
ITI 1121. Introduction to Computing II ∗

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of January 21, 2013

Abstract

• Inheritance (part II)
– Polymorphism

∗These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.

Circle

Let’s complete the implementation of the class Circle.

Where would you implement the method area()?

In the class Shape or int the class Circle?

Circle

public class Circle extends Shape {

private double radius;

public double getRadius() { return radius; }

public double area() {

return Math.PI * radius * radius;

}

public void scale(double factor) {

radius *= factor;

}

}

Rectangle

Similarly, let’s complete the implementation of the class Rectangle.

Where would you implement the method area()?

In the class Shape or int the class Rectangle?

Rectangle

public class Rectangle extends Shape {

private double width;

private double height;

// ...

public double area() {

return width * height;

}

public void scale(double factor) {

width = width * factor;

height = height * factor;

}

}

Don’t get the wrong impression that inheritance is restricted to the classes that
you are defining yourself. Inheritance is often used to specialize existing classes
of the Java library.

import java.awt.TextField;

public class TimeField extends TextField {

public Time getTime() {

return Time.parseTime(getText());

}

}

// java.lang.Object

// |

// +--java.awt.Component

// |

// +--java.awt.TextComponent

// |

// +--java.awt.TextField

// |

// +--TimeField

Polymorphism

From the Greek words polus = many and morphê = forms, literally means has
many forms.

1. Ad hoc polymorphism (overloading): a method name is associcated with
different blocs of code

2. Inclusion (subtyping, data) polymorphism: an identifer (a reference variable)
is associated with data of different types with the use of a subtype relation

In Java, a variable or a method is polymorphic if it refers to objects of
more than one “class/type”.

Method overloading

Method overloading means that two methods can have the same name but
different signatures (the signature consists of the name and formal parameters of
a method but not the return value).

Constructors are often overloaded, this occurs for the class Shape:

Shape() {

x = 0.0;

y = 0.0;

}

Shape(int x, int y) {

this.x = x;

this.y = y;

}

⇒ Method overloading is sometimes referred to as ad hoc polymorphism
(ad hoc = for a specific purpose).

Overloading (contd)

In Java, some operators are overloaded, consider the “+” which adds two numbers
or concatenates two strings, a user can overload a method but not an operator.

Since the signatures are different, Java has no problem finding the right method:

static int sum(int a, int b, int c) {

return a + b + c;

}

static int sum(int a, int b) {

return a + b;

}

static double sum(double a, double b) {

return a + b;

}

Overloading (contd)

The class PrintStream has a specific println method for each primitive type (a
good example of overloading):

println()

println(boolean)

println(char)

println(char[])

println(double)

println(float)

println(int)

println(long)

Overloading (contd)

Pros: all the methods that implement a similar behaviour have the same name.

Cons: still have to provide one implementation for each behaviour.

“True” polymorphism: motivation 1

Problem: implement the method isLeftOf that returns true if this Shape is to
the left of its argument.

isLeftOf

Circle c1, c2;

c1 = new Circle(10, 20, 5);

c2 = new Circle(20, 10, 5);

if (c1.isLeftOf(c2)) {

System.out.println("c1 isLeftOf c2");

} else {

System.out.println("c2 isLeftOf c1");

}

isLeftOf

Rectangle r1, r2;

r1 = new Rectangle(0, 0, 1, 1);

r2 = new Rectangle(100, 100, 200, 400);

if (r1.isLeftOf(r2)) {

System.out.println("r1 isLeftOf r2");

} else {

System.out.println("r2 isLeftOf r1");

}

isLeftOf

if (r1.isLeftOf(c1)) {

System.out.println("r1 isLeftOf c1");

} else {

System.out.println("c1 isLeftOf r1");

}

if (c2.isLeftOf(r2)) {

System.out.println("c2 isLeftOf r2");

} else {

System.out.println("r2 isLeftOf c2");

}

Absurd solution!

public boolean isLeftOf(Circle c) {

return getX() < c.getX();

}

public boolean isLeftOf(Rectangle r) {

return getX() < r.getX();

}

Why is that solution absurd?

Absurd solution!

public boolean isLeftOf(Circle c) {

return getX() < c.getX();

}

public boolean isLeftOf(Rectangle r) {

return getX() < r.getX();

}

• As many implementations as kinds of shape!

• All the implementations are the same!

• Whenever a new kind of Shape is defined (say Triangle) then a method
iLeftOf must be created!

Solution

What do you propose?

The method getX() is common to all the Shapes; all shapes have a getX().

public boolean isLeftOf(‘‘Any Shape’’ s) {

return getX() < s.getX();

}

How does one write “Any Shape”?

Solution

Implement the method isLeftOf in the class Shape as follows.

public boolean isLeftOf(Shape s) {

return getX() < s.getX();

}

isLeftOf

Circle c;

c = new Circle(10, 20, 5);

Rectangle r;

r = new Rectangle(0, 0, 1, 1);

if (c.isLeftOf(r)) {

System.out.println("c isLeftOf r");

} else {

System.out.println("r isLeftOf c");

}

isLeftOf

if (c.isLeftOf(r)) {

// ...

The method isLeftOf of the object designated by c is called.

Okay, c designates an object of the class Circle, which inherits the method
isLeftOf.

isLeftOf

if (c.isLeftOf(r)) {

// ...

Hum, when the method isLeftOf is called, the value of the actual parameter, r,
is copied into the formal parameter s.

Does it mean that the following statements are valid!?

Shape s;

Rectangle r;

r = new Rectangle(0, 0, 1, 1);

s = r;

Types

“A variable is a storage location and has an associated type, sometimes called
its compile-time type, that is either a primitive type (§4.2) or a reference type
(§4.3). A variable always contains a value that is assignment compatible (§5.2)
with its type.”

“Assignment of a value of compile-time reference type S (source) to a variable of
compile-time reference type T (target) is checked as follows:

• If S is a class type:

– If T is a class type, then S must either be the same class as T, or S must
be a subclass of T, or a compile-time error occurs.”

⇒ Gosling et al. (2000) The Java Language Specification.

isLeftOf

Based on that definition, the following statements are valid.

Shape s;

Rectangle r;

r = new Rectangle(0, 0, 1, 1);

s = r;

but “r = s” is not!

Polymorphic variable

The variable s designates any object that is from a subclass of Shape.

Shape s;

Usage:

s = new Circle(0, 0, 1);

s = new Rectangle(10, 100, 10, 100);

Polymorphic method: “true” polymorphism

public boolean isLeftOf(Shape other) {

boolean result;

if (getX() < other.getX()) {

result = true;

} else {

result = false;

}

return result;

}

Usage:

Circle c = new Circle(10, 10, 5);

Rectangle d = new Rectangle(0, 10, 12, 24);

if (c.isLeftOf(d)) { ... }

Polymorphic variable (contd)

Shape s;

Circle c;

c = new Circle(0, 0, 1);

s = c;

if (c.getX()) { ... } // valid?

if (s.getX()) { ... } // valid?

if (c.getRadius()) { ... } // valid?

if (s.getRadius()) { ... } // valid?

Polymorphic variable (contd)

Shape s;

Circle c;

c = new Circle(0, 0, 1);

s = c;

The object designated by s is still a Circle. The class of object does not change
during the execution of the program.

Polymorphic variable (contd)

Shape s;

Circle c;

c = new Circle(0, 0, 1);

s = c;

if (s.getX()) { ... }

When s is used to designate a Circle, the Circle is “seen as” a Shape, meaning
that only the characteristics (methods and variables) of the class Shape can be
used.

Polymorphic variable (contd)

Shape s;

Circle c;

c = new Circle(0, 0, 1);

s = c;

if (s.getX()) { ... }

Here, s of type Shape, getX() is defined in the class Shape.

Polymorphic variable (contd)

Shape s;

Circle c;

c = new Circle(0, 0, 1);

s = c;

if (s.getX()) { ... }

This makes sense, s can be used to designate objects of the class Shape or a
subclass of Shape. This object has all the characteristics of a Shape.

Polymorphic variable (contd)

Shape s;

Circle c;

c = new Circle(0, 0, 1);

s = c;

if (s.getRadius()) { ... }

The above statement is not valid. Why? The method getRadius() is not
defined in the class Shape (or its parents).

Polymorphic variable (contd)

1) The type of a reference variable defines the set of classes whose objects could
be designated by the reference.

2) The type of a reference variable defines the set of operations (method calls,
access to instance variables, etc.) that are valid.

Polymorphism

Polymorphism is a powerful concept. The method isLeftOf can be used to
compare not only Circles and Rectangles but also any future subclass of Shape.

public class Triangle extends Shape {

// ...

}

“True” polymorphism: motivation 2

Problem: write a method that compares the area of any two Shapes.

Absurd solution!

Write methods with the same name and all four possible signatures (method
overloading):

(Circle, Circle), (Circle, Rectangle), (Rectangle, Circle) and
(Rectangle, Rectangle).

• As many implementations as pairs of shapes!

• All the implementations are the same!

• Whenever a new kind of Shape is defined (say Triangle) then new methods
compareTo must be created!

Solution

What do you propose? How about this?

public class Shape {

// ...

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

Solution

public class Shape {

// ...

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

The above declaration would not compile! Why? Because, the superclass Shape
does not have method area().

Solution

Proposal? Let’s create a dummy implementation of the method area().

public class Shape {

// ...

// Must be redefined by the subclasses or else ...

public double area() {

return -1.0;

}

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

Solution

Too dangerous! The implementer of the subclass is not forced to redefined the
method area().

public class Shape {

// ...

// Must be redefined by the subclasses or else ...

public double area() {

return -1.0;

}

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

Solution: abstract

The solution is to declare the method area() abstract in the superclass Shape.
An abstract method is declared using the keyword abstract, it has a signature
but no body.

public class Shape {

// ...

public abstract double area(); // <----

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

The above definition, alas, does not compile! Why?

Solution: abstract

public class Shape {

// ...

public abstract double area(); // <----

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

Imagine creating an object of the class Shape, that object would have a method
area() that has no statements attached to it!

Solution: abstract class

public abstract class Shape { // <---

// ...

public abstract double area(); // <----

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

A class that has an abstract method must be abstract. One cannot create
an object of an abstract class! The statement “new Shape()” would cause a
compile-time error.

Abstract classes

• A class that contains an abstract method (declared in that class or inherited)
must be declared abstract;

• An abstract class cannot be used to create objects;

• A class that contains no abstract methods can also be declared abstract to
prevent the creation of objects of this class. E.g. Employee, SalariedEmployee,
HourlyEmployee.

Solution: abstract class

What have we achieved?

public class Triangle extends Shape {

}

Triangle.java:1: Triangle is not abstract and

does not override abstract method area() in Shape

public class Triangle extends Shape {

^

1 error

It is now impossible to create a concrete subclass of Shape that has no method
area()!

Solution: abstract methods and classes

The declaration of an abstract method forces all the (concrete) subclasses to
implement that method!

public abstract class Shape {

// ...

public abstract double area();

public int compareTo(Shape other) {

if (area() < other.area())

return -1;

else if (area() == other.area())

return 0;

else

return 1;

}

}

Late binding (a.k.a. dynamic binding, virtual binding)

Account

getUid() : double

BankAccount

getBalance() : double
getMonthlyFees() : double

SavingAccount

getMonthlyFees() : double

ChequingAccount

Both classes BankAccount and SavingAccount are declaring a method
getMontlyFees();

Let’s say that the method getMonthlyFees of the class BankAccount always
returns 25.

public double getMonthlyFees() {

return 25.0

}

The class SavingAccount overwrites this definition with the following.

public double getMonthlyFees() {

double result;

if (getBalance() > 5000) {

result = 0.0;

} else {

result = super.getMontlyFees();

}

return result;

}

Account a;

BankAccount b;

SavingAccount s;

s = new SavingAccount();

s.getMontlyFees();

b = s;

b.getMontlyFees();

a = b;

a.getMontlyFees();

Dynamic Binding

Let S (source) be the type of the object currently designated by a reference
variable of type T (target).

Unless the method is static or final, the lookup i) occurs at runtime and ii) starts
at the class S: if the method is found, this is the method that will be executed,
otherwise the immediate superclass is considered, this process continues until the
first occurrence of the method is found.

⇒ Sometimes called late or virtual binding.

