Quiz #5

1. S4.1, Exercise 31: Use induction to show that $2|(n^2 + n)$ for all positive integers n.

Let P(n) be the statement: $2|(n^2 + n)$.

Basis step: We show that P(1) is true: $(1)^2 + 1 = 2$, and 2|2.

Inductive hypothesis: Let k be a positive integer and assume P(k) is true, i.e. $2|(k^2 + k)$. This means that there exists an integer j such that $k^2 + k = 2j$.

Inductive step: Show that P(k+1) is true, i.e. $2|((k+1)^2 + (k+1))$. We have that:

$$(k+1)^{2} + (k+1) = k^{2} + 2k + 1 + k + 1$$

= $(k^{2} + k) + 2k + 2$
= $2j + 2k + 2$
= $2(j + k + 1)$

by the inductive hypothesis

Hence, $2|((k+1)^2 + (k+1))$.

Thus, for all positive integers $n, 2|(n^2 + n)$ as shown by induction.