Quiz \#4

1. S3.4, Exercise 6: Show that if a, b, c, and d are integers such that $a \mid c$ and $b \mid d$, then $a b \mid c d$.

If $a \mid c$, then there exists an integer m such that $a m=c$, and if $b \mid d$, then there exists an integer n such that $b n=d$. Then $c d=(a m)(b n)=(m n)(a b)$, and thus $a b \mid c d$.
2. S3.4, Exercise 24: Prove that if n is an odd positive integer, then $n^{2} \equiv 1(\bmod 8)$.

If n is odd, we can write $n=2 k+1$ for some integer k . Then $n^{2}=(2 k+1)^{2}=$ $4 k^{2}+4 k+1$. To show that $n^{2} \equiv 1(\bmod 8)$, it is sufficient to show that $8 \mid\left(n^{2}-1\right)$. We have that $n^{2}-1=4 k^{2}+4 k=4 k(k+1)$. Now, we have two cases to consider: if k is even, there is some integer d such that $k=2 d$. Then $n^{2}-1=4(2 d)(2 d+1)=8 d(d+1)$, and clearly this is divisible by 8 since it is a multiple of 8 . If k is odd, then there is some integer d such that $k=2 d+1$. Then $n^{2}=4(2 d+1)(2 d+2)=8(2 d+1)(d+1)$, and again, this is divisible by 8 . Thus, in both cases, $n^{2}-1$ is divisible by 8 , so $n^{2} \equiv 1$ $(\bmod 8)$.

