Quiz \#7

1. Use a loop invariant to prove that the following program segment for computing the nth power (where n is a positive integer) of a real number x is correct.
```
power \(=1\)
\(i=1\)
while \(i \leq n\) do
    power \(=\) power \(\times x\)
    \(i=i+1\)
end while
```

Let p be the assertion " $i \leq n+1$ and power $=x^{i-1 "}$. We must first show that p is a loop invariant: to do so, we have to show that if p is true at the beginning of an execution of the loop, then p is still true after the execution of the loop.
Suppose that, at the beginning of one execution of the while loop, p is true and the condition of the while loop holds: in other words, we assume that power $=i^{n-1}$ and that $i \leq n$. The new values $i_{\text {new }}$ and power ${ }_{\text {new }}$ are:

$$
\begin{gathered}
i_{\mathrm{new}}=i+1 \\
\text { power }_{\mathrm{new}}=\text { power } \times x=x^{i-1} \times x=x^{i}=x^{i_{\text {new }}-1}
\end{gathered}
$$

Because $i \leq n$, we also have that $i_{\text {new }} \leq n+1$. Thus, p is still true at the end of the execution of the loop.
We now must show that p was true before the loop executed. In the program header, we set $i=1$. Since, by assumption, n is a positive integer, then $n \geq 1$, so we have that $i \leq n+1$. We also have power $=1=x^{0}=x^{i-1}$. Thus, p is true before the loop is executed.
Because p is a loop invariant, we have that when the loop terminates, it terminates with p true and the condition of the loop, $i \leq n$ false. Thus, $i=n+1$, and so power $=x^{(n+1)-i}=x^{n}$, which is the result that we want, so the progam calculates correctly.
Finally, we need to check that the loop actually does terminate. The value of i is initialized to 1 , and with every execution of the loop, is incremented by 1 . Thus, the loop will terminate after n iterations.
Thus, the program is correct.

