Homework Assignment \#2 (100 points, weight 5\%)
Due: Thursday, March 15, at 1:00pm (in lecture)

Number Theory and Proof Methods

1. (20 points) We call a positive integer perfect if it equals the sum of its positive divisors other than itself.
(a) Prove that 6 and 28 are perfect numbers.
(b) Prove that if $2^{p}-1$ is prime, then $2^{p-1}\left(2^{p}-1\right)$ is a perfect number.
2. (20 points)
(a) Find the inverse of 19 modulo 141, using the Extended Euclidean Algorithm. Show your steps.
(b) Solve the congruence $19 x \equiv 7(\bmod 141)$, by specifying all the integer solutions x that satisfy the congruence.
3. (20 points) Find all solutions of the congruence $x^{2} \equiv 16(\bmod 105)$.

Hint: find all the solutions of this congruence modulo 3, modulo 5 and modulo 7 and then use the Chinese Remainder Theorem. Note that each of these equations will have two solutions so when combining them you can expect 8 different solutions mod 105.
4. (20 points)
(a) Use Fermat's little theorem to compute: $4^{101} \bmod 5,4^{101} \bmod 7,4^{101} \bmod 11$.
(b) Use your results from part (a) and the Chinese Remainder Theorem to compute $4^{101} \bmod 385$. (note that $385=5 \times 7 \times 11$).
5. (20 points)

Encrypt the message ATTACK using the RSA cryptosystem with $n=43 \cdot 59$ and $e=13$, translating each letter into integers and grouping together pairs of integers, as done in example 11 in the textbook and in the classnotes.

