Quiz \#5

1. S4.1, Exercise 31: Use induction to show that $2 \mid\left(n^{2}+n\right)$ for all positive integers n.

Let $P(n)$ be the statement: $2 \mid\left(n^{2}+n\right)$.
Basis step: We show that $P(1)$ is true: $(1)^{2}+1=2$, and $2 \mid 2$.
Inductive hypothesis: Let k be a positive integer and assume $P(k)$ is true, i.e. $2 \mid\left(k^{2}+k\right)$. This means that there exists an integer j such that $k^{2}+k=2 j$.
Inductive step: Show that $P(k+1)$ is true, i.e. $2 \mid\left((k+1)^{2}+(k+1)\right)$. We have that:

$$
\begin{array}{rlr}
(k+1)^{2}+(k+1) & =k^{2}+2 k+1+k+1 & \\
& =\left(k^{2}+k\right)+2 k+2 & \\
& =2 j+2 k+2 & \\
& =2(j+k+1) &
\end{array}
$$

Hence, $2 \mid\left((k+1)^{2}+(k+1)\right)$.
Thus, for all positive integers $n, 2 \mid\left(n^{2}+n\right)$ as shown by induction.

