
28/08/15 RE2015Ottawa - 1 of 34

RE 2015
Ottawa

28 August 2015

Michael Jackson
The Open University
jacksonma@acm.org

Requirements, Behaviours
and

Software Engineering

28/08/15 RE2015Ottawa - 2 of 34

Daniel, Didar and Vincenzo:
Thank you for inviting me!

Everyone:

Thank you for coming to my talk!

28/08/15 RE2015Ottawa - 3 of 34

Requirements state what is wanted

•  We are about to commission, or build, or buy,
or somehow acquire something
•  The requirements state what is wanted,

expected or demanded from it

28/08/15 RE2015Ottawa - 4 of 34

Requirements state what is wanted

US State Department (for visa photo)
• Colour, head 22mm to 38mm high, taken last 6 months,
 full-face, usual dress, eyes open, no sunglasses, no hat.

Ice cream parlour customer
• Medium sugar cone, one scoop crema, one chocolate, no
 sauce, no sprinkles.

Computer store customer
• PC laptop, 13” screen, 4GB RAM, 1TB HDD, min 3GHz,
 USB3 ports, WiFi, 8hr battery, max 1.5Kg, Windows 8.

Car dealer customer
• 5-dr hatchback, 1.6l diesel, 50mpg, automatic, trunk
 15cu.ft, sunroof, built-in satnav, alloy wheels, 4WD.

28/08/15 RE2015Ottawa - 5 of 34

So what’s the problem?

•  What’s the requirements engineering problem?
•  Why do we need ”Requirements for the

Masses”?

•  Are the masses dissatisfied?
•  Are they not getting what they want?

•  I imagine mass demonstrations …

28/08/15 RE2015Ottawa - 6 of 34

Requirements for the masses?

•  Are the people in these crowds US visa applicants, or customers
 of computer stores, ice cream parlours, and car dealers?

•  No! It’s easy to get the photo, laptop, ice creams or cars you want
•  These things are products of normal (standard) design

•  The demonstrators are customers of software engineering
•  Most software products involve radical (innovative) design

p p

28/08/15 RE2015Ottawa - 7 of 34

Normal and radical engineering

 “The engineer … knows at the outset how the
device in question works, ... its customary
features, and ... properly designed, ... [can
accomplish the desired task].”*

 Normal:
Toyota
1992

 “The device ... is largely unknown. The
 designer has never seen such a device before
 … the problem is to design something that
 will function well enough to warrant further
 development.”*

 Radical:
Karl Benz
1885

Walter G Vincenti;
What Engineers Know and How They Know It*

•  Normal engineering allows exact requirements by standard parameters
•  Standard designs, reliably built, satisfying well understood needs

•  Radical engineering allows vague hopes rather than exact requirements
•  Design is uncertain, outcome unreliable, needs poorly understood
•  Result is difficulty in stating and satisfying requirements

28/08/15 RE2015Ottawa - 8 of 34

What kind of software engineering?

•  Engineering OF Software
•  Problems of symbolic computations and symbolic results
•  The system comprises only the computer

 (Dijkstra even discarded input and output)

•  Engineering WITH and BY Software
•  Problems of specifying software to evoke or ensure

 desired behaviours in the human and physical world
•  The system comprises both the computer and the

 human and physical world of the problem

28/08/15 RE2015Ottawa - 9 of 34

Engineering WITH software concerns behaviours in the world

Rotterdam barrier

Industrial press

Car parking

Vending machine

Radiation therapy

Flight control

Passenger lift

Cruise control

Medical Records

Lending Library
The system behaviour is everything that can
happen in the given problem world while it
is interacting with the specified software

Human & Physical
Problem World

Lift
Equip’t

Buttons Users

Building
Manager

Lobby
Display

Floors

Lift Ctllr
Machine f

i
g

h
j

a

b

c

e
d

Machine

The System

28/08/15 RE2015Ottawa - 10 of 34

What is the requirements engineering context here?

•  A specified Machine M guarantees a system behaviour B, cooperating
 with given properties W of a closed, formalised problem world

•  System behaviour B satisfies requirements so far as possible:
 some may be informal or lie outside the problem world

•  A clear distinction of tasks and interests here:
•  Stakeholders state requirements
•  Developers specify machine M

•  The tasks are unavoidably interactive and iterative
•  Dilbert and his manager know why!

The Stakeholders

Lift
Equip’t

Buttons Users

Building
Manager

Lobby
Display

Floors

Lift Ctllr
Machine

f

i

g

h
j

a

b

c

e
d

The System-to-be

System
Behaviour

Rqt1

Rqt2

28/08/15 RE2015Ottawa - 11 of 34

Dilbert and his manager

(borrowed from a talk by
 Jyotirmoy V Deshmukh)

28/08/15 RE2015Ottawa - 12 of 34

Dilbert and his manager

28/08/15 RE2015Ottawa - 13 of 34

Behaviour: a meeting point for developers and stakeholders

[IEEE-830-1998] Requirements
must be: Correct; Unambiguous;
Complete; Consistent; Verifiable;
Modifiable; Traceable, ...

IEEE-830 is
design. That’s
your job!

•  IEEE-830 is not an ideal: it was a mistake
•  “Requirements should form a detailed arm’s-length contract”
•  Unnecessary for normal products; impossible for radical products

•  Dilbert’s manager is right: IEEE-830 requirements are detailed designs
•  Why should stakeholders (and requirements engineers) do design?
•  State transitions masquerading as requirements are a bad idea!

 (an automotive product line manufacturer had 200,000 requirements)
•  The system behaviour is not itself a requirement

•  Most requirements are desired properties and effects of the behaviour

28/08/15 RE2015Ottawa - 14 of 34

The Zoo Visitor control problem

•  Illustration from a small example problem*

•  First, the system (machine + problem world)

•  Second, the [initial] requirements

•  Third, an interactive, iterative development ..
 .. leading to a little behaviour structuring ..
 .. into three behaviours ...

•  .. which must then be recombined

28/08/15 RE2015Ottawa - 15 of 34

Zoo visitor problem: machine and problem world

M W S

Z1
Machine

a

b

c

Barrier

Visitors

d

Coin
Acceptor

Stop
Button

Manager

e

f

•  The problem world is closed and reliably formalisable
•  The problem world includes human participants
•  Properties of B must be calculable from the (eventual) machine

 specification and the given problem domain properties

28/08/15 RE2015Ottawa - 16 of 34

Zoo visitor problem: initial requirements

Requirements
R1: “No visitor enters without paying fee (1 coin)”
R2: “Here’s what visitors do to enter” (‘use-cases’)
R3: “Turnstile is quick and easy to use”
R4: “Entry system positively attracts new visitors”
R5: “Pressing the Stop button ends system operation”

28/08/15 RE2015Ottawa - 17 of 34

Development: functional requirement, abstract goal behaviour

ZAGB1

Event
Pair *

insert
Coin enter

Zoo

System
Behaviour

B
Rqt1

Rqt2
Rqt3

Rqt4

R M W S

Z1
Machine

a

b

c
Barrier

Visitors

d

Coin
Acceptor

Stop
Button

Manager

e

f

1. Identify the (sole) simple functional requirement
 (R1: “No visitor enters without paying fee”)
2. Propose a simple abstract goal behaviour (AGB)
3. Describe given properties of problem domains
4. Specify m/c ensuring a system behaviour B => AGB
5. Check B with stakeholders against all requirements
6. Iterate over 2,3,4,5 as necessary

(a) ‘insert coin’ and ‘enter Zoo’ are poor abstractions
(b) How and when does the behaviour stop?
(c) Alternation of payment and entry vs R2 use-case?
(d) Mutual exclusion of payment and entry vs R3, R4
(e) Machine Z1 is too complex to specify and program

Development approach

28/08/15 RE2015Ottawa - 18 of 34

Iteration in specifying the machine and the system behaviour

System
Behaviour

B
Rqt1

Rqt2
Rqt3

Rqt4

R M W S

Z1
Machine

a

b

c
Barrier

Visitors

d

Coin
Acceptor

Stop
Button

Manager

e

f

(a) ‘insert coin’ and ‘enter Zoo’ are poor abstractions
 * Complication and delay from Coin Acceptor & Barrier
(b) How and when does the behaviour stop?
 * Termination is a standard ‘problem concern’
(c) Alternation of payment and entry vs R2 use-case
 * While pupils enter at Barrier, Teacher inserts many
 coins, building up a convenient excess of coins
(d) Mutual exclusion of payment and entry vs R3, R4
 * Visitors are frustrated by waiting to insert a coin
 while an entry is in progress: Barrier and Acceptor
 must be able to operate concurrently
(e) System is now too complex for a simple problem
 * Concurrency demands explicit decomposition to two
 ‘subproblems’ and their combination

[TO≤1.5s] push/

Broken

push/

lock/
[TO>2s]

enterZoo/

lock/
push/

[TO>1.5s]
push/

S0=
Locked

S3=
Ready

S1=
Open

S2=
Turning

unlock/

[TO>1s]
lock/

lock/

[TO≤1s]
 lock/

openSlot/

open Slot/

open
 Slot/

[CoinOK]
 /coin; bell

[Slug]
 /slug;beep

 insert
Coin/

S0:
Closed

S1:
Open

S2:
Testing

Broken

28/08/15 RE2015Ottawa - 19 of 34

Decomposition into constituent behaviours

Z1
Machine

a

b

c
Barrier

Visitors

d

Coin
Acceptor

Stop
Button

Manager

e

f

Behaviour
BZ1

Behaviour BZ1 (Machine Z1) is
 decomposed into 3 behaviours:

 Behaviour BZ6 (Machine Z6);
 Behaviour BZC (Machine ZC);
 Behaviour BZB (Machine ZB)

What mechanism is needed
to control and coordinate
the three machines?

a
Z6

Machine
Stop

Button
Manager d

Behaviour
BZ6

ZC
Machine

Coin
Acceptor b

Visitors

e

Behaviour
BZC

ZB
Machine

Barrier c

Visitors

f

Behaviour
BZB

28/08/15 RE2015Ottawa - 20 of 34

Behaviour control and a designed domain

The Z6 local variable C~E (the
coin surplus) is ‘promoted’ to a
problem domain for ZC and ZB

a
Z6

Machine
Stop

Button
Manager d

Behaviour
BZ6

Behaviour
BZC

ZC
Machine

Coin
Acceptor b

Visitors

e

g C~E
Model

Behaviour
BZB

ZB
Machine

Barrier c

Visitors

f

h
C~E

Model

Machine Z6 controls ZC and ZB
by a standard control protocol

Initial-
ising

Running

Orderly
Stopping Stopped

Halted

stop/

stop/

/halt

[initialised]

/halt

[term]
 /halt

[not-term]

 /halt

Z3
Machine

ZC
Machine

ZB
Machine

C~E
Model

Behaviour
control in tree
of machine
instantiations

Behaviour worlds are closed and
control is separate from content

28/08/15 RE2015Ottawa - 21 of 34

The Zoo Visitor control problem: some key points

•  Engineering BY Software
•  We are programming system M+W, not system M
•  W low-level properties have high-level effects

•  It is a discipline of sequential programs (plus concurrency)
•  The discipline addresses standard concerns, eg:

initialisation, termination, breakage, totality, surprise, …
•  Here is the characterisation of a behaviour:

•  B is a program for M+W with a comprehensible purpose
•  An execution of M is an instantiation of B

•  Components for behaviour design are themselves behaviours

28/08/15 RE2015Ottawa - 22 of 34

Complex behaviour is constituted of many simpler behaviours

•  This car is moving under driver control
•  ABS is monitoring wheel speeds ready for braking
•  Air conditioning is cooling the car cabin
•  Stop-Start is not running
•  Automatic Parking is not running
•  Cruise Control is maintaining driver’s chosen speed
•  Lane Departure Warning is watching lane markings
•  Speed Restriction is limiting speed to 110kph
•  Active Suspension is smoothing and stabilising ride
• 

The Cruise
Control
behaviour Cctl

Behaviour
Cruise

Controller

Cctl
Lever

Road

Driver
Driving
Controls

Engine Mgmt
System

Car

M W B

28/08/15 RE2015Ottawa - 23 of 34

What makes the Zoo problem small and simple?

•  Very limited functionality
•  Few stakeholders, few requirements
•  One function only: eg no reports, no maintenance, ...

•  Constant simple domain properties, globally assumed
•  No sumo wrestlers
•  No ‘fault-tolerance’
•  No fires, earthquakes etc

•  Extreme simplicity of machine/behaviour tree
•  Each behaviour is instantiated once, unconditionally
 (continuing after Stop is a new execution instance)

•  Totally non-critical system
•  Narrow OE (operating envelope)
•  On failure: refund fees/start again/call engineer

•  A larger problem will relax some of these limitations

28/08/15 RE2015Ottawa - 24 of 34

A lift system for a building
The Machine The Problem World

Lift
Equip’t

Buttons Users

Building
Manager

Lobby
Display

Floors

Lift Ctllr
Machine

f

i
g

h
j

a
b

c

e d

System
Behaviour

Rqt1

Rqt2
Rqt3

Rqt4
Rqt5

Rqt6
Rqt7

Rqt8

Rqt9

Rqt10
Rqt13

Rqt14
Rqt11

Rqt12
Rqt15

Rqt16

A large system having ..
* Many stakeholders
* Many requirements
* Many behaviours
* Complex behaviours
* Some critical functions
* Complex duty cycle
* Wider OE

28/08/15 RE2015Ottawa - 25 of 34

Some stakeholders and their requirements

Easy Operation
in Maintenance!

Don’t Damage the
Equipment by Misuse!

Safe Operation
by Firefighters!

No Lower
Classes on
my Floor!

Efficiency Means
Fewer Lifts, More

Rentable Space!

Perfect Lift
Service Sells
Apartments
& Offices!

Easy Quarterly
Inspections!

Easy to Use Floor-
to-Floor Transport!

Lift Comes when I
Request and Goes to
the Floor I Choose!

Don’t Try My
Patience!

I can Specify
VaryingRegimes!

Graceful Service
Degradation on
Minor Failures!

System Complies
with All Safety

Regulations!

28/08/15 RE2015Ottawa - 26 of 34

Developing system behaviour starting from requirements

Easy Operation
in Maintenance!

Don’t Damage the
Equipment by Misuse!

Safe Operation
by Firefighters!

No Lower
Classes on my

Floor!

Efficiency Means
Fewer Lifts, More

Rentable Space!

Perfect Lift
Service Sells
Apartments
& Offices!

Easy Quarterly
Inspections!

Easy to Use Floor-
to-Floor Transport!

Lift Comes when I
Request and Goes to the

Floor I Choose!

Don’t Try My
Patience!

I Can Specify
Varying Regimes!

Graceful Service
Degradation on
Minor Failures!

System Complies
with All Safety

Regulations!

Where’s the AGB?
* There are many
Identify candidates
* From requirements
* From regions of
 operating envelope
Explore designs
* Simplified, isolated
Top-down design
* Children from parent
Bottom-up design
* Parent from children
Some new candidates
* From combination
Stepwise complication
* With possible abort

28/08/15 RE2015Ottawa - 27 of 34

Some candidate constituent behaviours

1. From requirements directly
* NLS: Normal Lift Service
* FLS: Firefighter Lift Service
* ITM: Inspection Test Mode
* MEO: Maintenance Engineer Op’n
* EPR: Edit Lift Priority Regime
* TFR: Tycoon Floor Restriction
* ...

2. From early requirements study
* FFP: Free Fall Prevention
* MLD: Maintain Lobby Display
* OTP: Overload Travel Prevention
* FRS1: Failure Reduced Svc Level 1
* FRS2: Failure Reduced Svc Level 2
* MPR: Manage Lift Priority Regimes
* ...

3. From top-down design
* ODN: Open Doors Normal
* CDN: Close Doors Normal
* ODF: Open Doors Firefighter
* CDF: Close Doors Firefighter
* NQM: Maintain Normal R’qst Model
* LFM: Maintain Lift Fault Model
* CSM: Maintain Car State Model
* ...

4. From combining constituents
* PIL: Passenger Immediate Landing
* PGL: Passenger Ground Floor Parking
* ...

28/08/15 RE2015Ottawa - 28 of 34

AGB for NLS (Normal Lift Service)

•  Normal Lift Service Requirement:
 “Afford (passenger) use-cases”
•  AGB: alternate up/down episodes
 * Choices (by NLS machine):
 * Skip UpFloor (w)
 * Skip DnFloor (x)
 * Reverse at Up@Flr (z)
 * Reverse at Dn@Flr (y)
•  Simplifications
 * fixed standard policy (regime)
 * no equipment faults (yet)

Grd@

going
down

DnFl

Dn@Flr

going
up

Up@Flr

UpFlr

Top@

x

w y

z

Lift
Equip’t

Buttons Users

Floors

NLS
Machine f

g

h
j

a

b

c

NLSB

•  Top-down design suggests:
 * ODN, CDN (open, close doors)
 * NQM (maintain request model)

28/08/15 RE2015Ottawa - 29 of 34

NLS and FLS behaviours: affording and obeying use cases

FLS

@Flr(f) +

Visiting
Flr(f)

goto
Flr(g≠f)

Door
Opn/Cls

*

•  Firefighter Lift Service
 Requirement is:
 “ Obey (operator) commands
•  Dedicated physical resource
•  Operator identity is ignored

•  Normal Lift Service
 Requirement is:
 “Afford (passenger) use-case”
•  Shared physical resource
•  Passenger identities are ignored

Grd@

going
down

DnFl

Dn@Flr

going
up

Up@Fl

UpFlr

Top@

x

w y

z

28/08/15 RE2015Ottawa - 30 of 34

Incremental complication for emerging behavioural properties

Incremental complication for NLS
* Initially: isolated, full simplicity
 * ODN, CDN: atomic, reliable
 * Regime variants ignored
* Deviations for minor failures
 * ODN, CDN delay or failure
 * Sensor failure at some floor[s]
 * Possible halt terminating NLS
* Concerns for a behaviour
 * Initialisation
 * Breakage
 * Termination
 * Surprise
 * ...

Design for combinations
* Behaviours’ time relationships
 * TFR, MLD with FLS?
 * ODN, ODF are different?
 * When can MPR be active?
 * EPR only within MPR?
 * Requests model persistence?
Concerns for combining
 * Interference
 * Direct conflict
 * Sharing common resource
 * Switching
 * Interleaving (eg lift regimes)
 * Terminating cooperation (eg Zoo)
 * ...

28/08/15 RE2015Ottawa - 31 of 34

Sketching a subtree of behaviour instances

NSU: Normal
Svce Usage

NQM: Model
Requests

Requests
Model

NLS: Normal
Lift Service

ODN: Open
Doors Normal

CDN: Close
Doors Normal

Subtree sketch for parent of NLS
* Persistence of Requests Model ?
* Why ODN/CDN and ODF/CDF?
* Should MLD be in this tree?
* How to fit in priority regimes?

Subtree sketch for major usages
* Is this how they fit together?
* What more do we need to know?
* What conditions to instantiate?
* How is each terminated?
* Where do MPR and EPR fit in?
What is this subtree’s parent?

LUC: Lift
Usage Control

ITU: Insp’n
Test Usage

NLS: Normal
Svce Usage

MEU: Mt’ce
Eng’g Usage

FLU: Fire
Lift Usage

You can identify these questions roughly, but the devil is in the details!

28/08/15 RE2015Ottawa - 32 of 34

Benefits of a behaviour view

•  A behaviour view applies at a smaller and a larger scale
•  At both scales it interfaces ‘Requirements’ and ‘Design’ tasks

•  At the smaller scale it informs design of a simple behaviour
•  At the larger scale it is a tool for structuring system function

•  The smaller scale
•  Criteria of simplicity aid developer and stakeholder comprehension
•  Criteria of simplicity guide identification of constituent behaviours
•  ‘Subproblem concerns’ provide a checklist of failures to avoid
•  The relationship of software to problem world behaviour is formalised

•  The larger scale
•  The machine/behaviour tree defines composite operational modes
•  The machine/behaviour tree maps to operating envelope regions
•  The machine/behaviour tree identifies interaction of constituents

28/08/15 RE2015Ottawa - 33 of 34

Final thoughts

•  Critical cyber-physical systems pose two major challenges
•  Huge functional complexity

•  Behaviour structure addresses functional complexity
•  Physicality of the problem world

•  Distinct behaviours may assume distinct given properties

•  Behaviour structure exploits 50 years of program design knowledge
•  That’s not to be wasted!

28/08/15 RE2015Ottawa - 34 of 34

Thank you!

Michael Jackson
The Open University
jacksonma@acm.org

28/08/15 RE2015Ottawa - 35 of 34

Additional
Topics

(12 slides)

28/08/15 RE2015Ottawa - 36 of 34

Top-down works only for [almost completely] normal design

 “Richard Feynman ... noted the inevitability of more failures and embarrassing
surprises if NASA did not change ... the way its big projects were designed. He
called the procedure ... ‘top-down design’ and contrasted it with sensible
‘bottom-up’ design that has been normal engineering practice for centuries.”

Eugene S Ferguson; Engineering and the Mind’s Eye, pp188

•  What’s the difficulty?

•  Properties of reality emerge at all levels, especially the most concrete
•  So we can’t assume that AGB can be refined to a feasible and desirable B

•  We intend AGB to be a property of the B that emerges from M and W
•  Varying domain properties (fault-tolerance &c) add a very large complication

Machine Barrier Visitors

Z2

Paid
Visit *

insert
Coin

!open
Slot ?slug await

?Testing

leading
slugs

 slug
insertion

* !open
Slot ?coinOK await

?Testing

 OKCoin
insertion

enter
Zoo

!unlock await
?Ready !lock

Visitors

insert
Coin

enter
Zoo

leading
slugs

 insert
 Slug

insert
OKCoin

*

pushes enter

push
+

push/

lock/
push/

S0:
Locked

S3:
Ready

S1:
Open

S2:
Turning

unlock/

lock/
lock/

openSlot/

[CoinOK]
 /coin; bell

[Slug]
 /slug;beep

 insert
Coin/

S0:
Closed

S1:
Ope
n

S2:
Testing

Coin Acceptor

ZVMFB2

Paid
Visit

*

insert
Coin

enter
Zoo

AGB

B

Behaviour

28/08/15 RE2015Ottawa - 37 of 34

Properties of a physical domain and the operating envelope

Natural laws
(eg physics)

Domain
constitution

Current
physical

environment
Current
domain
condition

windings, rotor and
stator shapes, gear
ratio, sheave
diameter, ...

orientation,
temperature,
external imposed
forces, vibration ...

past overloading,
lubrication and
maintenance,
manufacture, ...

behaviour
currently
demanded
by system

f = G ,
f=ma, ...

m1m2

 r2

Current role
and loading

The Operating
Envelope

28/08/15 RE2015Ottawa - 38 of 34

Restricting or regionalising the operating envelope

Restricting
•  ‘Normal use’ or stipulate:

* environmental conditions
 (eg temp, power supply, ...)
* maintenance schedule etc
* operating conditions

•  Assume constant properties,
 ignore domain failures,
 disclaim all responsibility

Regionalising domain properties
* By system function
* By environmental conditions
* By current domain conditions
•  Domain properties correspond to

behaviours, varying by region

Natural laws
(eg physics)

Domain
constitution

Current
physical

environment
Current
domain
condition

windings, rotor and
stator shapes, gear
ratio, sheave
diameter, ...

orientation,
temperature,
external imposed
forces, vibration ...

past overloading,
lubrication and
maintenance,
manufacture, ...

behaviour
currently
demanded
by system

f = G ,
f=ma, ...

m1m2

 r2

Current role
and loading

The Operating
Envelope

Note: regionalising is never complete
•  The operating envelope is always

restricted in some dimensions

28/08/15 RE2015Ottawa - 39 of 34

Mastering complexity and physicality

•  Cyber-physical systems present two large challenges
•  Functional complexity
•  Physical non-formality

•  To address functional complexity we need structure
•  Components separate concerns and difficulties
•  Structure recombines simplicity into complexity

•  Behaviour structure clarifies system state
•  Which behaviour instances are current?
•  What is the state of each current behaviour?

•  Behaviour structure also addresses non-formality
•  Domain properties vary with varying conditions
•  Distinct behaviours rely on different properties

28/08/15 RE2015Ottawa - 40 of 34

Interpretations for analogic software models

Symbolic models represent subjects linguistically (eg FSM, PDE, CSP, ...)
Analogic models represent subjects by analogy (eg electricity by water flow)

Model
Tracks
Reality

Reality
Modelling
Machine

Analogic
Model

a

b

c

d

In building an analogic model:
{a},{b},{c},{d} are distinct

Eliding the modelling interpret-
ations is very tempting, very
common, and very misleading

Inter-
pretation

X-R

Inter-
pretation

Y-A

Reality

Symbolic
Model

SM-R,A

Analogic
Model

Inter-
pretation

SM-R

Inter-
pretation

SM-A

Symbolic
Model
Y-A

Symbolic
Model
X-R

Symbolic and analogic models with
their interpretations (designations)

Symbolic models X-R and Y-A are (or
should be!) irrelevant to the analogy

Reality Analogic
Model ?

28/08/15 RE2015Ottawa - 41 of 34

What counts as a behaviour? As a requirement?

•  A stimulus-response pair like this
 does not count as a behaviour
•  It’s a program fragment (one transition arc)
 * A single instruction is not a program!
 * The purpose depends on unstated context

* Heading Select mode shall
be selected when the HDG
switch is pressed on the FCP

* Thank you, Mats Heimdahl

Lift
Equip’t

Buttons Users

Building
Manager

Lobby
Display

Floors

Lift Ctllr
Machine

f

i
g

h
j

a
b

c

e
d

Machine
Human & Physical

Problem World

System
Behav’r

System
Behaviour

•  A behaviour is associated with the program
 evoking it in the human and physical world
•  1 run of program ~ 1 instance of behaviour
•  The run has an extended, unbroken duration
•  A behaviour has a coherent intelligible purpose

•  A requirement is a desired property or effect
 of a behaviour (or behaviours)

•  A requirement may be about the problem world
•  A requirement may be outside the problem world
•  A requirement may be formal or informal

28/08/15 RE2015Ottawa - 42 of 34

Understanding a behaviour fragment (masquerading as a requirement)

Mats Heimdahl; Let's Not Forget Validation;
Position Paper for VSTTE Workshop, Zurich 2005.

Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

All right? A part of a sequential
process―ie some behaviour!

28/08/15 RE2015Ottawa - 43 of 34

Understanding a behaviour fragment (masquerading as a requirement)

Mats Heimdahl; Let's Not Forget Validation;
Position Paper for VSTTE Workshop, Zurich 2005.

Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

All right? A part of a sequential
process―ie some behaviour!

Oh! Here’s a condition. What if
Heading Select mode is already
selected? Beep? Just ignored?

28/08/15 RE2015Ottawa - 44 of 34

Understanding a behaviour fragment (masquerading as a requirement)

Mats Heimdahl; Let's Not Forget Validation;
Position Paper for VSTTE Workshop, Zurich 2005.

Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If this side is active and
 Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

All right? A part of a sequential
process―ie some behaviour!

Oh! Here’s a condition. What if
Heading Select mode is already
selected? Beep? Just ignored?

Oh! It seems this behaviour is
parameterised: by {Left, Right}?
What about danger of crosstalk?

28/08/15 RE2015Ottawa - 45 of 34

Understanding a behaviour fragment (masquerading as a requirement)

Mats Heimdahl; Let's Not Forget Validation;
Position Paper for VSTTE Workshop, Zurich 2005.

Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If this side is active and
 Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If this side is active and
 Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP
 (providing no higher-priority event
 occurs at the same time)

All right? A part of a sequential
process―ie some behaviour!

Oh! Here’s a condition. What if
Heading Select mode is already
selected? Beep? Just ignored?

Oh! It seems this behaviour is
parameterised: by {Left, Right}?
What about danger of crosstalk?

Ah! Resolution of a conflict with other
concurrent behaviours? I wonder
which take priority? And what
happens after the higher-priority
event? (Is selection just delayed or
permanently ignored?)

28/08/15 RE2015Ottawa - 46 of 34

Understanding a behaviour fragment (masquerading as a requirement)

Mats Heimdahl; Let's Not Forget Validation;
Position Paper for VSTTE Workshop, Zurich 2005.

Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If this side is active and
 Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP

If this side is active and
 Heading Select mode is not selected,
Heading Select mode shall be selected when
the HDG switch is pressed on the FCP
 (providing no higher-priority event
 occurs at the same time)

All right? A part of a sequential
process―ie some behaviour!

Oh! Here’s a condition. What if
Heading Select mode is already
selected? Beep? Just ignored?

Oh! It seems this behaviour is
parameterised: by {Left, Right}?

Ah! Resolution of a conflict with other
concurrent behaviours? I wonder
which they could be? And what
happens after the higher-priority
event? (Is selection just delayed or
permanently ignored?)

Do we understand it now, or is there
more to be discovered?

28/08/15 RE2015Ottawa - 47

Behavioural simplicity

The constituent behaviours and subproblems must be simple

What are the criteria of simplicity?

•  Simple abstract goal behaviour (AGB)
•  Simple abstract functional purpose

•  One simple operational principle*
•  One regular dynamic process structure

•  Consistent properties of problem domains
•  One region of the operating envelope

• 

* Michael Polanyi; Personal Knowledge, pp328-329, University of Chicago Press, 1974

28/08/15 Topics02 - 48

Problem Concerns

•  Abortion: The world or machine aborts an interaction
•  Abstraction failure: an abstractly defined phenomenon is not realisable in reality
•  Approximation: The machine-world approximation is not faithful enough
•  Completion: problem world frustrates completion of a composite operation (eg

zoo entry)
•  Creep: The machine-world approximation deteriorates with use
•  Breakage: The machine breaks a problem domain
•  Untimely response: A response occurs harmfully late (eg ‘resume’ in Cruise

Control)
•  Identities: Interacting with the wrong member of a set
•  Information deficit: Machine can’t get information needed (demands model!)
•  Information overload: Complexity of machine local variables justifies model

domain
•  Initialisation: Incompatible initial states of machine and world
•  Overrun: Problem world goes too fast for the machine
•  Races: Race conditions in the problem world
•  Reliability: Problem domain properties are not satisfied
•  Resource: Contention for scarce resources
•  Surprise: Anomalous infraction of domain properties (eg change in DoB)
•  Totality: Some problem world possibilities are ignored

28/08/15 RE2015Ottawa - 49 of 34

Can I use these ideas selectively?

•  Use system behaviour as a discriminant between requirements and design
•  Use system behaviour as a key abstraction in early system development
•  Study and analyse behaviour tree patterns
•  Understand the persistence problem of a designed domain (eg a database)
•  Repair requirement inadequacies by identifying constituent behaviours
•  Avoid contaminating formal reasoning M,W|=B by informal concerns
•  Use incremental complication
•  Use loose decomposition
•  Consider simplicity criteria
•  Don’t fear multiple models of the same problem domain
•  Don’t fear multiple occurrences of the same behaviour
•  Can I stop at AGB for a subproblem?
•  ‘problem concerns’ / ‘combination concerns’ are for one / many behaviours
•  Behaviour tree is a map of danger points on ‘freed’ designed domains

28/08/15 RE2015Ottawa - 50 of 34

PLC: Behaviours or requirements? OTP and FFP

OTP (Overload Travel Prevention) and FFP (Free Fall Prevention):
 Are they behaviours or just requirements on several behaviours?

Overload Travel Prevention (OTP)
A buzzer sounds to alert passengers that the car is overloaded, the doors remain
open and the car does not leave that floor until enough passengers exit the car.

We may reasonably regard this is as a requirement to be satisfied in NLS
 (Normal Lift Service) when the doors are being closed for departure: it
 is a requirement on the door closing behaviour

Free Fall Prevention (FFP)
Lift speed is monitored, so that if the hoist cable breaks the emergency brake is
applied, locking the car in the shaft and preventing any further movement.

This seems certainly a distinct behaviour
 It cannot be a requirement to be satisfied in other behaviours : Which ones?

28/08/15 RE2015Ottawa - 51 of 34

“The choice of functional specifications ... may be far from obvious,
 but their role is clear: ... to act as a logical ‘firewall’ between the
 ‘pleasantness problem’, ... and the ‘correctness problem’ ...”

E W Dijkstra

Behaviours as a ‘firewall’ between requirements and software

Formal
Engine

M

Formal Functional
Specification

Pleasantness:
What engine do we
want?

Correctness:
The formal engine
satisfies the formal
specification

For a program

Formal, subject to physical computer

Informal or formal

ZVM
Controller

Coin
Acceptor

Barrier

a

b

Visitors

c

d

M W

ZVMFB2
Behaviour

B

For a C-P
system

Correctness:
In a problem world
formalised as W, the
machine formalised as M
gives behaviour
formalised as B

Formal, subject to physical computer and problem world

Rqt1

Rqt2

Rqt3

Rqt4

R Pleasantness:

What is desired by the
stakeholders?

Informal or formal

28/08/15 RE2015Ottawa - 52 of 34

•  What temporal relationships of behaviours are possible and desired?
•  These questions are partly technical, and partly about requirements

FFP (Free Fall Protection): always active?
EPR (Edit Lift Pr'ty Regime): only nested within MPR (Manage Pr'ty Regimes)?
MPR (Manage Pr'ty Regimes): may be active at any time?
MLD (Maintain Lobby Display) and MLMM (Maintain Lift Mvt Model): are they

coterminous?
MLD (Maintain Lobby Display): is active with FLS (Firefighter Lift Service)?
OTP (O’load Travel Prevention): applies to CDF (Close Door Firefighter)?
MLFM (Maintain Lift Fault Model): is active with FLS (Firefighter Lift Service)?
PIL (Passenger Immediate Landing): always activated on main power failure?
OTP (O’load Travel Prevention): applies to MEO (Maint’ce Engineer Oper’n)?
TFR (Tycoon Floor Restriction): active with FLS (Firefighter Lift Service)?
TFR (Tycoon Floor Restriction): active with MEO (Maint’ce Engineer Oper’n)?

Lift system relationships among constituent behaviours

28/08/15 RE2015Ottawa - 53

Nine classes of software

• First, some terminology
 Software = the program executed in the ‘silicon package’
 Inputs = program inputs presented here
 Outputs = program outputs produced here
 Symbolic = to/from people via these
 Physical = via actuators/sensors like these

• The nine software classes
 0 GCD (Dijkstra)
 1 Read_Text module
 2 Read_Sensor module
 3 Write 1,000,000,000 primes
 4 Batch compiler, calculator
 5 BMEWS, train indicator
 6 Digitised C18 ‘automaton’
 7 Vending machine
 8 Automotive, Lift Control, ... Inputs

Sym Phys ―

Outputs Sym

Phys

― 0 1 2

3 4 5

6 7 8

28/08/15 RE2015Ottawa - 54

Requirements validation for software engineering

Requirements
 on the process

Requirements on the developed product
 Satisfied? (Stakeholders, Developers)

Formal requirements
 on behaviour of the
 problem domains
 (Developers)

Formal requirements
 on behaviour outside
 the problem world
 (Stakeholders)

Informal requirements
 on behaviour of the
 problem domains
 (Developers and
 Stakeholders)

Informal requirements
 on behaviour outside
 the problem world
 (Stakeholders)

• Delivery costs
 and schedules
• Development
 team make-up
• Development
 method choice
• Outsourced
 work control
• Working hours
•

28/08/15 RE2015Ottawa - 55 of 34

X

28/08/15 RE2015Ottawa - 56 of 34

Incremental complication for emerging behavioural properties

Incremental complication for NLS
* Initially: isolated, full simplicity
 * ODN, CDN: atomic, reliable
 * Regime variants ignored
* Deviations for minor failures
 * ODN, CDN delay or failure
 * Sensor failure at some floor[s]
 * Possible halt terminating NLS
* Concerns for a behaviour
 * Initialisation
 * Breakage
 * Termination
 * Surprise
 * ...

Design for combinations
* Behaviours’ time relationships
 * TFR, MLD with FLS?
 * CDN, ODN are different?
 * When can MPR be active?
 * EPR only within MPR?
 * Requests model persistence?
Concerns for combining
 * Interference
 * Direct conflict
 * Sharing common resource
 * Switching
 * Interleaving (eg lift regimes)
 * Terminating cooperation (eg Zoo)
 * ...

28/08/15 RE2015Ottawa - 57 of 34

Benefits of a behaviour view

•  A behaviour view applies at a smaller and a larger scale
•  At both scales it interfaces ‘Requirements’ and ‘Design’ tasks

•  At the smaller scale it informs design of a simple behaviour
•  At the larger scale it is a tool for structuring system function

•  The smaller scale
•  Criteria of simplicity aid developer and stakeholder comprehension
•  Criteria of simplicity guide identification of constituent behaviours
•  ‘Subproblem concerns’ provide a checklist of failures to avoid
•  The relationship of software to problem world behaviour is formalised

•  The larger scale
•  The machine/behaviour tree defines composite operational modes
•  The machine/behaviour tree maps to operating envelope regions
•  The machine/behaviour tree identifies interaction of constituents

28/08/15 RE2015Ottawa - 58 of 34

Normal and radical engineering

•  Only normal engineering products allow fully exact
 requirements
•  Standard designs match customer purposes and needs
•  Exact requirements specify parameters of standard design

•  For a completely radical product
•  Design is uncertain: customer lacks basis of experience
•  Customer requirements are mostly vague uncertain hopes

•  More radical design is likely to result in more dissatisfaction

28/08/15 RE2015Ottawa - 59 of 34

•  What temporal relationships of behaviours are possible and desired?
•  These questions are partly technical, and partly about requirements

FFP (Free Fall Protection): always active?
EPR (Edit Lift Pr'ty Regime): only nested within MPR (Manage Pr'ty Regimes)?
MPR (Manage Pr'ty Regimes): may be active at any time?
MLD (Maintain Lobby Display) and MLMM (Maintain Lift Mvt Model): are they

coterminous?
MLD (Maintain Lobby Display): is active with FLS (Firefighter Lift Service)?
OTP (O’load Travel Prevention): applies to CDF (Close Door Firefighter)?
MLFM (Maintain Lift Fault Model): is active with FLS (Firefighter Lift Service)?
PIL (Passenger Immediate Landing): always activated on main power failure?
OTP (O’load Travel Prevention): applies to MEO (Maint’ce Engineer Oper’n)?
TFR (Tycoon Floor Restriction): active with FLS (Firefighter Lift Service)?
TFR (Tycoon Floor Restriction): active with MEO (Maint’ce Engineer Oper’n)?

Lift system relationships among constituent behaviours

28/08/15 RE2015Ottawa - 60 of 34

Some observations on behaviour-oriented development

•  Critical cyber-physical systems pose two major challenges
•  Huge functional complexity

•  Behaviour structure addresses functional complexity
•  Physicality of the problem world

•  Distinct behaviours may assume distinct given properties
•  Behaviour development specifies (not implements) a machine

•  For B, M is a program
•  For software development

•  M is not a specification of a software part
•  M is a part of a software specification

•  Behaviour structure exploits 50 years of program design knowledge
•  Bounds the concerns to address at any one time
•  Relates each component to a comprehensible purpose
•  Allows systematic local search for potential failures

