
ITI 1121. Introduction to Computing II ∗

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of February 23, 2013

Abstract

• Implementing a stack using linked elements

∗These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.

Summary

We have seen that arrays are efficient data structures. Accessing any element of
an array necessitates a constant number of operations.

For some applications, particularly if the number of elements to be stored is not
known in advance or varies during the execution of the program, arrays are not
suitable.

A technique frequently used consists of copying the elements of the array to a
new one that’s larger and substituting the new array for the old one.

The consequences are that 1) insertions into the array are now slower (because of
the need to copy the elements to the new array) and 2) the amount of physical
memory used is larger than the actual logical size required by the application; i.e.
memory is reserved but not necessarily used.

Linked structures

We now consider a data structure that always uses the exact amount of memory
required by the application.

This data structure grows one element at a time without copying any elements!

We will need to create “containers” such that each “container” will hold one
element.

p

13:00 14:30

The price to pay will be that certain elements will be more accessible than others,
as the above figure suggests.

Linked structures

Access to the first element will be fast, but the access to the subsequent elements
will necessitate “traversing” the data structure up to the element of interest.

Just like arrays, each element has a single predecessor and successor (except for
the first and last elements). We say that the structure is linear.

Unlike the arrays, this data structure will not be implemented with
contiguous memory cells.

How to implement such structure in Java?

Study the following class definition (as usual, we start with the visibility of the
instance variables being public, we will fix that later):

public class Elem {

public Object value;

public Elem next;

}

Do you notice anything peculiar?

Yes, the type of the reference next is the name of the class that we are currently
defining.

Hum, is this legal?

Let’s try compiling this definition:

> javac Elem.java

⇒ it works!

What does it do?

Let’s see what we can do with it, let’s declare a reference of type Elem:

Elem p;

p

Creating an instance of the class Elem.

new Elem();

p

Let’s assign the reference of the newly created Elem to p:

p

Convention. I will be using circles to represent the memory diagrams of all the
objects of the class Elem. The top part represents the instance variable value.
The bottom par represents the instance variable next.

p

How would you change the content of the instance variable value?

p.value = new Time(13, 0, 0);

p

13:00

We use the “dot” notation to access the attribute; here, this works because the
instance variable is public (more about this later).

Let’s create another Elem object:

new Elem();

13:00

p

⇒ How are we going to connect the two together?

p.next = new Elem();

p

13:00

⇒ The reference to the newly created Elem object is assigned to p.next (a
variable of type Elem).

p

13:00

How are we going to assign a value to that node (the elements of a linked
structure are often called nodes)?

p.next.value = new Time(14, 30, 0);

p

13:00 14:30

⇒ To change the value of that node, we follow the reference p.next.

Let’s create another node:

new Elem()

p

13:00 14:30

⇒ Again, how is it going to be “linked” to the other nodes.

p.next.next = new Elem();

p

14:3013:00

The reference of the newly created node has been assigned to the instance variable
p.next.next.

p

14:3013:00

Let’s assign a value to the newly inserted element. How?

p.next.next.value = new Time(16, 0, 0);

p

13:00 14:30 16:00

p

13:00 14:30 16:00

What does the following statement do?

p.next.next = p;

13:00 14:30 16:00

p

p.next.next = p;

Hum . . .

• A circular data structure has been created!
• The element whose value is 16:00 is not accessible anymore;
• The node will be recycled by the garbage collector; gc().

⇒ All this is the basis of linked data structures: values are linked one to another
with help of reference (pointer) variables.

Linked data structures

public class Elem {

public Object value;

public Elem next;

}

Linked structures allow to:

• Represent linear data structures such as lists, stacks and queues;
• They always use the “right” amount of memory;
• All this is made possible because of this self reference; the declaration of next

of type Elem within the class Elem itself.

⇒ A data structure such as the one we have just described is called a linked list,
to be more precise this is singly linked list because each node has a single link
(the instance variable next).

Summary

Linked data structures are an alternative to arrays to store a “collection of values”.

Linked structures always use the required amount of memory; because each
element is stored in its own “container”, which we called Elem. Each container
is linked to its successor with help of a reference.

For now, we limit ourselves to linear data structures but linked structures are also
used to represent graphs and trees.

Typical constructor for the class Elem:

class Elem {

Object value;

Elem next;

Elem(Object value, Elem next) {

this.value = value;

this.next = next;

}

}

and its typical usage:

p = new Elem("A", null);

"A"

p

q = new Elem("B", p);

"A""B"

p

q

Pitfall

The following example illustrates a kind of error that is observed frequently when
working with linked data structures:

Elem p = null, q = null;

p = new Elem(1, null);

q.next = p;

The statements is syntactically correct but will produce the following error at
runtime:

Exception in thread "main" java.lang.NullPointerException

at T01.main(T01.java:8)

⇒ why?

"A""B"

p

q

The above diagram illustrates the problem. The intent, maybe, was to create
a linked list so that q.next designate the element currently designated by p,
however, the object shown as a dashed line has never been created.

The appropriate statements should have been:

p = new Elem("A", null);

q = new Elem("B", null);

q.next = p;

or
p = new Elem("A", null);

q = new Elem("B", p);

Workaround

As a general rule, whenever an attribute of an object is used, it’s a good idea to
first make sure (implicitly or explicitly) that the object exists:

if (q != null)

q.next = ...

⇒ you’ll see that testing for null will become an idiom!

Stack: linked implementation

We will be using linked elements to implement the interface Stack.

public class LinkedStack implements Stack {

public boolean empty() {

}

public void push(Object o) {

}

public Object peek() {

}

public Object pop() {

}

}

LinkedStack

What are the instance variables?

public class LinkedStack implements Stack {

private Elem bottom; // or is it top?

public boolean empty() { ... }

public void push(Object o) { ... }

public void push(Object o) { ... }

public Object pop() { ... }

}

2

6

3

Compare the following two implementation:

top

s

63 2

bottom

s

36 2

The implementation where most accessible element (the first one) is top should
be preferred since all the operations (e.g. push and pop) are accessing the same
extremity.

In the other implementation, the entire chain should be scanned in order to add
or remove an element.

The more elements there are in the stack, the more costly the push and pop
operations will become.

Class Elem (0/3)

In the current implementation, the instance variables of the class are public which
violates the principle of encapsulation, this is not a good design strategy. What
are the options?

Class Elem (1/3)

public class Elem {

private Object value;

private Elem next;

public Elem(Object value, Elem next) {

this.value = value;

this.next = next;

}

public void setValue(Object value) {

this.value = value;

}

public void setNext(Elem next) {

this.next = next;

}

public Object getValue() {

return value;

}

public Elem getNext() {

return next;

}

}

Class Elem (2/3)

class Elem {

protected Object value;

protected Elem next;

protected Elem(Object value, Elem next) {

this.value = value;

this.next = next;

}

}

Elem is a first level class whose visibility is “package”. If LinkedList and Elem
are members of the same “package” then LinkedStack has access to the instance
variables of the class Elem.

Class Elem (3/3)

public class LinkedStack implements Stack {

private static class Elem {

private Object value;

private Elem next;

private Elem(Object value, Elem next) {

this.value = value;

this.next = next;

}

}

private Elem top;

// ...

}

Class Elem (3/3)

Elem is a nested class of the class LinkedStack.

Although the visibility of the class is private, and the visibility of its instance
variable is private, LinkedStack has access to the instance variables of Elem,
because Elem is a nested class of LinkedStack.

For now, all our nested classes will be “static”. Such classes can be used as if
they were top level classes except that their definition is nested and the outer
implementation has access to the implementation of the nested class.

Later, we will consider an other kind of nested class.

Generics

public class LinkedStack<T> implements Stack<T> {

private static class Elem<E> {

private E info;

private Elem<E> next;

private Elem(E info, Elem<E> next) {

this.info = info;

this.next = next;

}

}

private Elem<T> top; // Instance variable

public boolean isEmpty() { ... }

public void push(T info) { ... }

public T peek() { ... }

public T pop() { ... }

}

public class LinkedStack implements Stack {

private static class Elem { ... }

private Elem top;

public LinkedStack() {

}

public boolean isEmpty() {

}

public Object peek() {

// pre-conditions

}

public Object pop() {

// pre-conditions:

}

public void push(Object o) {

// pre-conditions:

}

}

top

s

63 2

s.peek() should return the value 3..

public Objecct peek () {

return _________________ ;

}

Complete the implementation.

top.value;

Detecting the end of a linked structure

p

13:00 14:30 16:00

Look at the above picture, how can you detect the end of a linked structure?

What distinguishes the last node from the others is the fact that its attribute
next contains the value null.

Traversal

Let’s override the method toString:

public String toString();

In order to assemble the String one needs to scan the list of elements from one
end to the other; in the case of a linked list, this is called list traversal.

Similarly, to compare two lists for equality one would need to traverse both lists
simultaneously.

In the array-based implementation of a Stack, a “for” loop and an index would
have been used to “traverse” the array.

Array-based implementation

public String toString() {

String res = "[";

if (size > 0) {

int p = 0;

res = res + elems[p];

p = p + 1;

while (p < size)

res = res + ", " + elems[p];

p = p + 1;

}

res = res + "]";

return res;

}

Complete

public String toString() {

String res = "[";

if (____________) {

____ p = ____;

res = res + _______;

p = ______;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

Complete

public String toString() {

String res = "[";

if (____________) {

____ p = ____;

res = res + _______;

p = ______;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

What test can be used to determine if the stack is empty?

top

s

63 24

top == null

Complete

public String toString() {

String res = "[";

if (top != null) {

____ p = ____;

res = res + _______;

p = ______;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

The variable p plays a similar role to that of the index in the array-based
implementation. The variable is used to access the elements one at time. What
is the type of the variable p? Elem.

top

s

63 24

p

Complete

public String toString() {

String res = "[";

if (top != null) {

Elem p = ____;

res = res + _______;

p = ______;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

What is its initial value?

top

s

63 24

p

top

s

63 24

p

top, therefore p and top both designate the same element, the top one.

Complete

public String toString() {

String res = "[";

if (top != null) {

Elem p = top;

res = res + _______;

p = ______;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

How to access the value of the top element?

top

s

63 24

p

top.value.toString(), p.value.toString(), or simply top.value or p.value.

Complete

public String toString() {

String res = "[";

if (top != null) {

Elem p = top;

res = res + p.value;

p = ______;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

We now need to move the reference p one position forward (the equivalent of the
i = i + 1 in the array-based implementation). How to?

top

s

63 24

p

top

s

63 24

p

p = p.next.

Complete

public String toString() {

String res = "[";

if (top != null) {

Elem p = top;

res = res + p.value;

p = p.next;

while (_________) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

The body of the loop will be visited as long as the end of the linked structure has
not been detected. What is the test?

top

s

63 24

p

p != null

Complete

public String toString() {

String res = "[";

if (top != null) {

Elem p = top;

res = res + p.value;

p = p.next;

while (p != null) {

res = res + ", " + _______;

p = ______;

}

}

res = res + "]";

return res;

}

Complete

public String toString() {

String res = "[";

if (top != null) {

Elem p = top;

res = res + p.value;

p = p.next;

while (p != null) {

res = res + ", " + p.value;

p = ______;

}

}

res = res + "]";

return res;

}

How to move forward? (the equivalent of i = i + 1 in the array-based
implementation)

top

s

63 24

p

p = p.next

Solution

public String toString() {

String res = "[";

if (top != null) {

Elem p = top;

res = res + p.value;

p = p.next;

while (p != null) {

res = res + "," + p.value;

p = p.next;

}

}

res = res + "]";

return res;

}

top

s

63 24

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

Pitfall!!!

public String toString() {

String res = "[";

if (top != null) {

res = res + top.value;

top = top.next;

while (top != null) {

res = res + "," + top.value;

top = top.next;

}

}

res = res + "]";

return res;

}

⇒ The above method illustrates a commonly occurring mistake, what is it? What
are the consequences?

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

top

s

63 24

p

Remark(s)

In the array-based implementation it is equally easy to move in either directions.
How about singly-linked lists?

Compare the number of operations that are necessary to retrieve an element by
position in the case of an array and a list.

