Quiz \#8

1. Find the form of the particular solution for the following functions $F(n)$ that form part of a nonhomogeneous recurrence relation, assuming that there is no overlap with roots of the associated homogeneous relation.

Remember Section 7.2 Theorem 6 from the text, which says that if the function $F(n)$ has the form:

$$
F(n)=(\underbrace{b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}}_{\text {polynomial part }}) \underbrace{s^{n}}_{\text {exponential part }}
$$

and s is not a root of the associated homogeneous relation, then the particular solution has form:

$$
a_{n}^{(p)}=\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

where p_{0}, \ldots, p_{t} are real numbers.
(a) $F(n)=n^{2}$

Here, the polynomial part is n^{2}, so $t=1$, and there is no exponential part, which is the same as having an exponential part $1=1^{n}$, so $s=1$. Thus, using the formula, the particular solution has the following form:

$$
a_{n}^{(p)}=\left(p_{2} n^{2}+p_{1} n+p_{0}\right) 1^{n}=p_{2} n^{2}+p_{1} n+p_{0} .
$$

(b) $F(n)=n 3^{n}$

Here, the polynomial part is n, so $t=1$, and the exponential part is 3^{n}, so $s=3$. Thus, using the formula, our particular solution is:

$$
a_{n}^{(p)}=\left(p_{1} n+p_{0}\right) 3^{n} .
$$

2. Homework S7.2\#28: Find all solutions to the recurrence relation $a_{n}=2 a_{n-1}+2 n^{2}$ with initial value $a_{1}=4$.

This is a nonhomogeneous recurrence relation, so we need to find the solution to the associated homogeneous relation and a particular solution.

The associated homogeneous relation is:

$$
a_{n}=2 a_{n-1} .
$$

This has characteristic equation $r-2=0$, which only has one root, namely $r=2$. Thus, the solution to the homogeneous relation has the form:

$$
a_{n}^{(h)}=\alpha 2^{n}
$$

for some constant α (which we will find later using the initial value).
We now find the particular solution. We have that $F(n)=2 n^{2}$, so this function, by Theorem 6, is just a polynomial in n of degree 2 , giving that $t=2$ and $s=1$, so since $s \neq 2$, we get that the particular solution has the form:

$$
a_{n}^{(p)}=\left(p_{2} n^{2}+p_{1} n+p_{0}\right) 1^{n}=p_{2} n^{2}+p_{1} n+p_{0} .
$$

To find the values of p_{0}, p_{1}, p_{2}, we substitute the particular solution into the original recurrence relation:

$$
\begin{aligned}
a_{n} & =2 a_{n-1}+2 n^{2} \\
\left(p_{2} n^{2}+p_{1} n+p_{0}\right) & =2\left(p_{2}(n-1)^{2}+p_{1}(n-1)+p_{0}\right)+2 n^{2} \\
\left(p_{2}+2\right) n^{2}+\left(p_{1}-4 p_{2}\right) n+\left(2 p_{2}-2 p_{1}+p_{0}\right) & =0 \\
\left(p_{2}+2\right) n^{2}+\left(p_{1}-4 p_{2}\right) n+\left(2 p_{2}-2 p_{1}+p_{0}\right) & =0 n^{2}+0 n+0
\end{aligned}
$$

This gives us three equations by setting the coefficients of n^{2} to be equal:

$$
p_{2}+2=0
$$

and the coefficients of n to be equal:

$$
p_{1}-4 p_{2}=0
$$

and the coefficients of the constant part to be equal:

$$
2 p_{2}-2 p_{1}+p_{0}=0
$$

We solve this system to get that $p_{0}=-12, p_{1}=-8$, and $p_{2}=-2$, so the particular solution is:

$$
a_{n}^{(p)}=-2 n^{2}-8 n-12 .
$$

We then have that the general solution is the sum of the homogeneous solution and the particular solution:

$$
\begin{aligned}
a_{n} & =a_{n}^{(h)}+a_{n}^{(p)} \\
& =\alpha 2^{n}-2 n^{2}-8 n-12
\end{aligned}
$$

We can now solve for α using the initial value $a_{1}=4$:

$$
a_{1}=4=\alpha 2^{1}-2(1)^{2}-8(1)-12
$$

which gives that $\alpha=13$. The final solution is then:

$$
a_{n}=13 \cdot 2^{n}-2 n^{2}-8 n-12 .
$$

Note that you can check your solution is correct by calculating the first few values a_{1}, a_{2}, a_{3}, etc and making sure that your final solution gives the same values as the original recurrence relation.

