Propositional Logic

Lucia Moura

Winter 2012

Propositional Logic Basics

Proposition

A proposition is a declarative sentence that is either true or false.

Which ones of the following sentences are propositions?

- Ottawa is the capital of Canada.
- Buenos Aires is the capital of Brazil.
- 2 + 2 = 4
- 2 + 2 = 5
- if it rains, we don't need to bring an umbrella.
- x + 2 = 4
- $\bullet \ x + y = z$
- When does the bus come?
- Do the right thing.

Propositional variable and connectives

We use letters p, q, r, ... to denote **propositional variables** (variables that represent propositions).

We can form new propositions from existing propositions using **logical operators** or **connectives**. These new propositions are called **compound propositions**.

Summary of connectives:

	. ,	
name	nickname	symbol
negation	NOT	Г
conjunction	AND	\land
disjunction	OR	V
exclusive-OR	XOR	\oplus
implication	implies	\rightarrow
biconditional	if and only if	\leftrightarrow

Propositional Logic Basics

Meaning of connectives

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p\oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	F	F	F	Т	Т

WARNING:

Implication $(p \to q)$ causes confusion, specially in line 3: "F \to T" is true. One way to remember is that the rule to be obeyed is

"if the premise p is true then the consequence q must be true."

The only truth assignment that falsifies this is p = T and q = F.

Truth tables for compound propositions

Construct the truth table for the compound proposition:

$$(p \vee \neg q) \to (p \wedge q)$$

p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
Т	Т	F			
T	F	T			
F	Т	F			
F	F	T			

Propositional Equivalences

A basic step is math is to replace a statement with another with the same truth value (equivalent).

This is also useful in order to reason about sentences.

Negate the following phrase:

"Miguel has a cell phone and he has a laptop computer."

- p="Miguel has a cell phone"q="Miguel has a laptop computer."
- The phrase above is written as $(p \land q)$.
- Its negation is $\neg(p \land q)$, which is logically equivalent to $\neg p \lor \neg q$. (De Morgan's law)
- This negation therefore translates to:
 "Miguel does not have a cell phone or he does not have a laptop computer."

Truth assignments, tautologies and satisfiability

Definition

Let X be a set of propositions.

A **truth assignment** (to X) is a function $\tau: X \to \{true, false\}$ that assigns to each propositional variable a truth value. (A truth assignment corresponds to one row of the truth table)

If the truth value of a compound proposition under truth assignment τ is true, we say that τ satisfies P, otherwise we say that τ falsifies P.

- A compound proposition P is a **tautology** if every truth assignment satisfies P, i.e. all entries of its truth table are true.
- A compound proposition P is **satisfiable** if there is a truth assignment that satisfies P; that is, at least one entry of its truth table is true.
- A compound proposition P is **unsatisfiable** (or a contradiction) if it is not satisfiable; that is, all entries of its truth table are false.

Examples: tautology, satisfiable, unsatisfiable

For each of the following compound propositions determine if it is a tautology, satisfiable or unsatisfiable:

- $(p \lor q) \land \neg p \land \neg q$
- $p \lor q \lor r \lor (\neg p \land \neg q \land \neg r)$
- $\bullet \ (p \to q) \leftrightarrow (\neg p \lor q)$

Logical implication and logical equivalence

Definition

A compound proposition p **logically implies** a compound proposition q (denoted $p \Rightarrow q$) if $p \rightarrow q$ is a tautology.

Two compound propositions p and q are **logically equivalent** (denoted $p \equiv q$, or $p \Leftrightarrow q$) if $p \leftrightarrow q$ is a tautology.

Theorem

Two compound propositions p and q are logically equivalent if and only if p logically implies q and q logically implies p.

In other words: two compound propositions are logically equivalent if and only if they have the same truth table.

Logically equivalent compound propositions

Using truth tables to prove that $(p \to q)$ and $\neg p \lor q$ are logically equivalent, i.e.

$$(p \to q) \equiv \neg p \lor q$$

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	T	T
T	F	F	F	F
F	Т	Т	Т	T
F	F	Т	Т	T

What is the problem with this approach?

Truth tables versus logical equivalences

Truth tables grow exponentially with the number of propositional variables!

A truth table with n variables has 2^n rows.

Truth tables are practical for small number of variables, but if you have, say, 7 variables, the truth table would have 128 rows!

Instead, we can prove that two compound propositions are logically equivalent by using known logical equivalences ("equivalence laws").

Propositional Equivalences: Section 1.2

Summary of important logical equivalences I

TABLE 6 Logical Equivalences.				
Equivalence	Name			
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws			
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws			
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws			
$\neg(\neg p) \equiv p$	Double negation law			
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws			
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws			
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws			
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws			
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws			

Note T is the compound composition that is always true, and F is the compound composition that is always false.

Summary of important logical equivalences II

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditionals.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Rosen, page 24-25.

Proving new logical equivalences

Use known logical equivalences to prove the following:

- **1** Prove that $\neg(p \to q) \equiv p \land \neg q$.
- 2 Prove that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Normal forms for compound propositions

- A literal is a propositional variable or the negation of a propositional variable.
- A term is a literal or the conjunction (and) of two or more literals.
- A clause is a literal or the disjunction (or) of two or more literals.

Definition

A compound proposition is in **disjunctive normal form** (DNF) if it is a term or a disjunction of two or more terms. (i.e. an OR of ANDs).

A compound proposition is in **conjunctive normal form** (CNF) if it is a clause or a conjunction of two or more clauses. (i.e. and AND of ORs)

Disjunctive normal form (DNF)

	x	y	z	$x \lor y \to \neg x \land z$
1	F	F	F	Т
2	F	F	Т	Т
3	F	Τ	F	F
4	F	Τ	Т	Т
5	Т	F	F	F
6	Т	F	Т	F
7	Т	Т	F	F
8	Т	Т	Т	F

The formula is satisfied by the truth assignment in row 1 or by the truth assignment in row 2 or by the truth assignment in row 4. So, its DNF is : $(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$

Conjunctive normal form (CNF)

	x	y	z	$x \vee y \to \neg x \wedge z$
1	F	F	F	Т
2	F	F	Т	Т
3	F	Τ	F	F
4	F	-	Т	T
5	Т	F	F	F
6	Т	F	Т	F
7	Т	Τ	F	F
8	Т	Т	T	F

The formula is **not** satisfied by the truth assignment in row 3 **and** in row 5 **and** in row 6 **and** in row 7 **and** in row 8. So:, it is log. equiv. to: $\neg(\neg x \land y \land \neg z) \land \neg(x \land \neg y \land \neg z) \land \neg(x \land \neg y \land z) \land \neg(x \land y \land \neg z) \land \neg(x \land y \land z)$ apply DeMorgan's law to obtain its CNF: $(x \lor \neg y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z) \land (\neg x \lor \neg y \lor \neg z)$

Boolean functions and the design of digital circuits

Let $B = \{false, true\}$ (or $B = \{0,1\}$). A function $f: B^n \to B$ is called a boolean function of degree n.

Definition

A compound proposition P with propositions x_1, x_2, \ldots, x_n represents a Boolean function f with arguments x_1, x_2, \ldots, x_n if for any truth assignment τ , τ satisfies P if and only if $f(\tau(x_1), \tau(x_2), \ldots, \tau(x_n)) = true$.

Theorem

Let P be a compound proposition that represents a boolean function f. Then, a compound proposition Q also represents f if and only if Q is logically equivalent to P.

Complete set of connectives (functionally complete)

Theorem

Every boolean formula can be represented by a compound proposition that uses only connectives $\{\neg, \land, \lor\}$ (i.e. $\{\neg, \land, \lor\}$ is functionally complete).

Proof: use DNF or CNF!

This is the basis of circuit design:

In digital circuit design, we are given a **functional specification** of the circuit and we need to construct a **hardware implementation**.

functional specification = number n of inputs + number m of outputs + describe outputs for each set of inputs (i.e. m boolean functions!)

Hardware implementation uses logical gates: or-gates, and-gates, inverters.

The functional specification corresponds to m boolean functions which we can represent by m compound propositions that uses only $\{\neg, \land, \lor\}$, that is, its hardware implementation uses inverters, and gates and or-gates.

Boolean functions and digital circuits

Consider the boolean function represented by $x \vee y \rightarrow \neg x \wedge z$.

Give a digital circuit that computes it, using only $\{\land, \lor, \neg\}$. This is always possible since $\{\land, \lor, \neg\}$ is functionally complete (e.g. use DNF or CNF).

Give a digital circuit that computes it, using only $\{\land, \neg\}$.

This is always possible, since $\{\land, \neg\}$ is **functionally complete**:

Proof: Since $\{\land,\lor,\lnot\}$ is functionally complete, it is enough to show how to express $x\lor y$ using only $\{\land,\lnot\}$:

$$(x \lor y) \equiv \neg(\neg x \land \neg y)$$

Give a digital circuit that computes it, using only $\{\lor, \neg\}$. Prove that $\{\lor, \neg\}$ is **functionally complete**.

