Winter 2012 University of Ottawa

Quiz #6

1. S4.3, Exercise 43: For a full binary tree T, use structural induction to show that $n(T) \ge 2h(T) + 1$.

Basis step: Let R be the full binary tree consisting solely of a root node. We have that h(R) = 0. Thus $2h(R) + 1 = 2 \cdot 0 + 1 = 1$, and as $n(R) = 1 \ge 1$, the claim holds for R.

Inductive hypothesis: Let T_1 and T_2 be full binary trees and assume $n(T_1) \ge 2h(T_1) + 1$ and $n(T_2) \ge 2h(T_2) + 1$.

Inductive step: Let $T = T_1 \cdot T_2$ be a full binary tree. We must show that the expression holds for T. We have that:

$$n(T) = n(T_1) + n(T_2) + 1$$

$$\geq (2h(T_1) + 1) + (2h(T_2) + 1) + 1$$
 by the inductive hypothesis

$$= 2(h(T_1) + h(T_2) + 1) + 1$$

For any two nonnegative integers x and y, we have that $x + y \ge \max(x, y)$. Thus, we have:

$$n(T) \ge 2(\max(h(T_1), h(T_2)) + 1) + 1$$

= 2h(T) + 1 since $h(T) = \max(h(T_1), h(T_2)) + 1$

Thus, the claim holds, as shown by structural induction.