
ITI 1121. Introduction to Computing II ∗

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of March 24, 2013

Abstract

• Binary search tree (part I)

∗These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.

Binary tree

A binary tree is a tree-like (hierarchical) data structure such that each node
stores a value and has at most two children, which are called left and right.

5

8

15

9 29

11

Applications (general trees)

Applications (general trees)

• Representing hierarchical information such as hierarchical file systems
(directories have sub-directories), programs (parse trees);

Applications (general trees)

• Representing hierarchical information such as hierarchical file systems
(directories have sub-directories), programs (parse trees);

• Huffman trees are used for (de-)compressing information (files);

Applications (general trees)

• Representing hierarchical information such as hierarchical file systems
(directories have sub-directories), programs (parse trees);

• Huffman trees are used for (de-)compressing information (files);

• An efficient data structure to implement abstract data types such as heaps,
priority queues and sets.

5

8

15

9 29

11

5

8

15

9 29

11

All the nodes except one have exactly one parent.

5

8

15

9 29

11

All the nodes except one have exactly one parent.

That node that has no parent is called the root (which is drawn at the top of the
diagram).

5

8

15

9 29

11

All the nodes except one have exactly one parent.

That node that has no parent is called the root (which is drawn at the top of the
diagram).

Each node has 0, 1 or 2 children.

5

8

15

9 29

11

All the nodes except one have exactly one parent.

That node that has no parent is called the root (which is drawn at the top of the
diagram).

Each node has 0, 1 or 2 children.

Nodes that have no children are called leaves (or external nodes).

5

8

15

9 29

11

All the nodes except one have exactly one parent.

That node that has no parent is called the root (which is drawn at the top of the
diagram).

Each node has 0, 1 or 2 children.

Nodes that have no children are called leaves (or external nodes).

Links between nodes are called branches.

Binary tree

5

8

15

9 29

11

A node and its descendants is called a subtree.

Binary tree

5

8

15

9 29

11

A node and its descendants is called a subtree.

The size of tree is the number of nodes in the tree.

Binary tree

5

8

15

9 29

11

A node and its descendants is called a subtree.

The size of tree is the number of nodes in the tree. An empty tree has size 0.

Binary tree

5

8

15

9 29

11

A node and its descendants is called a subtree.

The size of tree is the number of nodes in the tree. An empty tree has size 0.

Since the discussion is restricted to binary trees, we will sometimes use the word
tree to mean a binary tree.

Binary tree

Binary trees can be defined recursively,

• A binary tree is empty, or;

• A binary tree consists of a value as well as two sub-trees;

Binary tree

The depth of a node is the number of links starting from the root that must be
followed to reach that node. The root is the most accessible node.

5

8

15

9 29

11

Binary tree

The depth of a node is the number of links starting from the root that must be
followed to reach that node. The root is the most accessible node.

5

8

15

9 29

11

What is the depth of the root?

Binary tree

The depth of a node is the number of links starting from the root that must be
followed to reach that node. The root is the most accessible node.

5

8

15

9 29

11

What is the depth of the root? The root always has a depth of 0.

Binary tree

The depth of a node is the number of links starting from the root that must be
followed to reach that node. The root is the most accessible node.

5

8

15

9 29

11

What is the depth of the root? The root always has a depth of 0.

The depth of a tree is the depth of the deepest node.

Binary tree

All the trees presented thus far exhibit a certain property, what is it?

5

8

15

12 292 7

1 4 5013

Binary search tree

A binary search tree is a binary tree such that,

• the nodes of a left sub-tree contain elements that are less than the element
stored at the local root (or is empty);

• the nodes of a right sub-tree contain elements that are greater than the element
stored at the local root (or is empty).

5

8

15

12 292 7

1 4 5013

Binary search tree

A binary search tree is a binary tree such that,

• the nodes of a left sub-tree contain elements that are less than the element
stored at the local root (or is empty);

• the nodes of a right sub-tree contain elements that are greater than the element
stored at the local root (or is empty).

5

8

15

12 292 7

1 4 5013

The definition precludes duplicate values.

Binary search tree

Implementing a binary search tree, what is needed?

Binary search tree

Implementing a binary search tree, what is needed?

That’s right, we need a class Node.

Binary search tree

Implementing a binary search tree, what is needed?

That’s right, we need a class Node. What are its instance variables?

Binary search tree

Implementing a binary search tree, what is needed?

That’s right, we need a class Node. What are its instance variables?

Its instance variables are value, left and right.

Binary search tree

Implementing a binary search tree, what is needed?

That’s right, we need a class Node. What are its instance variables?

Its instance variables are value, left and right.

What are the types of these variables?

Binary search tree

Implementing a binary search tree, what is needed?

That’s right, we need a class Node. What are its instance variables?

Its instance variables are value, left and right.

What are the types of these variables? value should be Comparable, left and
right should be of type Node.

Binary search tree

A static nested class to store the elements of the tree.

public class BinarySearchTree< E extends Comparable<E> > {

private static class Node<E> {

private E value;

private Node<E> left;

private Node<E> right;

}

Binary search tree

Instance variable(s) of the class BinarySearchTree?

public class BinarySearchTree< E extends Comparable<E> > {

private static class Node<E> {

private E value;

private Node<E> left;

private Node<E> right;

}

Binary search tree

Instance variable(s) of the class BinarySearchTree?

public class BinarySearchTree< E extends Comparable<E> > {

private static class Node<E> {

private E value;

private Node<E> left;

private Node<E> right;

}

private Node<E> root;

Memory diagram

8

root

t

Node

BinarySearchTree

rightleft

value

Comparable

8

9 15

115

root

t

Node

BinarySearchTree

8

9 15

115

root

t

5

8

11

9 15

Observations

A leaf is a Node such that both its descendant reference variables (left and
right) are null.

The reference root can be null, in which case the tree is empty, i.e. has size 0.

For brevity, we will often use the more abstract representation on the right.

8

9 15

115

root

t

5

8

11

9 15

boolean contains(E obj)

5

8

11

9 15

boolean contains(E obj)

5

8

11

9 15

1. Empty tree?

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj?

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found;

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found; Otherwise?

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found; Otherwise? Where should you start
looking?

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found; Otherwise? Where should you start
looking?

3. If obj is less than the value found at the root?

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found; Otherwise? Where should you start
looking?

3. If obj is less than the value found at the root? Look for obj in the left sub-tree;

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found; Otherwise? Where should you start
looking?

3. If obj is less than the value found at the root? Look for obj in the left sub-tree;

4. Else (obj must be larger than the value stored at the root)?

boolean contains(E obj)

5

8

11

9 15

1. Empty tree? obj not found;

2. The root contains obj? obj was found; Otherwise? Where should you start
looking?

3. If obj is less than the value found at the root? Look for obj in the left sub-tree;

4. Else (obj must be larger than the value stored at the root)? Look for obj in
the right sub-tree.

boolean contains(E obj)

5

8

11

9 15

Exercise: apply the algorithm for finding the values 8, 9 and 7.

public boolean contains(E obj)

The above presentation suggests a recursive algorithm.

public boolean contains(E obj)

The above presentation suggests a recursive algorithm. What will be the
signature of the method?

public boolean contains(E obj)

The above presentation suggests a recursive algorithm. What will be the
signature of the method?

public boolean contains(E obj) {

// pre-condition:

if (obj == null) {

throw new IllegalArgumentException("null");

}

return contains(obj, root);

}

Similarly to the methods for recursive list processing, these methods will consist
of two parts, a starter method as well as a private method whose signature is
augmented with a parameter of type Node.

boolean contains(Node<E> current, E obj)

Base case(s):

boolean contains(Node<E> current, E obj)

Base case(s):

if (current == null) {

result = false;

}

boolean contains(Node<E> current, E obj)

Base case(s):

if (current == null) {

result = false;

}

but also

boolean contains(Node<E> current, E obj)

Base case(s):

if (current == null) {

result = false;

}

but also

if (obj.compareTo(current.value) == 0) {

result = true;

}

boolean contains(Node<E> current, E obj)

General case:

boolean contains(Node<E> current, E obj)

General case: Look left or right (recursively).

boolean contains(Node<E> current, E obj)

General case: Look left or right (recursively).

if (obj.compareTo(current.value) < 0) {

result = contains(current.left, obj);

} else {

result = contains(current.right, obj);

}

boolean contains(Node<E> current, E obj)

private boolean contains(Node<E> current, E obj) {

boolean result;

if (current == null) {

result = false;

} else {

int test = obj.compareTo(current.value);

if (test == 0) {

result = true;

} else if (test < 0) {

result = contains(current.left, obj);

} else {

result = contains(current.right, obj);

}

}

return result;

}

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

3. If current is null the obj was not found, end;

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

3. If current is null the obj was not found, end;

4. If current.value is the value we’re looking for, end;

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

3. If current is null the obj was not found, end;

4. If current.value is the value we’re looking for, end;

5. If the value is smaller than that of the current node,

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

3. If current is null the obj was not found, end;

4. If current.value is the value we’re looking for, end;

5. If the value is smaller than that of the current node, current = current.left,

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

3. If current is null the obj was not found, end;

4. If current.value is the value we’re looking for, end;

5. If the value is smaller than that of the current node, current = current.left,
go to 3;

public boolean contains(E obj) (take 2)

Should the method boolean contains(Comparable o) be necessarily recursive?
No.

Develop a strategy.

1. Use a temporary variable current of type Node;

2. Initialise this variable to designate the root of the tree;

3. If current is null the obj was not found, end;

4. If current.value is the value we’re looking for, end;

5. If the value is smaller than that of the current node, current = current.left,
go to 3;

6. Else current = current.right, go to 3.

public boolean contains(E obj) (take 2)

public boolean contains2(E obj) {

boolean found = false;

Node<E> current = root;

while (! found && current != null) {

int test = obj.compareTo(current.value);

if (test == 0) {

found = true;

} else if (test < 0) {

current = current.left;

} else {

current = current.right;

}

}

return found;

}

Tree traversal

Similarly to lists, it is often necessary to visit all the nodes of a tree and this is
called traversing the tree.

Tree traversal

Similarly to lists, it is often necessary to visit all the nodes of a tree and this is
called traversing the tree.

While traversing the tree, operations are applied to each node, we call these
operations visiting the node.

Tree traversal

Similarly to lists, it is often necessary to visit all the nodes of a tree and this is
called traversing the tree.

While traversing the tree, operations are applied to each node, we call these
operations visiting the node.

• < Visit the root, traverse left sub-tree, traverse right sub-tree > is called
pre-order traversal;

Tree traversal

Similarly to lists, it is often necessary to visit all the nodes of a tree and this is
called traversing the tree.

While traversing the tree, operations are applied to each node, we call these
operations visiting the node.

• < Visit the root, traverse left sub-tree, traverse right sub-tree > is called
pre-order traversal;

• < Traverse left sub-tree, visit the root, traverse right sub-tree > is called
in-order traversal;

Tree traversal

Similarly to lists, it is often necessary to visit all the nodes of a tree and this is
called traversing the tree.

While traversing the tree, operations are applied to each node, we call these
operations visiting the node.

• < Visit the root, traverse left sub-tree, traverse right sub-tree > is called
pre-order traversal;

• < Traverse left sub-tree, visit the root, traverse right sub-tree > is called
in-order traversal;

• < Traverse left sub-tree, traverse right sub-tree, visit the root > is called
post-order traversal;

Exercises

The simplest operation consists of printing the value of the node.

5

8

15

12 292 7

Show the result for each strategy: pre-order, in-order and post-order traversal.

Exercises

The simplest operation consists of printing the value of the node.

5

8

15

12 292 7

Show the result for each strategy: pre-order, in-order and post-order traversal.

Which strategy prints the values in increasing order?

