
CSI 2101 Discrete Structures Winter 2012
Prof. Lucia Moura University of Ottawa

Homework Assignment #3 (100 points, weight 5%)
Due: Thursday, March 22, at 1:00pm (in lecture)

Induction and program correctness

1. (20 points) Mathematical Induction
Use induction to prove that for every positive integer n,

n∑
k=1

k2k = (n− 1)2n+1 + 2.

Let P (n) be the statement “
∑n

k=1 k2k = (n− 1)2n+1 + 2.” We show that P (n) is true
for all positive integers n.

Basis step: We show that P (1) is true. On the left hand side, we have:

1∑
k=1

k2k = 1 · 21 = 2.

On the right hand side, we have:

(1− 1)21+1 + 2 = 2.

Thus, P (1) is true.

Inductive hypothesis: Assume that for a positive integer m, we have that P (m) is
true, which gives:

m∑
k=1

k2k = (m− 1)2m+1 + 2.

Inductive step: We have that:

m+1∑
k=1

k2k = (m+ 1)2m+1 +
m∑
k=1

k2k

= (m+ 1)2m+1 + (m− 1)2m+1 + 2 by inductive hypothesis

= (m+ 1 +m− 1)2m+1 + 2

= (2m)2m+1 + 2

= m2m+2 + 2

= ((m+ 1)− 1)2(m+1)+1 + 2

Thus, when P (m) is true, we have that P (m + 1) is true. Since the base case P (1) is
also true, we have that P (n) holds for all positive integers n.
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2. (25 points) Strong induction
Use strong induction to show that every positive integer n can be written as a sum of
distinct powers of two, that is, as a sum of the integers 20 = 1, 21 = 2, 22 = 4, 23 = 8,
and so on.

Hint: for the inductive step, separately consider the case where k+1 is even and where
it is odd. When it is even, note that (k + 1)/2 is an integer.

Let P (n) be the claim that n can be written as a sum of distinct powers of two. We
show that P (n) is true for all positive integers n.

Basis step: As 1 = 20, we have that P (1) is true.

Inductive hypothesis: Assume for a positive integer k that P (i) is true for all
1 ≤ i ≤ k.

Inductive step: We consider two cases, namely when k + 1 is even and when k + 1
is odd. If k + 1 is even, then (k + 1)/2 is an integer, and by the inductive hypothesis,
we can express (k + 1)/2 by a sum of distinct powers of two. We can then multiply
this sum by 2, which simply increases the exponent of each power of two by 1, so this
is again a sum of distinct powers of two that is equal to k + 1.

When k+1 is odd, we have that k is even. By the inductive hypothesis, we can express
k as a sum of distinct powers of two. However, since k is even, the sum cannot contain
20 = 1. Thus, we can add 20 to this sum, which remains a sum of distinct powers of
two, and equals k + 1.

Thus, in both cases, we can express k + 1 as a sum of distinct powers of two, so when
P (i) is true for all 1 ≤ i ≤ k, we have that P (k + 1) is true. Since P (1) is true, this
means that the claim is true for all positive integers, as show by strong induction.

3. (25 points) Structural Induction

(a) Give a recursive definition of the function ones(s), which counts the number of
ones in a bit string s (a bitstring is a string over the alphabet Σ = {0, 1}).

(b) Use structural induction to prove that ones(s · t) = ones(s) + ones(t); where the
symbol “·” denotes concatenation of strings.

Hint: in some of your steps you need to rely on the recursive definition of strings
and of concatenation given in the textbook, as well as on the definition of ones(s)
given by you.

Take Σ = {0, 1}. We define ones(λ) = 0, and ones(wx) = ones(w) + x for w ∈ Σ∗,
x ∈ Σ.
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Let P (t) be the claim that for any s ∈ Σ∗, ones(st) = ones(s) + ones(t). We wish
to show that P (t) holds for t ∈ Σ∗. We demonstrate this using structural induction,
using the definitions of strings and concatenation.

Basis step: Consider P (λ):

ones(sλ) = ones(s) (definition of strings)
= ones(s) + 0
= ones(s) + ones(λ) (definition of ones)

This concludes the base case.

Inductive hypothesis: Assume P (t) is true, i.e. for any s ∈ Σ∗, ones(st) = ones(s)+
ones(t).

Inductive step: For x ∈ Σ, we have that:

ones(s(tx)) = ones((st)x) (definition of concatenation)
= ones(st) + x (definition of ones)
= ones(s) + ones(t) + x (inductive hypothesis)
= ones(s) + ones(tx) (definition of ones)

Thus, if P (t) is true, then P (tx) is true, i.e. the statement is true for the extension of
t.

Thus, the claim holds by structural induction.

4. (30 points) Correctness of recursive algorithms
Prove that Algorithm 6 (recursive binary search algorithm) in page 314 (Section 4.4)
is correct, as follows. Consider the following statement:

P (k) : “ If n is an integer and a1, a2, . . . , an are integers in increasing order,
and i, j, x are integers such that 1 ≤ i ≤ n, 1 ≤ j ≤ n and j − i = k,
then procedure binarysearch(i, j, x) calculates location, where location = 0
if there exists no l, i ≤ l ≤ j, with al = x, or location = m and am = x with
i ≤ m ≤ j, otherwise.”

Use strong induction to prove that P (k) is true for all k ≥ 0.

We will use strong induction to prove that P (k) holds for all k ≥ 0.

Basis step: If k = 0, then i = j, i.e. we are working with a sublist of length 1. Then
by the algorithm, m = i = j, and we check to see if am = x. If this is the case, the
algorithm sets location to m as required. If not, the recursive calls are not performed
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as i 6< m and j 6> m, so the else statement is executed, and thus location is set to 0 as
required.

Inductive step: Assume that P (k) holds for 0, . . . , k with k ≥ 0.

Now consider the case for k + 1. The algorithm begins by computing:

m = bi+ j

2
c

If x = am, then location is set to m as required, and the algorithm terminates as no
recursive calls are made. Otherwise, we have two cases, namely:

1. x < am. Thus, if x appears in the sublist ai, . . . aj, it must appear in the sublist
ai, . . . , am−1.

If i < m, then the first else if statement is executed, so the algorithm is called
recursively with the sublist between i and m− 1. As (m− 1)− i < j − i = k+ 1,
we have that (m − 1) − i ≤ k. Furthermore, as m > i, then m − i > 0, or
(m − 1) − i ≥ 0 so putting these two inequalities together, the recursive call
executes on a list of length (m − 1) − i where 0 ≤ (m − 1) − i ≤ k. Thus, by
the inductive hypothesis, this call correctly sets the value of location for x in the
sublist between i and m− 1.

If, instead, i ≥ m, we have that i = m as m falls between i and j. Then there are
no smaller elements in the sublist between i and j to check for x, and so x does
not appear in this sublist. The else statement is then executed, setting location
to 0 as required.

2. x > am. Thus, if x appears in the sublist ai, . . . aj, it must appear in the sublist
am+1, . . . aj.

It is not possible that j ≤ m, in this case, as j ≤ m means j ≤ b(i + j)/2c.
We can drop the floor here, so j ≤ (i + j)/2. This gives that j ≤ i, or j = i.
This implies k + 1 = 0, which contradicts k ≥ 0. Hence, in this case, the else if
statement is always executed for the sublist between m+ 1 and j. We have that
j − (m + 1) < j − i = k + 1, so j − (m + 1) < k. Also, as j > m, j −m > 0,
i.e. j −m − 1 ≥ 0, or j − (m + 1) ≥ 0. Thus, 0 ≤ j − (m + 1) ≤ k, so by the
inductive hypothesis, the recursive call to binary search on the sublist from m+ 1
to j correctly sets location to the required value.
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