
CSI 2101 Discrete Structures Winter 2012
Prof. Lucia Moura University of Ottawa

Homework Assignment #4 (100 points, weight 5%)
Due: Thursday, April 5, at 1:00pm (in lecture)

Program verification, Recurrence Relations

1. Consider the following program that computes quotients and remainders:

r ← a;
q ← 0;
while r ≥ d do

begin
r ← r − d;
q ← q + 1;

end

Use the following steps in order to verify that the program is correct with respect to
the initial assertion “a and d are positive integers” and final assertion “q and r are
integers such that a = dq + r and 0 ≤ r < d”.

(a) Find an appropriate loop invariant that is strong enough to give the final assertion,
and prove that it is a loop invariant.

(b) Using part (a) and other inference rules for program verification, prove the pro-
gram is partially correct with respect to the initial and final assertions.

(c) Complete a proof of correctness by formally proving the termination of the loop.

(a) We claim that the loop invariant we need is the following proposition p:

p = “a = qd+ r and r ≥ 0”.

To show that p is a loop invariant, we must show that:

i. p is true before the loop executes. Since a is a positive integer and r ← a
before the loop executes, we have that r ≥ 0. Since q ← 0 before the loop
executes, then qd+ r = 0d+ a = a. Thus, p is true before the loop executes.

ii. If p is true before the loop is executed, then p is true after the
loop executes. Assume that p is true before the loop is executed. Then,
after the loop executes, we have the new values rn = r − d and qn = q + 1.
We must show that p still holds with regards to these new values. Since, by
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the condition of the loop, r ≥ d, we have that rn = r − d ≥ d − d = 0.
Furthermore:

a = qd+r = qd+r−d+d = (qd+d)+(r−d) = (q+1)d+(r−d) = qnd+rn.

Thus, p is still true after the loop executes.

Therefore, p is a loop invariant.

(b) Let S denote the entire program, S1 denote the two statements before the while
loop, and S2 denote the statements in the while block. If q is the predicate “a and
d are positive integers”, and t is the predicate “q and r are positive integers such
that a = dq + r and 0 ≤ r < d”, we show that q{S}t holds. This is equivalent to
showing q{S1 while r ≥ d{S2}}t holds.

We must then show that q{S1}p and (p ∧ r ≥ d){S2}p holds: this is true from
the first part, where we showed that p is a loop invariant. Thus, by the rules of
inference for while loops, we have that p{while r ≥ d{S2}}(p ∧ ¬(r ≥ d)). This
implies that if the loop terminates, it does so with p true and r ≥ d false, i.e.
r < d, and thus a = qd + r and 0 ≤ r < d, which is precisely t. Thus, this
is equivalent to p{while r ≥ d{S2}}t holds. Since q{S1}p holds, we can combine
these and have that q{S1 while r ≥ d{S2}}t, or q{S}t, as required.

(c) We show that the loop terminates eventually. Associate with each iteration of
the loop the value of r. Since r is, by assumption, a positive integer, and in every
iteration we decrease the value of r by d, the value of r forms a strictly decreasing
sequence. Furthermore, since the loop terminates when r < d, we have that the
value of r is bounded below by 0. Thus, by the well-ordering principle, the loop
must terminate in a finite number of iterations.

2. (a) Find the characteristic roots of the linear homogeneous recurrence relation an =
2an−1 − 2an−2. (Note these are complex numbers)

(b) Find the solution of the recurrence relation in part (a) with a0 = 1 and a1 = 2.

The relation has characteristic equation:

r2 − 2r + 2 = 0.

By using the quadratic equation, we have that:

r =
−b±

√
b2 − 4ac

2a
=

2±
√

4− 8

2
= 1± i.

Thus, the characteristic roots are 1 + i and 1− i.
This gives that the solution to the relation has form:

an = α(1 + i)n + β(1− i)n
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for some numbers α, β. We use the initial values to determine α and β:

a0 = 1 = α + β

a1 = 2 = α(1 + i) + β(1− i)

By substituting β = 1− α into the second equation, we derive:

α(1 + i) + (1− α)(1− i) = 2

2iα = 1 + i

α =
1 + i

2i
=

1 + i

2i
× i

i
=

1− i
2

.

Thus:

β = 1− α = 1− 1− i
2

=
1 + i

2
.

Hence, the solution to the recurrence relation is:

an =

(
1− i

2

)
(1 + i)n +

(
1 + i

2

)
(1− i)n.

3. Find all solutions of the recurrence relation an = 7an−1 − 16an−2 + 12an−3 + n4n with
a0 = −2, a1 = 0 and a2 = 5.

This is a nonhomogeneous recurrence relation, so we need to find the solution to the
associated homogeneous recurrence relation and a particular solution to the original
relation.

The associated homogeneous recurrence relation is:

a(h)n = 7a
(h)
n−1 − 16a

(h)
n−2 + 12a

(h)
n−3.

This has characteristic equation:

r3 − 7r2 + 16r − 12 = 0

(r − 2)2(r − 3) = 0

Thus, the solution to the homogeneous relation is:

a(h)n = α2n + βn2n + γ3n

for some real numbers α, β, γ, which we will find later via the initial values after we
have the general solution to the full recurrence.

We now need the particular solution. We have that:

F (n) = n4n
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This has polynomial part n, so the degree of the polynomial part is t = 1. It has
exponential part 4n, so s = 4. By S7.2 Theorem 6, the particular solution thus has
form:

a(p)n = (qn+ p)4n

for some real numbers p, q. We find the values of p and q by substituting the particular
solution a(p) into the original recurrence relation:

a(p)n = 7a
(p)
n−1 − 16a

(p)
n−2 + 12a

(p)
n−3 + n4n

(qn+ p)4n = 7(q(n− 1) + p)4n−1 − 16(q(n− 2) + p)4n−2 + 12(q(n− 3) + p)4n−3 + n4n

We now divide the equation by 4n−3 to get:

(qn+ p)43 = 7(q(n− 1) + p)42 − 16(q(n− 2) + p)41 + 12(q(n− 3) + p) + n43.

Multiplying out and simplifying gives:

(4q − 64)n+ (4p− 20q) = 0 = 0n+ 0.

This can be separated into two equations by setting the coefficients of the polynomials
to be equal:

4q − 64 = 0

4p− 20q = 0

This has solution p = −80, q = 16, so the particular solution is:

a(p)n = (16n− 80)4n.

Thus, the format of the general solution to the recurrence relation is:

an = a(h)n + a(p)n = α2n + βn2n + γ3n + (16n− 80)4n.

Using the initial values, we have:

a0 = −2 = α + γ − 80

a1 = 0 = 2α + 2β + 3γ + (−64) · 4
a2 = 5 = 4α + 8β + 9γ + (−48) · 16

This gives a system of three linear equations in three unknowns, which has solution
α = 17, β = 39

2
, γ = 61. Hence, the recurrence relation has solution:

an = 17 · 2n +
39

2
n2n + 61 · 3n + (16n− 80)4n

= 17 · 2n + 39n2n−1 + 61 · 3n + (16n− 80)4n.
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4. Consider the following recursive procedure to compute the fibonacci numbers:

procedure FIB(n: non-negative integer)
if n = 0 then return 0
else if n = 1 then return 1
else return FIB(n− 1)+FIB(n− 2)

(a) Set up a recurrence relation that counts the number of times the sum (+) is
executed considering all the recursive calls used for input n. (Don’t forget to
provide initial conditions as well)

(b) Solve the recurrence relation of part (a).

Let an be the number of sum operations that are performed in calculating the nth
fibonacci number using the recursive procedure. If n = 0 or n = 1, no sum operations
are performed, which gives the initial conditions a0 = a1 = 0. For n > 1, we have
that the recursive procedure calculates the (n− 1)th and (n− 2)th number and adds
them together. Calculating the (n − 1)th number requires an−1 sum operations, and
calculating the (n− 2)th number requires an−2 of them. We then have one more sum
operation to add the two numbers together, giving that:

an = an−1 + an−2 + 1.

This is a nonhomogeneous recurrence relation. The associated homogeneous recurrence
relation is:

a(h)n = a
(h)
n−1 + a

(h)
n−2

which has characteristic equation:

r2 − r − 1 = 0.

This equation has roots:

r =
−b±

√
b2 − 4ac

2a
=

1±
√

5

2
.

Thus, the homogeneous relation has solution:

a(h)n = α

(
1 +
√

5

2

)n

+ β

(
1−
√

5

2

)n

for values α, β that we will later derive from the initial values.

We now need to find a particular solution to the original recurrence. Since F (n) = 1,
we have that the polynomial part is 1, so t = 0, and the exponential part is 1 = 1n, so
s = 1. Thus, the particular solution has form:

a(p)n = (p)1n = p
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for some value p. To find p, we substitute the particular solution into the original
relation:

an = an−1 + an−2 + 1

p = p+ p+ 1

p = −1

Thus, the general solution is:

an = a(h) + a(p) = α

(
1 +
√

5

2

)n

+ β

(
1−
√

5

2

)n

− 1

Using the initial values, we have that:

a0 = 0 = α + β − 1

a1 = 0 = α

(
1 +
√

5

2

)
+ β

(
1−
√

5

2

)
− 1

The solution to this system of equations is:

α =
5 +
√

5

10
, β =

5−
√

5

10
.

Thus, the solution to the recurrence relation is:

an =
5 +
√

5

10
×

(
1 +
√

5

2

)n

+
5−
√

5

10
×

(
1−
√

5

2

)n

− 1.

5. Consider the method by Karatsuba for multiplication of large integers given below:

procedure KMULT(A,B, n: A and B are integers with n bits)
1. If n = 1 then return A ·B;
2. else Write A = Ah2n/2 + Al and B = Bh2n/2 +Bl

3. Compute A′ = Ah + Al and B′ = Bh +Bl

4. C = KMULT(A′, B′, n/2)
5. Dh = KMULT(Ah, Bh, n/2)
6. Dl = KMULT(Al, Bl, n/2)
7. return X = Dh · 2n + [C −Dh −Dl] · 2n/2 +Dl

(a) Based on the program we can see that the number of basic operations for line 1
is 1 and the total number of basic operations for lines 2, 3 and 7 is at most C · n
for some constant C (since the operations are on numbers of at most n bits).
Write a recurrence relation for T (n), the number of basic operations used in all
recursive calls for the cases in which n is a power of 2 (i.e. n = 2k for some k).
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(b) Use the master theorem (page 479) to find a big-Oh estimate for T (n).

We have that there are three recursive calls to KMULT with sequences of about half
the number of the original number of bits, thus giving that the recurrence relation is:

T (n) = 3T
(n

2

)
+ C · n.

Additionally, T (1) = 1 since when n = 1, we perform one operation (line 1). This,
however, is not necessary to apply the master theorem. Using the master theorem,
we have that a = 3, b = 2, and d = 1. Thus, bd = 21 = 2, and we have that
a > bd. Hence, we are in the third case of the master theorem, which says that T (n)
is O(nlogb a) = O(nlog2 3) = O(n1.585).
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