
Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

ITI 1121. Introduction to Computing II†

Marcel Turcotte
(with contributions from R. Holte)

School of Electrical Engineering and Computer Science
University of Ottawa

Version of January 19, 2015

†
Please don’t print these lecture notes unless you really need to!

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Review

Objectives:

1. Knowing the expectations regarding Java

2. Introducing basic concepts of computer architecture and
program execution

Lectures:

I Pages 597–631 of E. Koffman and P. Wolfgang.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Prerequisite

Familiarity with the following concepts is assumed:

I Using Java’s pre-defined data types:
including arrays and Strings;

I Control structures:
such as if, for, while. . . ;

I Procedural abstractions (structured programming):
i.e. how to define and use (static) methods;

I How to edit, compile and run a Java program.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Prerequisite

Familiarity with the following concepts is assumed:

I Using Java’s pre-defined data types:
including arrays and Strings;

I Control structures:
such as if, for, while. . . ;

I Procedural abstractions (structured programming):
i.e. how to define and use (static) methods;

I How to edit, compile and run a Java program.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Prerequisite

Familiarity with the following concepts is assumed:

I Using Java’s pre-defined data types:
including arrays and Strings;

I Control structures:
such as if, for, while. . . ;

I Procedural abstractions (structured programming):
i.e. how to define and use (static) methods;

I How to edit, compile and run a Java program.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Prerequisite

Familiarity with the following concepts is assumed:

I Using Java’s pre-defined data types:
including arrays and Strings;

I Control structures:
such as if, for, while. . . ;

I Procedural abstractions (structured programming):
i.e. how to define and use (static) methods;

I How to edit, compile and run a Java program.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

1 C 17%
2 Java 16%
3 Objective-C 7%
4 C++ 7%
5 C# 5%
6 PHP 4%
7 JavaScript 3%
8 Python 3%
9 Perl 2%

10 PL/SQL 2%

⇒ TIOBE Programming Community Index

Marcel Turcotte ITI 1121. Introduction to Computing II

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

1 C 17%
2 Java 16%
3 Objective-C 7%
4 C++ 7%
5 C# 5%
6 PHP 4%
7 JavaScript 3%
8 Python 3%
9 Perl 2%

10 PL/SQL 2%

⇒ TIOBE Programming Community Index

Marcel Turcotte ITI 1121. Introduction to Computing II

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

Java shares the first rank in popularity with C, but where is Java
used? I don’t seem to know any applications built using Java.

I Server-side Web applications and services

I Mobile (phones) applications

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

Java shares the first rank in popularity with C, but where is Java
used? I don’t seem to know any applications built using Java.

I Server-side Web applications and services

I Mobile (phones) applications

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

“ According to a report from NetApplications, which has measured
browser usage data since 2004, Oracle’s Java Mobile Edition has
surpassed Android as the #2 mobile OS on the internet at 26.80%,
with iOS at 46.57% and Android at 13.44%. And the trend
appears to be growing. Java ME powers hundreds of millions of
low-end ’feature phones’ for budget buyers. In 2011, feature
phones made up 60% of the install base in the U.S. ”

Slashdot
January 3, 2012

http://bit.ly/xSk5pN

Marcel Turcotte ITI 1121. Introduction to Computing II

http://bit.ly/xSk5pN

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

I C requires discipline
(memory management, pointers. . .)

I Java is good vehicle for teaching
(interface, single inheritance. . .)

I Once you know Java, learning other
imperative/object-oriented programming languages is easy

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

I C requires discipline
(memory management, pointers. . .)

I Java is good vehicle for teaching
(interface, single inheritance. . .)

I Once you know Java, learning other
imperative/object-oriented programming languages is easy

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

I C requires discipline
(memory management, pointers. . .)

I Java is good vehicle for teaching
(interface, single inheritance. . .)

I Once you know Java, learning other
imperative/object-oriented programming languages is easy

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Why Java?

“If you look at job requirements across the world, the demand has
skyrocketed for Java (holds number 1 place), Objective-C and
Swift now, C#.”

What Is The Most Valuable Programming Language To
Know For The Future And Why?
www.forbes.com/sites/quora/2014/07/14/what-is-the-most-
valuable-programming-language-to-know-for-the-future-and-why

Marcel Turcotte ITI 1121. Introduction to Computing II

http://www.forbes.com/sites/quora/2014/07/14/what-is-the-most-valuable-programming-language-to-know-for-the-future-and-why/
http://www.forbes.com/sites/quora/2014/07/14/what-is-the-most-valuable-programming-language-to-know-for-the-future-and-why/

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Program execution

What are the two main modes of execution?

Interpreter
(Virtual machine)

Compiled program
(binary code)

Program
(byte-code)

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Program execution

What are the two main modes of execution?

Interpreter
(Virtual machine)

Compiled program
(binary code)

Program
(byte-code)

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Compiling and executing a Java program

> javac MyProgram.java

Produces MyProgram.class (the byte-code)

> java MyProgram

Here, java the Java Virtual Machine (JVM).

Interpreter
(Virtual machine)

Compiled program
(binary code)

Program
(byte-code)

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Compiling and executing a Java program

> javac MyProgram.java

Produces MyProgram.class (the byte-code)

> java MyProgram

Here, java the Java Virtual Machine (JVM).

Interpreter
(Virtual machine)

Compiled program
(binary code)

Program
(byte-code)

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Compiling and executing a Java program

> javac MyProgram.java

Produces MyProgram.class (the byte-code)

> java MyProgram

Here, java the Java Virtual Machine (JVM).

Interpreter
(Virtual machine)

Compiled program
(binary code)

Program
(byte-code)

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Motivation

I Under the old academic program, ITI 1121 (CSI 1101) used to
have a section on computer architecture: with topics such as
Boolean algebra, switching logic, number representation,
assembly programming, program compilation and
interpretation.

I Today’s lecture presents a simplified model of the
execution of computer programs at the hardware level.

I This helps understanding the distinction between primitive
and reference types, the execution of computer programs in
general.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Motivation

I Under the old academic program, ITI 1121 (CSI 1101) used to
have a section on computer architecture: with topics such as
Boolean algebra, switching logic, number representation,
assembly programming, program compilation and
interpretation.

I Today’s lecture presents a simplified model of the
execution of computer programs at the hardware level.

I This helps understanding the distinction between primitive
and reference types, the execution of computer programs in
general.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Motivation

I Under the old academic program, ITI 1121 (CSI 1101) used to
have a section on computer architecture: with topics such as
Boolean algebra, switching logic, number representation,
assembly programming, program compilation and
interpretation.

I Today’s lecture presents a simplified model of the
execution of computer programs at the hardware level.

I This helps understanding the distinction between primitive
and reference types, the execution of computer programs in
general.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

TC1101

A simplified microprocessor and its assembly language.
M

ai
n

m
em

or
y

OpCode OpAddrOpAddr
H L

PC
R/W

Control

MDR

MAR

H
Z
N

ALU

A

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

von Neumann model

The design of modern computers is based on a model proposed by
John von Neumann in 1945.

Memory: contains the instructions and the data;

Processing unit: performs arithmetic and logic operations;

Control unit: interprets the instructions.

m
em

o
ry

Processing
Unit

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Memory model

I Can be seen as a large array, where each cell holds one bit of
information (binary digit), 0 or 1;

...

0 1 1 0

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Memory model

I Each byte has a unique/distinct address

I Bytes are grouped together to form words

I Some data types require using more than one byte

...

0123

0
4
8

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Memory

I This type of memory is called RAM
(Random Access Memory)

I The access time is the same (is constant) for all cells,
Typically, 5 to 70 nano seconds (nano = 10−9)

...

0123

0
4
8

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Central Processing Unit (CPU), processor or µ-processor

I Executes one instruction at a time (in the case of sequential
computers — not parallel ones)

Registers ALU

CU

ALU Arithmetics/Logic Unit, contains the necessary
circuits to execute all the instructions supported by
the hardware, e.g. addition

CU Control Unit, transfers the instructions from memory
and determine their type

Registers are units inside the processor that serve to store data
Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Mnemonic, opCode and description

LDA 91 load x
STA 39 store x
CLA 08 clear (a=0, z=true, n=false)
INC 10 increment accumulator (modifies z and n)

ADD 99 add x to the accumulator (modifies z and n)
SUB 61 subtract x to the accumulator (modifies z and n)
JMP 15 unconditional branch to x

JZ 17 go to x if z==true
JN 19 go to x if n==true

DSP 01 display the content of the memory location x
HLT 64 halt

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Compilation

Programs, statements in a high level programming language, are
translated (compiled), into a lower level representation (assembly,
machine code), that can be directly interpreted by the hardware.

The expression y = x + 1 is translated to assembly code:

LDA X

INC

STA Y

HLT

which is then translated to machine code:
91 00 08 10 39 00 09 64 10 99

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Compilation

Programs, statements in a high level programming language, are
translated (compiled), into a lower level representation (assembly,
machine code), that can be directly interpreted by the hardware.
The expression y = x + 1 is translated to assembly code:

LDA X

INC

STA Y

HLT

which is then translated to machine code:
91 00 08 10 39 00 09 64 10 99

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Division, successive subtractions: assembly

[1] CLA

STA Quot

[2] LDA X

[3] SUB Y

[4] JN [7]

[5] STA Temp

LDA Quot

INC

STA Quot

LDA Temp

[6] JMP [3]

[7] ADD Y

[8] STA Rem

[9] DSP Quot

[10] DSP Rem

[11] HLT

X BYTE 25

Y BYTE 07

Quot BYTE 00

Rem BYTE 00

Temp BYTE 00

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Division: machine code

[1] CLA

STA Quot

[2] LDA X

[3] SUB Y

[4] JN [7]

[5] STA Temp

LDA Quot

INC

STA Quot

LDA Temp

[6] JMP [3]

[7] ADD Y

[8] STA Rem

[9] DSP Quot

[10] DSP Rem

[11] HLT

X BYTE 25

Y BYTE 07

Quot BYTE 00

Rem BYTE 00

Temp BYTE 00

⇒

08

39 00 44

91 00 42

61 00 43

19 00 29

39 00 46

91 00 44

10

39 00 44

91 00 46

15 00 07

99 00 43

39 00 45

01 00 44

01 00 45

64

25

07

00

00

00

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Division: machine code

08 39 00 44 91 00 42 61 00 43 19 00 29 39 00 46 91 00 44 10 39
00 44 91 00 46 15 00 07 99 00 43 39 00 45 01 00 44 01 00 45 64
25 07 00 00 00

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Registers

I Memory units that reside inside the processor, access time is
very fast

I Registers are not identified by address but by name
(MAR, MDR, A, etc.)

I While central memory is general, registers are specific,
each of them has a distinct function/role

I While the size of the elements of the central memory is the
same, the size of the registers vary according to their
function

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Registers

I Memory units that reside inside the processor, access time is
very fast

I Registers are not identified by address but by name
(MAR, MDR, A, etc.)

I While central memory is general, registers are specific,
each of them has a distinct function/role

I While the size of the elements of the central memory is the
same, the size of the registers vary according to their
function

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Registers

I Memory units that reside inside the processor, access time is
very fast

I Registers are not identified by address but by name
(MAR, MDR, A, etc.)

I While central memory is general, registers are specific,
each of them has a distinct function/role

I While the size of the elements of the central memory is the
same, the size of the registers vary according to their
function

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Registers

I Memory units that reside inside the processor, access time is
very fast

I Registers are not identified by address but by name
(MAR, MDR, A, etc.)

I While central memory is general, registers are specific,
each of them has a distinct function/role

I While the size of the elements of the central memory is the
same, the size of the registers vary according to their
function

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

R0

Rn

IR

PC

MAR MDR

ALU

Main memory

General

Registers

Control

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Interface between the memory and the CPU

I Bits are not transferred one at a time, but in parallel

I We call bus the set of wires (lines) that enable
communications between units

I There are 3 types of buses: data, address and control

I The number of lines (wires) determines the width of the bus

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

MAR

MDR

R/W

...

...
M

ai
n

m
em

or
y

Control

Unit

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Address bus

I The width of the bus determines the maximum size of the
memory

I If the width of the bus is 16 lines, addresses are made of 16
bits, there are therefore 216 = 65, 536 distinct addresses, for
32 lines, addresses are made of 32 bits, there are therefore
232 ' 4× 109 distinct addresses

I The memory register will also have 32 bits to store an address

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Data bus

The width of the data bus determines the number of bits
transfered in one access (to/from memory).

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Control bus (lines)

In our simplified model, indicates the direction of a transfer

R (read) transfer should be made from the memory to the
processor

W (write) transfer should be made from the processor to the
memory

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Transfer from the memory

In order to transfer a value from the memory location/address x to
the processor,

1. put the value x into the memory address register

2. set the status bit RW to true

3. activate the control line “access memory”

4. the memory data register (MDR) now contains a copy of the
value found at the address x of the memory

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Transfer to the memory

In order to transfer a value v from the processor to the address
location x of the memory:

1. put v into the memory data register (MDR);

2. put x into the memory address register (MAR);

3. set the status bit RW to false;

4. activate the control line “access memory”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

“FETCH-EXCECUTE” Cycle

1. fetch:

1.1 transfer the opcode,
1.2 increment PC,

2. depending of the opcode transfer the operand:

2.1 transfer the first byte,
2.2 increment PC,
2.3 transfer the second byte,
2.4 increment PC

3. execute.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Example

In order to add 1 to the value x and save the result to y
(y = x + 1)

I Load the value x into the accumulator, register A

I Increment the value of the accumulator

I Save the value of the accumulator at the address y

Which requires three machine instructions:

91: load

10: increment

39: store

If x designates the address 00 08 and y designates the address 00
09, then y = x + 1 can be written in machine language as follows:
91 00 08 10 39 00 09 64 10 99

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Example

In order to add 1 to the value x and save the result to y
(y = x + 1)

I Load the value x into the accumulator, register A

I Increment the value of the accumulator

I Save the value of the accumulator at the address y

Which requires three machine instructions:

91: load

10: increment

39: store

If x designates the address 00 08 and y designates the address 00
09, then y = x + 1 can be written in machine language as follows:
91 00 08 10 39 00 09 64 10 99

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Example

In order to add 1 to the value x and save the result to y
(y = x + 1)

I Load the value x into the accumulator, register A

I Increment the value of the accumulator

I Save the value of the accumulator at the address y

Which requires three machine instructions:

91: load

10: increment

39: store

If x designates the address 00 08 and y designates the address 00
09, then y = x + 1 can be written in machine language as follows:
91 00 08 10 39 00 09 64 10 99

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

TC1101 Java Simulator

These slides provide complementary information on the TC1101
microprocessor and its assembly language.

M
ai

n
m

em
or

y

OpCode OpAddrOpAddr
H L

PC
R/W

Control

MDR

MAR

H
Z
N

ALU

A

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

TC1101 Java Simulator

Our simulator plays the same role as the Java Virtual Machine
(the interpreter on the right hand side)
and shares many characteristics.

Interpreter
(Virtual machine)

Compiled program
(binary code)

Program
(byte-code)

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Mnemonic, opCode and description

LDA 91 load x
STA 39 store x
CLA 08 clear (a=0, z=true, n=false)
INC 10 increment accumulator (modifies z and n)

ADD 99 add x to the accumulator (modifies z and n)
SUB 61 subtract x to the accumulator (modifies z and n)
JMP 15 unconditional branch to x

JZ 17 go to x if z==true
JN 19 go to x if n==true

DSP 01 display the content of the memory location x
HLT 64 halt

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Functional Units of the TC-1101

PC (2 bytes): Program Counter , one 2 bytes register that contains
the address of the next instruction to be executed;

opCode (byte): instruction register (sometimes called IR), contains
the OPCODE of the current instruction;

opAddr (2 bytes): the operand of the current instruction. The
operand is always an address. Some instructions
necessitate the value found at the address designated
by the operand — this value is not transfered by the
basic cycle, but needs to be transfered during the
execution of the instruction (see step 3 of the cycle
and the description of each instruction below);

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Functional Units of the TC-1101

MDR (byte): Memory Data Register. A value transfered
(read/written) from the memory to the processor (or
vice-versa) is always stored in this registered;

MAR (2 bytes) : Memory Address Register . This register contains
the memory address of a value to be read or to be
written;

A (byte): Accumulator. All the arithmetic operations use this
register as an operand and also to store their result;

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Functional Units of the TC-1101

H (bit): status bit “Halt”. This bit is set by the instruction
halt (hlt). If the bit is true the processor stops at the
end of this cycle;

N (bit): status bit “Negative”. Arithmetic operations set this
bit to true whenever they produce a negative result.
Some operations are not affecting the value of this
bit, therefore its value does not always reflect the
content of the accumulator;

Z (bit): status bit “Zero”. Arithmetic operations set the
value of this bit to true whenever the result is zero.
Some operations do not affect the content of this bit,
therefore, its value does not always reflect the
content of the accumulator;

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Functional Units of the TC-1101

RW (bit): status bit “READ/WRITE”. A value true means a
value must be read (fetched) from the memory and
transfered to MDR. A value false signifies that a
value must be transfered from MDR to the memory.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

TC1101 Simulator

I Uses constants to represent opcodes

I Class variables represent memory and registers

I The class method accessMemory() simulates the transfer of
data in between the processor and memory

I The class method run() simulates the “FETCH-EXECUTE”
cycle: read opCode, transfer operand and execute the current
instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Constants to represent the opCodes

import j a v a . i o .∗ ;
import SimIO ; // read data from a f i l e
c l a s s Sim {

// add r e s s e s a r e 2 by t e s
p u b l i c s t a t i c f i n a l i n t MAX ADDRESS = 9999 ;

// l oad from memory to the accumu la to r
p u b l i c s t a t i c f i n a l i n t LDA = 91 ;
// save accumu la to r to memory
p u b l i c s t a t i c f i n a l i n t STA = 39 ;
// s e t accumu la to r to 0
p u b l i c s t a t i c f i n a l i n t CLA = 8 ;
// inc r ement accumu la to r by 1
p u b l i c s t a t i c f i n a l i n t INC = 10 ;
// add to the accumu la to r
p u b l i c s t a t i c f i n a l i n t ADD = 99 ;
// s u b t r a c t from the accumu la to r
p u b l i c s t a t i c f i n a l i n t SUB = 61 ;
// u n c o n d i t i o n a l branch ”go to ”
p u b l i c s t a t i c f i n a l i n t JMP = 15 ;
// branch to add r e s s i f Z
p u b l i c s t a t i c f i n a l i n t JZ = 17 ;
// branch to add r e s s i f N
p u b l i c s t a t i c f i n a l i n t JN = 19 ;
// d i s p l a y to s c r e e n
p u b l i c s t a t i c f i n a l i n t DSP = 1 ;
// ” h a l t ”
p u b l i c s t a t i c f i n a l i n t HLT = 64 ;

// . . .

Modeling the state of the memory and registers

p r i v a t e s t a t i c f i n a l i n t [] memory = new i n t [MAX ADDRESS + 1] ;

// program coun t e r
p r i v a t e s t a t i c i n t pc ;

// accumu la to r
p r i v a t e s t a t i c i n t a ;

// opcode o f the c u r r e n t i n s t r u c t i o n
p r i v a t e s t a t i c i n t opCode ;

// add r e s s o f the operand
p r i v a t e s t a t i c i n t opAddr ;

// s t a t u s b i t ”Zero ”
p r i v a t e s t a t i c boo lean z ;

// s t a t u s b i t ” Nega t i v e ”
p r i v a t e s t a t i c boo lean n ;

// s t a t u s b i t ” Ha l t ”
p r i v a t e s t a t i c boo lean h ;

// memory add r e s s r e g i s t e r
p r i v a t e s t a t i c i n t mar ;

// memory data r e g i s t e r
p r i v a t e s t a t i c i n t mdr ;

// b i t Read/Write . Read = True ; Wr i te = Fa l s e
p r i v a t e s t a t i c boo lean rw ;

Loading a machine code program

p u b l i c s t a t i c v o i d l o ad (S t r i n g f i l e n ame)
throws IOExcept i on {

i n t [] v a l u e s ;
i n t i ;
i n t add r e s s = 0 ;
SimIO . s e t I n p u t F i l e (f i l e n ame) ;
w h i l e (! SimIO . eo f ()) {

v a l u e s = SimIO . readCommented Intege rL ine () ;
f o r (i = 0 ; i < v a l u e s . l e n g t h ; i++) {

memory [a dd r e s s] = v a l u e s [i] ;
a dd r e s s = add r e s s + 1 ;

}
}

}

Memory access

// the method s imu l a t e s the e f f e c t o f a c t i v a t i n g the a c c e s s
// c o n t r o l l i n e .

p r i v a t e s t a t i c v o i d accessMemory () {

i f (rw) {

// rw=True s i g n i f i e s ” read ”
// copy the v a l u e from memory to p r o c e s s o r

mdr = memory [mar] ;

} e l s e {

// rw=Fa l s e s i g n i f i e s ” w r i t e ”
// copy a v a l u e from the p r o c e s s o r to the memory

memory [mar] = mdr ;

}
}

// . . .

FETCH-EXECUTE

// ‘ ‘FETCH−EXECUTE ’ ’ c y c l e s imu l a t i o n s t a r t s
// at the add r e s s 00 00

p u b l i c s t a t i c v o i d run () {

pc = 0 ; // a lways s t a r t s a t z e r o
h = f a l s e ; // re− i n i t i a l i z e the s t a t u s b i t h a l t

w h i l e (h == f a l s e) {

// l oad opCode

mar = pc ;
pc = pc + 1 ; // pc i s i nc r emented
rw = t r u e ;
accessMemory () ;
opCode = mdr ;

FETCH-EXECUTE (contd)

// i f the opCode i s odd , t h i s i n s t r u c t i o n
// n e c e s s i t a t e s an operand

i f ((opCode % 2) == 1) {
mar = pc ;
pc = pc + 1 ; // inc r ement pc
rw = t r u e ;
accessMemory () ; // r e ad i n g the h igh pa r t o f
opAddr = mdr ; // t h i s a dd r e s s
mar = pc ;
pc = pc + 1 ; // inc r ement pc
rw = t r u e ;
accessMemory () ; // read low pa r t o f t h i s a dd r e s s
opAddr = 100 ∗ opAddr + mdr ; // put h igh+low t o g e t h e r

}

FETCH-EXECUTE (contd)

// exe cu t e the i n s t r u c t i o n

s w i t c h (opCode) {

case LDA: {
mar = opAddr ; // read va l u e d e s i g n a t e d by operand
rw = t r u e ;
accessMemory () ;
a = mdr ; // put t h i s v a l u e i n t o accumu la to r
break ;

}

FETCH-EXECUTE (contd)

case STA: {
mdr = a ; // put con t en t o f the accumu la to r
mar = opAddr ; // at add r e s s d e s i g n a t e d by opAddr
rw = f a l s e ;
accessMemory () ;
break ;

}

case CLA : {
a = 0 ; // c l e a r = s e t accumu la to r to z e r o
z = t r u e ; // a l s o s e t s s t a t u s b i t Z and N
n = f a l s e ;
break ;

}

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

FETCH-EXECUTE (contd)

case INC : {
a = (a + 1) % 100 ; // inc r ement = add 1 to accumu la to r
z = (a == 0) ; // a f f e c t the s t a t u s b i t s
n = (a < 0) ;
break ;

}

case ADD: {
mar = opAddr ; // read va l u e d e s i g n a t e d by operand
rw = t r u e ;
accessMemory () ;
a = (a + mdr) % 100 ; // add t h i s v a l u e to accumu la to r
z = (a == 0) ; // update the s t a t u s b i t s
n = (a < 0) ;
break ;

}

Marcel Turcotte ITI 1121. Introduction to Computing II

FETCH-EXECUTE (contd)

case SUB: {
mar = opAddr ; // read va l u e d e s i g n a t e d by operand
rw = t r u e ;
accessMemory () ;
a = (a − mdr) % 100 ; // s u b t r a c t from the accumu la to r
z = (a == 0) ; // update the s t a t u s b i t s
n = (a < 0) ;
break ;

}

case JMP: {
pc = opAddr ; // the operand c o n t a i n s the add r e s s
break ; // o f nex t i n s t r u c t i o n to be execu ted

}

FETCH-EXECUTE (contd)

case JZ : {
i f (z) { // branch i f Z

pc = opAddr ;
}
break ;

}

case JN : { // branch i f N
i f (n) {

pc = opAddr ;
}
break ;

}

case HLT: {
h = t r u e ; // s e t s H to t r u e
break ;

}

FETCH-EXECUTE (contd)

case DSP: {
mar = opAddr ; // read va l u e d e s i g n a t e d by operand
rw = t r u e ;
accessMemory () ;

// i n o r d e r to produce a c l e a n output add z e r o s to the l e f t
// i f n e c e s s a r y

S t r i n g smar = ”” + mar ;
w h i l e (smar . l e n g t h () < 4) {

smar = ”0” + smar ;
}

S t r i n g smdr = ”” + mdr ;
i f (mdr < 10) {

smdr = ” ” + smdr ;
}

System . out . p r i n t l n (”memory l o c a t i o n ” + smar +
” c on t a i n s ” + smdr) ;

break ;
}
d e f a u l t : System . out . p r i n t l n (” E r r o r − unknown opCode : ” + opCode) ;
}

}
}
}

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Summary

I You should be familiar with primitive and reference types

I You should be familiar with control structures

I You should be able to compile, run and execute a Java
program

I I presented an overview of a simplified computer architecture

I I simulated the execution of a simple program

I You should understand the concept of a variable in the
context of this simplified model

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Summary

I You should be familiar with primitive and reference types

I You should be familiar with control structures

I You should be able to compile, run and execute a Java
program

I I presented an overview of a simplified computer architecture

I I simulated the execution of a simple program

I You should understand the concept of a variable in the
context of this simplified model

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Summary

I You should be familiar with primitive and reference types

I You should be familiar with control structures

I You should be able to compile, run and execute a Java
program

I I presented an overview of a simplified computer architecture

I I simulated the execution of a simple program

I You should understand the concept of a variable in the
context of this simplified model

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Summary

I You should be familiar with primitive and reference types

I You should be familiar with control structures

I You should be able to compile, run and execute a Java
program

I I presented an overview of a simplified computer architecture

I I simulated the execution of a simple program

I You should understand the concept of a variable in the
context of this simplified model

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Summary

I You should be familiar with primitive and reference types

I You should be familiar with control structures

I You should be able to compile, run and execute a Java
program

I I presented an overview of a simplified computer architecture

I I simulated the execution of a simple program

I You should understand the concept of a variable in the
context of this simplified model

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Summary

I You should be familiar with primitive and reference types

I You should be familiar with control structures

I You should be able to compile, run and execute a Java
program

I I presented an overview of a simplified computer architecture

I I simulated the execution of a simple program

I You should understand the concept of a variable in the
context of this simplified model

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Next lecture

I Primitive vs reference types

I Call by value

I Scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Next lecture

I Primitive vs reference types

I Call by value

I Scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Next lecture

I Primitive vs reference types

I Call by value

I Scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

References I

E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 2e edition, 2010.

P. Sestoft.
Java Precisely.
The MIT Press, second edition edition, August 2005.

D. J. Barnes and M. Kölling.
Objects First with Java: A Practical Introduction Using BlueJ.
Prentice Hall, 4e edition, 2009.

Marcel Turcotte ITI 1121. Introduction to Computing II

Prerequisite
Computer Architecture

Appendix: TC1101 Java Simulator
Epilogue

Please don’t print these lecture notes unless you really need to!

Marcel Turcotte ITI 1121. Introduction to Computing II

	Prerequisite
	Computer Architecture
	Appendix: TC1101 Java Simulator
	Epilogue

