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Abstract

This paper proposes an empirical evaluation of different
matching strategies that have been proposed in the litera-
ture to solve the problem of feature point correspondence
between images. They will be evaluated in terms of their
ability to reduce the number of false matches in given match
sets, while preserving the good matches. The validation pro-
cess determines the number of good matches and the propor-
tion of good matches in a given match set, and this for the
different parameter values of a matching constraint.

1 Introduction

Recently, great advances were made in establishing corre-
spondence between views generated by uncalibrated sys-
tems of cameras. Most matching schemes share a common
structure [11, 15, 16]. They apply correlation between auto-
matically detected feature points to obtain a set of candidate
matches. Then, a robust estimation method is used to find
the epipolar or trifocal geometry of the camera system. This
estimated geometry can then be used to reject some incom-
patible candidate matches, and to guide the search for more
matching points.

The efficiency and accuracy of this scheme depends
greatly on the quality of the candidate match set initially ob-
tained. Indeed, robust estimators require candidate match
input sets with many correct matches to find an accurate
solution, and with few mismatches to perform efficiently.
Thus, candidate match sets should be filtered before cam-
era system geometry estimation. This is generally done
by introducing basic constraints that aim to eliminate mis-
matches. These additional constraints are basic in the sense
that, at the stage where they are applied, the epipolar or tri-
focal geometry of the camera system geometry is not yet
known. Thus, neither image rectification or guided match-
ing are possible at this point.

In this paper, we propose to empirically compare and
validate the effectiveness of different matching strategies.
They will be evaluated in terms of their ability to reduce

the number of false matches in given match sets, while pre-
serving the good ones. The match sets obtained by these
matching strategies are intended to serve as input to robust
estimators of the epipolar geometry which can thereafter be
used in further improving the sets. It is important to note
that the constraints and strategies studied here would not
be sufficient, by themselves, to find match sets of sufficient
quality. Instead, they should be used within more elabo-
rate matching schemes. The objective of the present study
is therefore to validate the constraints used inside matching
algorithms, not to study these algorithms as a whole. These
algorithms have been surveyed and empirically compared in
several other works [3, 5, 9, 12].

Many authors use iterative processes in the steps preced-
ing robust estimation. Relaxation is such an iterative pro-
cess [16]. In this case, an energy function, corresponding to
some aggregate value of a constraint applied to the pairs in
a candidate set, is iteratively minimized. Testing the same
constraint outside of such an iterative scheme represents a
good measure of its effectiveness. This is why we have cho-
sen to limit the scope of this study to the direct application
of constraints.

The next section describes our scheme for evaluating
matching methods. Then, section 3 studies the role of fea-
ture point detection in matching. Section 4 looks at the way
in which correlation is applied. Section 5 is concerned with
matching constraints that require corresponding features to
have similar properties. Section 6 looks at matching con-
straints that require matches to have similar disparities as
their neighbors. Finally, section 7 justifies the use of some
matching constraints when the goal is fundamental matrix
estimation.

2 Validating Point Correspondences

The feature point matching problem consists in finding
pairs, among many candidate feature points, that correspond
to the same scene element. To evaluate and compare match-
ing strategies, we will use image pairs on which all possible
good matches were identified, among fixed sets of detected



feature points. Results of various matching schemes will
then be compared against these exact solutions.

The image pairs shown in Fig. 1 were selected. The
pairs have varying levels of change in the translation, ro-
tation, zoom, and illumination between their images. Fea-
ture points have been detected on each image (see section
3), and all correct matches between these points were deter-
mined. To determine these matches, all possible pairs must
be considered, a laborious task if it had to be done entirely
manually.

Fortunately, to build thisground truthset, many pairs can
be automatically discarded. First, by visual inspection, the
horizontal and vertical disparity ranges of each image pair
can be determined. All matches having a disparity outside
these ranges can be rejected. Secondly, the matches that do
not agree with the epipolar geometry of the image pair can
be automatically eliminated. To this end, the epipolar ge-
ometry of each image pair was estimated using the method
described in [11]. Following this pruning, we are left with
a smaller set of image point pairs from which all the good
matches can be extracted manually in reasonable time1.

Figure 1: The six test image pairs with feature points ex-
tracted (approximatively 500 per image), from top to bot-
tom: Kitchen, Building, Church, Lab, House, Objects.

Having identified the set of all possible good matches
between detected points in an image pair, it becomes possi-
ble to evaluate the effectiveness of different strategies used
for matching: a matching constraint is considered useful if it
filters out many mismatches found in an input matching set,

1These images, the detected feature points and the correct match set are
available at www.site.uottawa.ca/research/viva/projects/imagepairs/

while preserving most good matches.
A given method will use different parameters or thresh-

olds towards accepting or rejecting a given candidate match.
There will usually be a tradeoff in the selection of these pa-
rameters. In order to appreciate the effectiveness of an ap-
proach, results will be shown on a graph showing the num-
ber of good matches in the resulting match set (on the Y-
axis) versus the proportion of good matches in that set (on
the X-axis). For each image a curve is generated represent-
ing results obtained for different values of a control parame-
ter associated with the method under study. In such a graph,
a perfect method would be one producing a horizontal line,
i.e. all points eliminated are false matches. Conversely,
a useless technique would be one that produces a vertical
line, i.e. one that randomly eliminates points, thus keeping
the good match proportion constant. Note that, in practice,
we might expect that an effective method would produce a
nearly horizontal curve until some point where the curve will
start to drop vertically, when more severe thresholding can-
not further improve the quality of the match set.

3 Corners as Points of Interest

The choice of feature point detector has a definite impact
on the results produced by a matching scheme. Among
the most popular feature point detectors is the Harris
detector[6]. The Intel OpenCV library2 proposes an imple-
mentation of this operator.

When feature points are detected for the purpose of
matching, the key property of the detector is repeatability:
in different views of the same scene, the detector should ex-
tract the same points, despite the variations due to a change
in perspective or lighting conditions. The Harris detector
is considered the most stable, with regards to this property
[13]. To confirm this, we compared it to the SUSAN cor-
ner detector [14], another well-known detector which looks
at the characteristics of the area inside small windows that
have similar brightness to their center points.

These corner detectors were used to extract around 500
points in the image pairs of Fig. 1. Then, all good matches
among these corners were found using the technique de-
scribed in Section 2. From this, the number of scene cor-
ners that have been correctly detected in both images (the
repeatability of the corner detector), was obtained. Compar-
ing these numbers between Harris and SUSAN results in a
repeatability approximatively 3 times superior for Harris.

The OpenCV library includes a second function3 for cor-
ner detection, which filters the corners found by the first one.
It ensures that the detected corners are far enough from one
another. This is done by iteratively finding the strongest fea-
ture point, and throwing out all other feature points that are

2freely available at developer.intel.com
3This second function is called cvGoodfeatureToTrack.
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Figure 2: (a) Eliminating corners close to stronger ones. The
numbers shown represent the minimal acceptable distance
between corners. (b) Modifying the threshold value of the
Harris corner detector.

closer than a threshold distance from it. In order to deter-
mine if this method brings an increase in the quality of the
candidate match set, the corners detected in both images of
each pair were again counted, for different distance thresh-
olds. The resulting graph, shown in Fig. 2 (a), demonstrates
that this ’cleaning’ of the corner set significantly worsens the
set of candidate matches. Thus, this function should not be
used when corners are detected for the purpose of matching
between different views.

The OpenCV-Harris operator will therefore be the one
used in our experiments. However, it should be noted that,
when using it, it’s control parameter directly influences the
number of corners detected. To determine the effect of mod-
ifying this threshold on the quality of the candidate set, cor-
ners were detected using different thresholds on the test im-
age pairs, and the number of corners detected in both im-
ages was determined. Results are shown in Fig. 2 (b). This
graph shows that, within a reasonable range, the proportion
of detected corners remain relatively constant. It therefore
follows that one can increase the number of good matches
just by accepting more corners. However, this is done at
the price of a proportional increase of the total number of
corners to analyze. The corner detector’s threshold should
therefore be set so that the number of matches found is suit-
able, but not much greater than the amount needed for the
considered application.

4 Correlation

Correlation is the basic mean by which interest points on
different images are matched. Variance normalized corre-
lation (VNC) is a commonly used correlation function. It
offers the advantage of producing stable and reliable results
over a wide range of viewing conditions. The fact that VNC
scores are normalized, is an advantage over other correlation
functions, as it makes the choice of a threshold much easier.

Two basic parameters influence the performance of the

correlation: the size of the window (the neighborhood) used
to correlate point pairs, and the threshold value on which
the decision to accept or reject a match is based. The results
shown in Fig. 3(a) and (b), where VNC is applied to the
image pairs of Fig. 1, illustrate how these parameters affect
the quality of the resulting match set. As expected, tighten-
ing the threshold increases the proportion of good matches,
but at the same time, decreases the number of good matches
quite rapidly. The experiment also shows that increasing the
size of the window is an effective mean to identify and reject
more false matches (an observation also made in [10]), but
this is only true up to a certain size (until about11 × 11, in
our experiments).
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Figure 3: Correlating corners of Fig. 1 using VNC. (a)0.7
to 0.925 threshold, on11 × 11 windows. (b) window size
between3× 3 and21× 21, with 0.8 threshold.

4.1 Unicity

So far, all pairs having a correlation score above some
threshold value were considered. Thus, a feature point could
be matched with several others. Imposing unicity means that
for each feature point in one image, only its strongest match
in the other image is considered. A generalization of unicity
was studied, where then strongest matches are kept.

Fig. 4(a) shows the results of applying VNC to our im-
age pairs while imposing unicity of different orders. Unic-
ity proved beneficial, as it rejected many mismatches. This
important improvement obtained in the proportion of good
matches is at the expense of a fairly small loss in the absolute
number of good matches. The resulting large improvement
in the quality of the match sets should justify the general use
of unicity of order 2 or 1.

4.2 Symmetry

When unicity is imposed, VNC becomes asymmetric, a sit-
uation which is physically impossible. Thus, a right image
point, which gives the highest correlation score, when paired
with a certain left image point, can itself be paired with a
different left image point with a higher score.



Imposing symmetry means keeping only pairs in which
each point is the other’s strongest match [4]. This increases
the chances that the two points in the matched pairs corre-
spond to projections of the same physical scene point. Fig.
4(b) shows the results of the same experiment as in 4(a), but
where the symmetry constraint was applied in addition to
unicity. It shows that imposing symmetry is clearly advan-
tageous as it eliminates many mismatches while affecting
only few good ones. Note that symmetry is generally im-
posed after unicity even if, in fact, symmetry can hold for
matches that violates a unicity of a given order. This is often
the case for scenes where several occlusion boundaries can
be found; thechurch image pair is such an example where
more than 20 good matches are lost when symmetry is ap-
plied after unicity of order 1 rather than order 8.

Nevertheless, imposing unicity and symmetry consti-
tutes a very effective way of improving the quality of a
match set. The fact that these constraints have a relatively
low computational costs reinforces this statement.

For this reason, the experiments presented in the remain-
der of this work will use match sets obtained from VNC on
9 × 9 windows and using a threshold of0.8 with first order
unicity and symmetry applied. Table 1 summarizes the char-
acteristics of the resulting match sets. The question now is to
determine how the quality of these match sets can be further
improved.
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Figure 4: (a) Imposing the unicity constraint with varying
order while applying VNC to the corners of Fig. 1. (b) Im-
posing symmetry on the sets obtained in (a). VNC is applied
to 9× 9 windows with a threshold of0.8.

5 Using Feature Point Properties

Many properties can be used to describe image points. Some
should remain relatively unchanged in different views, and
hence could be used to constrain matching. However, many
properties such as corner strength and orientation, which
are useful in describing corners, will not improve candidate
match sets, as they are indirectly accounted for during cor-
relation.

Image pair Proportion of Number of
good matches good matches

Kitchen 54.5% 78
Building 48.7% 56
Church 56.2% 63

Lab 67.8% 192
House 50.7% 37
Objects 67.5% 81

Table 1: Characteristics of match sets obtained from VNC
correlation using9×9 windows, and thresholds of0.8, with
unicity of order 1 and symmetry.

5.1 Corner Shape Similarity

One possible strategy is to require that the corners in a pair
have similar shapes. A corner shape is defined here as a
small area around the feature point, belonging to the same
scene object as this feature point. A method to extract the
corner from its background is therefore required. Two such
simple methods were investigated.

The first method uses univalue segment assimilating nu-
clei (USANs), as described in [14]. The idea is to extract
the portion of feature point neighborhoods that is of similar
intensity values. A USAN is then assumed to belong to the
same scene object as the feature point.

The other method is inspired from rudimentary block
truncation coding [2]. The correlation window is separated
into two regions according to the window’s average inten-
sity value. The foreground consists of the pixels within the
same region as the feature point.

Once corner shapes have been extracted, the Ham-
ming distance between the obtained binary fore-
ground/background maps is computed and pairs for
which this distance is above some threshold are eliminated.
Results are shown in Fig. 5(a) and (b). While foreground
extraction using USAN does not seem to be very effec-
tive, results based on truncated blocks show a certain
improvement in the proportion of good matches, but the
corresponding reduction in the number of good matches
might appear excessive for some applications.

5.2 Eliminating the Background

Some correlation functions, such as [1], attempt to consider
only the scene objects on which the feature points lie, to
establish correspondence. The foreground extraction meth-
ods of subsection 5.1 can be used to determine the region to
which correlation should be restricted.

Results obtained when using this kind of selective cor-
relation (where VNC is applied directly to the foregrounds
of corners, but is weighted by a multiplying factor when ap-
plied to the background) are shown in Fig. 6(a) and (b).
These graphs show that performing a correlation on the fore-
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Figure 5: Applying the shape similarity constraint on9 × 9
windows, for different choices of threshold. (a) using US-
ANs. (b) using truncated blocks.

grounds gives better results than using the simple shape sim-
ilarity criterium of the previous subsection. Higher propor-
tions of good matches can be achieved with higher multiply-
ing factors, but at the cost of reducing their number.
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Figure 6: Applying the background elimination constraints
on21×21 windows. (a) with a varying threshold, and a mul-
tiplier of 0 for the background. (b) with a varying multiplier
for the background, and a correlation threshold of 0.92.

6 Enforcing Disparity Consistency

It is reasonable to assume that, in most cases, the dispar-
ity of a match should be similar to the ones of its neigh-
bors. Hence, constraints could be established that ensure
that matches behave as their neighbors.

6.1 Confidence Measure

Based on the principle that each point of a match pair should
have a neighborhood with similar properties, a confidence
measure was proposed in [16]. It is defined for a pair of
points and uses the feature points belonging to their neigh-
borhoods. All candidate matches, found in the neighbor-
hood, having a relative position similar to the pair being
considered, are counted by the measure.

Fig. 7 shows the results of constraining the confidence
measure withεr = 10 and61× 61 neighborhoods. A draw-
back of this measure is that it cannot be estimated if a point
does not have close neighbors in the candidate set. Also, the
method was found difficult to tune because several parame-
ters have to be adjusted. Although this constraint achieves
positive results on some of the image pairs, it is seen that
it does not perform as well as the other constraints of this
section.
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Figure 7: Constraints on the confidence measure, with vary-
ing threshold.

6.2 Disparity Gradient

The disparity gradient is a measure of the compatibility of
two pairs [8]. If two pairs(m,m′) and(n, n′), have dispari-
tiesd(m,m′) andd(n, n′) respectively, then their cyclopean
separation,dcs(m,m′; n, n′), can be defined as the vector
joining the midpoints of the line segmentsmm′ andnn′,
and, their disparity gradient is defined as:

∆d(m,m′; n, n′) =
|d(m,m′)− d(n, n′)|
|dcs(m, m′;n, n′)| (1)

Compatibility measures, such as the disparity gradient
can be used in a iterative process, as in [11], where incom-
patible matches are iteratively removed until all pairs have
a similar disparity gradient. Here, the disparity gradient as
well as the constraints of the next subsection are used in a
new way, in a local constraint that enforces that a match’s
disparity be similar to those of it’s closest neighbors.

This measure was used in a constraint that accepts pairs
that share a disparity gradient below some threshold value
with at least 2 of its 5 closest neighbors. Fig. 8 (a) shows
the results of applying this constraint with varying threshold,
and demonstrates that it can eliminate a significant number
of outliers while eliminating few good matches.

Fig. 8 (b) shows the effect of a change in the proportion
of the neighbors that must be compatible with a match, in or-
der for it to be considered valid. The constraint was applied
with a 0.4 threshold, but where 2 out ofn neighbors must
be compatible, for differentns. This shows that this con-
straint is most effective when applied to the 3 to 5 closest
neighbors.



6.3 Relative Positions of the Neighbors

In a similar way to what may be done using disparity gra-
dients, the relative position of two pairs can be constrained.
For good matches, the vectors

−−→
mm′ and

−→
nn′ would be simi-

lar. Thus, constraints were used, which require these vectors
to have have similar direction and magnitude disparities as
at least2 of their5 closest neighbors.

Fig. 8 (c) shows results of applying the constraint on an-
gles, and (d) shows the constraint on magnitudes. As long
as the image pair’s baseline is relatively small, these simple
constraints give similar results as the constraint on the dis-
parity gradient. However, it is more difficult to select a good
thresholds on the disparity angle and magnitude.
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Figure 8: Constraints on disparity. (a) Constraint on dispar-
ity gradients with varying threshold. (b) with varying num-
ber of neighbors. (c) Constraint on disparity angles, with
varying threshold. (d) Constraint on disparity magnitudes,
with varying threshold.

7 Estimating the Epipolar Geometry

The matching strategies presented in this work aim at im-
proving match sets by filtering out bad matches. The legiti-
macy of this objective will now be demonstrated by showing
how a good initial match set can greatly improve the effi-
ciency of fundamental matrix estimation (step 3, mentioned
in Section 1).

The fundamental matrix is usually found using a
RANSAC scheme, in which random selections of 8 matches
are iteratively considered [7]. A fundamental matrix is com-
puted for each selection, and its accuracy is assessed by

Match set N P E
Kitchen, VNC 0.8 480 20.0% 1 170 207
Kitchen, VNC 0.9 129 45.7% 1 564

VNC 0.8 + constraints 117 59.8% 181
Building, VNC 0.8 497 16.7% 4 951 418
Building, VNC 0.9 133 36.1% 10 407

VNC 0.8 + constraints 72 65.3% 90
Church, VNC 0.8 911 12.3% 55 414 078
Church, VNC 0.9 220 19.1% 1 697 813

VNC 0.8 + constraints 55 76.8% 24
Lab, VNC 0.8 734 27.4% 93 705
Lab, VNC 0.9 363 53.7% 431

VNC 0.8 + constraints 272 71.7% 42
House, VNC 0.8 545 13.2% 33 246 450
House, VNC 0.9 159 22.6% 433 770

VNC 0.8 + constraints 36 63.9% 107
Objects, VNC 0.8 292 29.8% 48 240
Objects, VNC 0.9 62 90.3% 6

VNC 0.8 + constraints 100 80.0% 17

Table 2: Characteristics of different match sets and the the-
oretical expectation of the number of iterations required to
find the exact fundamental matrix using RANSAC.

considering the cardinality of the subset of the candidate
matches that support it. After a sufficient number of ran-
dom selection, it is expected that an accurate estimate of the
fundamental matrix will be uncovered. The number of iter-
ations required is basically a function of the proportion,p,
of good matches in the considered set. The number of itera-
tions,n, needed to obtain a correct fundamental matrix with
95% probability is expressed theoretically as

n =
log (0.05)

log (1− p8)
(2)

Table 7 presents the characteristics of different match
sets which could be used for fundamental matrix estima-
tion, for the 6 image pairs of Fig. 1. The first two lines
of each row correspond to the sets obtain using only VNC,
with thresholds of 0.8 and 0.9 respectively. The last line
corresponds to the match set obtained with the 0.8 VNC
threshold, on which the additional constraints of unicity and
symmetry were imposed, as well as a background elimina-
tion constraint using truncated blocks with a threshold of 0.9
and a background multiplier of 0.25, and a disparity gradient
constraint with a threshold of 0.4.

It is seen that simply using VNC with a low threshold
can yield poor results, and that the most advantageous way
of improving the match set is to filter it, rather then simply
increasing the VNC threshold.

We also used Roth’s software4, described in [11], to es-
timate fundamental matrices from the match sets of table

4available at www2.vit.iit.nrc.ca/.̃gerhard



7. This experiment illustrates how the use of matching con-
straints makes the process of robust fundamental matrix es-
timation more efficient. The solution shown in Fig. 9, where
the match set on which several constraints have been applied
was used, is an accurate one. This solution was found in less
than 500 RANSAC iterations. This is in contrast with the
solutions found using a non-filtered match set that required,
in this experiment, about 10000 iterations before finding an
acceptable, but nevertheless inferior solution.

Figure 9: Epipolar geometry estimated from a filtered match
set: the epipolar lines corresponding to selected points on
the left image.

8 Conclusion

It was seen that many methods are useful in improving the
quality of sets of candidate matches. The Harris corner
detector was confirmed as a stable feature point extractor.
VNC produces a good first candidate match set when unic-
ity and symmetry are imposed. Constraints that use simple
models of the corners were found to be beneficial. Finally,
comparing matches with their neighbors to ensure that they
have similar disparities allows the rejection of many mis-
matches.

A disadvantage of combining many constraints is that it
results in more thresholds, and thus a greater need for tun-
ing. However, as seen in the example of Table 7, good re-
sults can be obtained by combining constraints and using
conservative thresholds.

This work was restricted to the study of matching in the
case of image pairs with narrow baselines. An interesting
extension would be the investigation of strategies for the
case of image pairs that are more difficult to match.
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