Quiz \#1

1. S1.3, Exercise 31: Suppose that the domain of $Q(x, y, z)$ consists of triples x, y, z, where $x=0,1$, or $2, y=0$ or 1 , and $z=0$ or 1 . Write out these propositions using disjunctions and conjunctions.
a. $\forall y Q(0, y, 0) \equiv Q(0,0,0) \wedge Q(0,1,0)$
b. $\exists x Q(x, 1,1) \equiv Q(0,1,1) \vee Q(1,1,1) \vee Q(2,1,1)$
c. $\exists z \neg Q(0,0, z) \equiv \neg Q(0,0,0) \vee \neg Q(0,0,1) \equiv \neg(Q(0,0,0) \wedge Q(0,0,1))$
d. $\exists x \neg Q(x, 0,1) \equiv \neg Q(0,0,1) \vee \neg Q(1,0,1) \vee \neg Q(2,0,1) \equiv \neg(Q(0,0,1) \wedge Q(1,0,1) \wedge$ $Q(2,0,1))$
2. S1.3, Exercise 61: We have the following statements:

$$
\begin{array}{ll}
P(x): & x \text { is a baby } \\
Q(x): & x \text { is logical } \\
R(x): & x \text { is able to manage a crocodile } \\
S(x): & x \text { is despised }
\end{array}
$$

Suppose that the domain consists of all people. Express each of these statements using quantifiers, logical connectives, and the predicates given above.
(a) Babies are illogical.

$$
\forall x(P(x) \rightarrow \neg Q(x))
$$

(b) Nobody is despised who can manage a crocodile.

$$
\neg \exists x(S(x) \wedge R(x))
$$

(c) Illogical people are despised.

$$
\forall x(\neg Q(x) \rightarrow S(x))
$$

(d) Babies cannot manage crocodiles.

$$
\forall x(P(x) \rightarrow \neg R(x))
$$

