methods for sparse linear equations

These functions enhance the computational power and make it much easier to solve many

technical problems.

To conclude, MATLAB isapowerful tool that accel erates the research, reduces the project

cost, and saves the time of analysis.

2. Fast Fourier transform

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm, which reduces

the number of computations needed for N points from 2N? to 2Nlog,N.

The functions of fast Fourier transform (X = fft(x) and x = ifft(X) in MATLAB)
implement the transform and inverse transform pair given for vectors X or x of length N

by doing the following calculation:

123

N
. -1 k-1
X(k) = Y x(poy” 0

j=1

& —13(k-1"
2(j) = (I/N) Y, X(kyoy/ ™70
k=1

_ o (-2miyN
UJN = £

isan N'th root of unity. (from www.mathworks.com)

Now we give an example of making up a noise signal by combining two sine signal with
different frequency (50 Hz and 120 Hz) and later identify these frequencies components
by taking a fast Fourier transform (FFT). This is exactly what we need to extract the

frequency from agiven signal in our project.

The following piece of code generates data sampled at 1000 Hz and forms a signal

containing 50 Hz and 120 Hz frequency components:

t = 0:0.001:0.6;

X = sin(2* pi*50*t)+sin(2* pi* 120*t);

y =X + 2*randn(size(t));

plot(1000*t(1:50),y(1:50))

title('Signal Corrupted with Zero-Mean Random Noise')

xlabel('time (milliseconds)')

The generated noise-like signal appears as follows.

124

Signal Carupted with Zero-Mean Random Nokss

1

-2

1 1 1
a0 10 20 30 40 50
time [milleeconds)

It is pretty difficult to tell the original frequency components by simply looking at the
above signal. But after taking the 512-point fast Fourier transform (FFT):

Y = fft(y,512);

The power spectrum, which shows the power at various frequencies, is computed as

follows:

Pyy = Y.* conj(Y)/512;

f = 1000* (0: 256)/512;
plot(f,Pyy(1:257))

title(' Frequency content of y')

xlabel('frequency (Hz)")

125

From the power spectrum result, we can clearly see the strong peaks at 50Hz and 120 Hz,

which are the original components of the signal.

126

