Homework Assignment \#2 (100 points, weight 5\%)
Due: Thursday, March 15, at 1:00pm (in lecture)

Number Theory and Proof Methods

1. (20 points) We call a positive integer perfect if it equals the sum of its positive divisors other than itself.
(a) Prove that 6 and 28 are perfect numbers.

We have that $6=2 \cdot 3$, so the positive divisors of 6 other than itself are 1,2 , and 3. As $1+2+3=6,6$ is perfect.

We have that $28=2 \cdot 2 \cdot 7$, so the positive divisors of 28 are $1,2,4,7$, and 14 . $1+2+4+7+14=28$, so 28 is perfect.
(b) Prove that if $2^{p}-1$ is prime, then $2^{p-1}\left(2^{p}-1\right)$ is a perfect number.

The positive divisors of $2^{p-1}\left(2^{p}-1\right)$ other than itself for $2^{p}-1$ prime are all the numbers of the form 2^{i} for $0 \leq i \leq p-1$, and $2^{j}\left(2^{p}-1\right)$ for $0 \leq j<p-1$. Note that $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ for any positive integer n : this can be seen by thinking of the sum as the binary number $\underbrace{11 \ldots 1}_{n}$, which is just the binary expression $1 \underbrace{0 \ldots 0}_{n}-1$.
Thus, taking the sum of these positive divisors gives:

$$
\begin{aligned}
\sum_{i=0}^{p-1} 2^{i}+\sum_{j=0}^{p-2} 2^{j}\left(2^{p}-1\right) & =\left(2^{p}-1\right)+\left(2^{p}-1\right)\left(2^{p-1}-1\right) \\
& =\left(2^{p}-1\right)\left(1+\left(2^{p-1}-1\right)\right) \\
& =\left(2^{p}-1\right) 2^{p-1}
\end{aligned}
$$

Thus, for $2^{p}-1$ prime, we have that $2^{p-1}\left(2^{p}-1\right)$ is perfect.
2. (20 points)
(a) Find the inverse of 19 modulo 141, using the Extended Euclidean Algorithm. Show your steps.

We apply the Euclidean Algorithm to 19 and 141:

$$
\begin{aligned}
141 & =7 \cdot 19+8 \\
19 & =2 \cdot 8+3 \\
8 & =2 \cdot 3+2 \\
3 & =1 \cdot 2+1
\end{aligned}
$$

Thus, $\operatorname{gcd}(19,141)=1$, which is a requirement for the inverse to exist. Now we proceed with the rest of the Extended Euclidean algorithm to express gcd $(19,141)=$ $19 s+141 t$ for integers s, t. Then we have that s is the inverse of 19 modulo 141:

$$
\begin{aligned}
1 & =3-1 \cdot 2 \\
& =3-(8-2 \cdot 3) \\
& =-8+3 \cdot 3 \\
& =-8+3(19-2 \cdot 8) \\
& =3 \cdot 19-7 \cdot 8 \\
& =3 \cdot 19-7(141-7 \cdot 19) \\
& =-7 \cdot 141+52 \cdot 19
\end{aligned}
$$

Thus, the inverse of 19 modulo 141 is 52 .
(b) Solve the congruence $19 x \equiv 7(\bmod 141)$, by specifying all the integer solutions x that satisfy the congruence.

We have that the inverse of 19 modulo 141 is 52 , so we can multiply both sides of the equation by 52 :

$$
\begin{aligned}
19 x & \equiv 7 \quad(\bmod 141) \\
52 \cdot 19 x & \equiv 52 \cdot 7 \quad(\bmod 141) \\
x & \equiv 82 \quad(\bmod 141)
\end{aligned}
$$

Thus, the integer solutions that satisfy the congruence are of the form $82+141 i$ for all integers i.
3. (20 points) Find all solutions of the congruence $x^{2} \equiv 16(\bmod 105)$.

Hint: find all the solutions of this congruence modulo 3, modulo 5 and modulo 7 and then use the Chinese Remainder Theorem. Note that each of these equations will have two solutions so when combining them you can expect 8 different solutions mod 105 .

We find all of the solutions $x^{2} \equiv 16 \equiv 1(\bmod 3)$. There are only two nonzero values modulo 3 , namely 1 and 2 , and both of these are solutions to the equation.
We then find all solutions $x^{2} \equiv 16 \equiv 1(\bmod 5)$. There are two such solutions, namely 1 and 4.
Finally, we find all solutions $x^{2} \equiv 16 \equiv 2(\bmod 7)$. There are two such solutions, namely 3 and 4.
For each combination of solutions, we apply the Chinese remainder theorem. We have that $M_{1}=105 / 3=35$, and an inverse of 35 modulo 3 is $2 ; M_{2}=105 / 5=21$, and an inverse of 21 modulo 5 is 1 ; and $M_{3}=105 / 7=15$, and an inverse of 15 modulo 7
is 1 . Then, for every combination a_{1}, a_{2}, a_{3} of solutions with $a_{1}=1,2, a_{2}=1$, 4 , and $a_{3}=3,4$, we have that the following is a solution to the congruence:

$$
x \equiv a_{1} \cdot 35 \cdot 2+a_{2} \cdot 21 \cdot 1+a_{3} \cdot 15 \cdot 1=70 a_{1}+21 a_{2}+15 a_{3} .
$$

For $a_{1}=1, a_{2}=1, a_{3}=3$, this gives $x \equiv 31(\bmod 105)$, so $x=31+105 y$ for all integers y.
For $a_{1}=1, a_{2}=1, a_{3}=4$, this gives $x \equiv 46(\bmod 105)$, so $x=46+105 y$ for all integers y.

For $a_{1}=1, a_{2}=4, a_{3}=3$, this gives $x \equiv 94(\bmod 105)$, so $x=94+105 y$ for all integers y.
For $a_{1}=1, a_{2}=4, a_{3}=4$, this gives $x \equiv 4(\bmod 105)$, so $x=4+105 y$ for all integers y.
For $a_{1}=2, a_{2}=1, a_{3}=3$, this gives $x \equiv 101(\bmod 105)$, so $x=101+105 y$ for all integers y.
For $a_{1}=2, a_{2}=1, a_{3}=4$, this gives $x \equiv 11(\bmod 105)$, so $x=11+105 y$ for all integers y.
For $a_{1}=2, a_{2}=4, a_{3}=3$, this gives $x \equiv 59(\bmod 105)$, so $x=59+105 y$ for all integers y.
For $a_{1}=2, a_{2}=4, a_{3}=4$, this gives $x \equiv 74(\bmod 105)$, so $x=74+105 y$ for all integers y.

Thus, these are all of the solutions to the congruence.
4. (20 points)
(a) Use Fermat's little theorem to compute: $4^{101} \bmod 5,4^{101} \bmod 7,4^{101} \bmod 11$.

First we compute $4^{101}(\bmod 5)$. We have that $a^{4} \equiv 1(\bmod 5)$ by Fermat's little theorem, so:

$$
4^{101} \equiv 4^{4 \cdot 25+1} \equiv 4 \cdot\left(4^{4}\right)^{25} \equiv 4 \cdot 1^{25} \equiv 4 \quad(\bmod 5)
$$

We now compute $4^{101}(\bmod 7)$. We have that $a^{6} \equiv 1(\bmod 7)$ by Femat's Little Theorem, which gives:

$$
4^{101} \equiv 4^{16 \cdot 6+5} \equiv 4^{5}\left(4^{6}\right)^{16} \equiv 4^{5} 1^{16} \equiv 4^{5} \quad(\bmod 7)
$$

We have that $4^{2} \equiv 16 \equiv 2(\bmod 7)$, so this gives that':

$$
4^{5} \equiv\left(4^{2}\right)^{2} 4 \equiv\left(2^{2}\right) 4 \equiv 4^{2} \equiv 2 \quad(\bmod 7)
$$

Finally, we find $4^{101}(\bmod 11)$. We have that $4^{10} \equiv 1(\bmod 11)$ by Fermat's Little Theorem, which gives:

$$
4^{101} \equiv 4^{10 \cdot 10+1} \equiv 4 \cdot\left(4^{10}\right)^{10} \equiv 4 \quad(\bmod 11)
$$

(b) Use your results from part (a) and the Chinese Remainder Theorem to compute $4^{101} \bmod 385$. (note that $385=5 \times 7 \times 11$).
We have that $M_{1}=385 / 5=77$, and the inverse of 77 modulo 5 is $y_{1}=3$. As well, $M_{2}=385 / 7=55$, and the inverse of 55 modulo 7 is $y_{2}=6$. Finally, $M_{3}=385 / 11=35$, and the inverse of 35 modulo 11 is $y_{3}=6$. Thus, by the Chinese Remainder Theorem, the solution has the form:

$$
x \equiv a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3}=4 \cdot 77 \cdot 3+2 \cdot 55 \cdot 6+4 \cdot 35 \cdot 6 \equiv 114 \quad(\bmod 385)
$$

Thus, $4^{101} \equiv 114(\bmod 385)$.
5. (20 points)

Encrypt the message ATTACK using the RSA cryptosystem with $n=43 \cdot 59$ and $e=13$, translating each letter into integers and grouping together pairs of integers, as done in example 11 in the textbook and in the classnotes.

We have $p=43, q=59$, and $n=2537$. Mapping letters to their positions in the alphabet gives that A has value 1, C has value 3, K has value 11 , and T has value 20. Thus, the messages we want to transmit are AT, which has value 0120; TA, which has value 2001; and CK, which has value 0311.

To encrypt message M, we calculate $C=M^{e}(\bmod n)$. Thus, 0120 encrypts to:

$$
C_{1}=(0120)^{13} \equiv 286 \quad(\bmod 2537)
$$

Then 2001 encrypts to:

$$
C_{2}=(2001)^{13} \equiv 798 \quad(\bmod 2537)
$$

And finally, 0311 encrypts to:

$$
C_{3}=(0311)^{13} \equiv 425 \quad(\bmod 2537)
$$

Thus, the encrypted message is $286,798,425$.

