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Abstract

Automatic people detection and tracking is a very es-
sential task of video surveillance systems. It can improve
a system’s performance in important fields such as secu-
rity, safety, human activity monitoring etc. In this paper
we present a novel approach for people detection and 3D
tracking. Our method is based on a human upper body 3D
model and a likelihood function to evaluate its presence in
a certain region of the scene. We then find the maxima of
this function using a modified particle filtering algorithm
which we call Explorative Particle Filtering (ExPF). We de-
signed this algorithm in a way to guarantee a multiple ob-
jects tracking and a good estimation of their positions when
using a small number of particles. Our technique is generic
and simple as no dynamic models nor trained features mod-
els (color, shape etc.) were used. We also show some track-
ing results from video surveillance feeds in order to illus-
trate our approach.

1. Introduction
Automatic detection and tracking of people in real world

surveillance videos is a very important task to perform and
can be used to improve automated surveillance systems in
many aspects. In fact it can help securing a specific area by
estimating a crowd’s density, counting the number of peo-
ple entering or leaving this area or detecting unusual be-
haviours for example. Detecting people presence in front of
a showcase, a poster or shop can also be useful to evaluate
the efficiency of a marketing strategy. An automatic peo-
ple tracking system can also contribute to the monitoring of
human activity and people interaction at home and thus can
detect intrusion or abnormal activities.

In order to be efficient, the detection and tracking mod-
ule must be generic as the movement detection should not
be restricted to specific situations or especially arranged en-
vironments. The system conceived is also supposed to be
little sensitive to illumination conditions, clothing and back-
ground changes. It is meant to detect people entering the

scene from any side without any previous knowledge of the
shape or appearance of the detected person. Our idea is to
develop an algorithm able to detect and track the people in
a scene without the need to use expensive or sophisticated
hardware.

Individual detection modules, previously developed for
surveillance systems, use trained models of the human
body appearances or shapes and try to distinguish image
regions containing people using classification algorithms.
The Pfinder system [25] uses blobs contours information,
statistical modelling of colors and shapes to track the move-
ment of a single person in the scene. Using frequency
changes in the image Marana et al. [15] estimate textures
and apply a trained Kohonen maps network in order to es-
timate a crowd density. However, high frequency variations
in the background affect textures estimation and as a result
reduce the estimation accuracy. McKenna et al. [16] model
the color distribution of the moving objects using adaptive
Gaussian mixture in order to track people. Nakajima et al.
[18] tracker uses Support Vector Machines to classify fore-
ground objects represented by shape and color features. A
hierarchical template matching based on blobs contour and
distance transforms is applied in [4] to detect pedestrians.
As we are looking to detect and track people in real world
situation all these methods would act poorly, due to the fre-
quent changes in color features resulting from changing il-
lumination and different camera angles. On the other hand,
as the human movement is non rigid, the entire body shape
can change frequently, thus the shapes training set cannot be
reduced to a small set of configurations. Also, the shape and
color models would fail to detect people in occlusion situ-
ations (people carrying boxes or bags, body parts occluded
by other people etc.).

In order to overcome these problems many tracking sys-
tems have been developed using multi-camera information.
Tsutui et al. [21] use multiple camera and optical flow es-
timation in order to calculate the velocity and the 3D po-
sition of a moving object. However this method is able to
track a single target which restricts its application. Stereo
vision techniques combined with shape matching [5, 12],



color information matching [10, 17] or probabilistic models
[17, 6] can determine whether objects observed in different
views are the same. After detecting the different objects in
the scene, their counting and tracking become easy to ac-
complish. Meanwhile, matching objects in many views is
of high computational complexity and requires an extensive
calibration work.

Instead of using global features of the human body some
methods try to extract some features from the video and
classify them as local features of a human body. Thus,
by detecting some body parts they detect a person’s pres-
ence. Haar-like features developed for face detection [23]
have been used with an AdaBoost classifier [24] or in an
extended way [11] to detect people. Histograms of ori-
ented gradients (HOG) [3], local edge parts or edgelets
[26, 19, 27] are other local features introduced for people
detection. Lu et al. [13] use HOG, color and shape models
and a particle filer based tracker to detect multiple hockey
players. These discriminative techniques detect body parts
with a high efficiency. On the other hand, they require large
training data sets and complex image processing tasks.

Detection and tracking of multiple humans can also be
considered as a Bayesian inference problem. In fact, people
detecting in the image can be viewed as a problem of find-
ing the state vector, describing the number and positions
of people in the scene, which fits the best to the observa-
tion provided by some image features. Zhao et al. [29] use
3D human shape model, appearance model and a Markov
Chain Monte Carlo (MCMC) technique to detect and track
multiple humans in crowded scenes. Despite being efficient
this approach is of a large complexity and requires the ex-
tensive knowledge of the scene entrances, exits and its ge-
ometry. One of the most efficient Bayesian estimators is
the Condensation algorithm [7] also known as particle filter.
This algorithm is designed to handle multimodal and non-
Gaussian probability densities and can model uncertainty.
Thus, we opted to develop a solution based on this algo-
rithm. In section 2 we describe the Condensation algorithm
and its application to tracking. We also discuss the necessity
to adapt it to multiple objects tracking. The state vector and
the function we use to evaluate its likelihood are exposed
in section 3. Section 4 outlines the modified particle filter
method we conceived. Results and discussion are shown in
section 5.

2. Particle filtering and object tracking
The Condensation or particle filter algorithm was con-

ceived to track an object in video images. In a particle fil-
ter context, a given configuration of the state vector X , we
are willing to estimate, is called particle. The likelihood
P (Zk/Xm) of an observation (or the history of observa-
tions) Zk given a particle Xm is called weight. The goal of
any Bayesian state estimator is to find the best fitting con-

figuration of the state vector at time t (Xt) given all the ob-
servations until time t (Z0:t). This can be done by finding
the maximum of the a posteriori density P (Xt/Zt). How-
ever, it is not always possible to calculate this density in a
direct way. The idea of the Condensation technique is to
represent this a posteriori density using a set of sampled
weighted particles. This set of particles is established using
the likelihood function and the a priori density P (Xt/Zt−1)
calculated through the process dynamics and the set of sam-
ples used at time t− 1 to represent P (Xt−1/Zt−1).

The original particle filter algorithm was designed for a
single object tracking. To reach that goal, it tends to concen-
trate and create the particles used for estimation, around the
a posteriori density maxima estimated at the previous time
step. Thus, when used with a small number of particles,
most of the created particles would be close to the previ-
ously estimated state vector. As a result, this algorithm is
unable to detect a new object entering the scene and would
badly recover after some erroneous observation (occlusion
for ex.). In order to fairly represent the a posteriori density
in these situations a larger minimum number of particles are
needed. But, when dealing with large dimension state vec-
tors this number becomes big and makes the algorithm prac-
tically inapplicable. Many algorithms have been proposed
to reduce the complexity of the Condensation algorithm by
reducing the minimum number of particles needed to have
a good estimation [28, 22]. These approaches are designed
for a single object tracking, and like the original particle fil-
ter, tend to exploit the zone of the state vectors search space,
labelled as most probable, rather than to explore the entire
search space. Thus, the ability of the tracker to detect newly
appearing objects is still reduced. Saboune et al. [20] in-
troduced a modified particle filtering for 3D human motion
capture. The proposed Interval Particle Filtering algorithm
reduces the number of particles needed and overcomes the
particles degeneration problem by introducing constant par-
ticles. This approach is interesting but needs to be adapted
to multi object tracking.

Other methods based on particle filtering were intro-
duced for multi object tracking and were capable of dealing
with objects newly appearing. Previously presented tech-
niques [14, 8] use joint likelihood functions and a joint state
vector composed of the different state vectors describing the
different objects. In fact, the size of the joint state vector de-
pends on the number of objects detected; when this number
grows, the joint state vector size enlarges and thus a greater
number of particles are necessary to have a good estima-
tion, which makes this method computationally complex.
Koller-Maier et al. [9] use an individual classic Condensa-
tion tracker for each object and then combine the densities
resulting from each of these trackers to get a global density
describing the entire process. Their method is based on the
assumption that all objects are detected with the same accu-



racy. If this property is not verified, which is the case when
tracking people at different depths with different shapes and
sizes, the sample set they use may degenerate and the track-
ing will fail. Actually in this case, all the particles would be
concentrated around the particles having the larger weights.

Our idea is to use a simple likelihood function to evalu-
ate the presence of a single person in the image. We then
represent the a posteriori density using a reduced number
of particles, by applying a modified particle filtering algo-
rithm adapted to multiple objects detecting and tracking.
Our algorithm which we call Explorative Particle Filtering
(ExPF), will be exposed in section 4.

3. The likelihood function
We aim to develop a simple likelihood function which

evaluates the presence of a person in the images. We then
estimate the presence of people in the scene by detecting the
maxima of this function using a particle based approach. As
we are dealing with feeds provided by surveillance cam-
eras, the method we apply should be able to handle low
resolution and low frequency feeds. Thus, we avoid using
any feature which is sensitive to noise or which requires a
high resolution image to be tracked. The evaluation func-
tion should also be robust to partial occlusions and illumi-
nation changes. In order to satisfy all these constraints we
opted to conceive a function based on the foreground sil-
houette images. These images are extracted by subtracting
the background, applying a threshold then a median filter to
reduce the noise, and a HSV shadow elimination filter [2].

Our approach is also based on using a 3D model, simu-
lating the upper body human shape, which we try to local-
ize in the 3D scene using the video images. Localizing and
tracking the torso and head of a person in the video feeds is
sufficient to localize and track the whole person. Actually,
tracking the arms and legs in the video is very complex and
will bring no additional interesting information to the de-
tection module. In fact, while walking, these body parts can
take different shapes depending on the gait phases. Thus,
representing each of these parts with a unique 3D object
would be inaccurate. On the other hand, the torso and head
3D forms do not change during the movement and can be
represented with a simple invariant 3D object. For all these
reasons, we chose to represent the human body with a 3D
model of the torso and the head only (Figure 1). As we
are trying to estimate this model’s 3D position, through an
image which is a 2D projection of the real body, our model
will be parameterized by its 3D position and orientation (ro-
tation about its vertical axis) in the camera coordinates sys-
tem. Thus, our model will have four degrees of freedom.

In addition to the 3D human model, we should also de-
velop a function which evaluates its likelihood to the im-
age. In order to compare this virtual model to the real per-
son present in the scene, we compare their 2D respective

Figure 1. Different configurations of the 3D virtual model used to
simulate the human shape. The model is formed by a head and
torso represented using cubic volumes. This model is configured
through its 3D position and orientation in the scene.

projections; the 3D model is projected in accordance to its
3D position and orientation, by a virtual camera having the
same characteristics as the real camera. The video feed pro-
vides the 2D projection of the real 3D scene. We are try-
ing to evaluate the probability of presence of a person in
a certain region of the scene, using a 3D model which we
position in this region. Thus, in order to compare the syn-
thetic and silhouette images, we only consider the portions
of these two images that correspond to this region. This im-
age parts are resized in order to keep a unique scale for all
the different configurations sizes (Figure 2). The likelihood
w of a certain configuration of the 3D model is calculated
by:

w = Nc − (Ns + Nv)

where Nc is the number of common pixels in both the syn-
thetic and silhouette images, Ns is the number of pixels of
the silhouette image not common with the synthetic image
and Nv is the number of pixels of the synthetic image not
common with the silhouette image.

Figure 2. Likelihood evaluation. The silhouette image (top left)
is extracted by subtracting the background image and applying a
threshold filter and a median filer. One configuration of the 3D
virtual model is represented by a synthetic image (top right) in
accordance to its position in the 3D scene. The comparison is only
applied to the region containing the 3D model (bottom left). This
part of the image is then resized (bottom right) and the numbers of
common pixels (in blue) and different pixels (in white and red) are
counted.

The choice of this function is motivated by the fact that
we want to find the configuration which maximizes the



number of common pixels and minimizes the number of dif-
ferent ones. This function is simple and can be applied to
low resolution images.

4. Explorative PArticle Filtering (ExPF)
The Condensation algorithm also known as Particle Fil-

tering algorithm [7] was designed in order to estimate the
a posteriori density of a process using the Bayes rule and
a set of N samples of the state vector, called particles. At
time t the algorithm has a three steps structure:

• Selection (or re-sampling): The set of N particles cre-
ated at t − 1 is re-sampled (by N particles) in accor-
dance to the particles weights at t− 1. Thus, the par-
ticles having the greatest weights are selected many
times in the new set and those having the smallest
weights are vowed to disappear.

• Prediction: Each of the N particles surviving the se-
lection step is updated following a model describing
the process dynamics.

• Measure: Given the observation at time t, new weights
are assigned to the updated particles. The a posteriori
density is now represented by these samples and the
particle having the greatest weight is considered as the
estimation of the state vector. The new weighted N
particles set is then used in the selection step at t + 1.

This algorithm is able to handle multimodal and non Gaus-
sian densities. However, it needs a minimum number of par-
ticles to perform a good representation of the density and as
a result a precise estimation of the state vector. When the
number of used particles is reduced, the number of particles
surviving the selection step, also known as survival rate, is
reduced. As a result, the few heaviest particles would mo-
nopolize the new particles creation and the other configura-
tions would disappear. Thus, the multimodal aspect of the
algorithm would be weakened. In this case, a succession of
erroneous observations (occlusion for example) will make
the algorithm diverge as the most probable estimations are
no longer present in the particles set. This problem is known
as particles degeneration.

The Interval Particle Filtering [20] introduced for human
motion capture modifies the Condensation algorithm in a
way to overcome this problem when using a smaller number
of particles. In fact, it preserves the advantages of a particle
filter algorithm and adopts the same three steps structure
with modifications on the selection and prediction steps:

• Selection: Instead of choosing the particles relatively
to their weights, a fixed number M of the heaviest dis-
tinct particles are selected. By applying this constant
survival rate strategy, the particles created are issued

from different ones not only from very few when us-
ing a small number of particles. The multimodality
handling ability is preserved in this way.

• Prediction: No dynamic modelling or white noise is
used to update the particles. Using the evolution con-
straints of each state variable in time, every particle
is replaced by a set of particles representing a multi
dimensional interval covering the possible configura-
tions of the state vector based on his previous configu-
ration. This approach simplifies the prediction process
as no trained dynamic model is used. In addition to
the updated particles, a number of fixed particles rep-
resenting different distinct state vector configurations
are added to the set. These static particles guarantee
the convergence of the algorithm when all the particles
created by selection and update are based on erroneous
observations.

The particle filter algorithm can be viewed as a search
for the best fitting particle in a set of N created particles
representing the state vector search space. The Condensa-
tion algorithm uses most of these N particles to intensively
populate the most probable zones of this space (established
through the previous observation). It tends more to exploit
these zones than to explore the entire search space. As a
result, when using a reduced number of particles it tracks a
single object in a precise way, but acts poorly to detect mul-
tiple or newly appearing objects in the scene. On the other
hand, the Interval Particle Filtering technique maintains a
balance between exploitation and exploration; it uses the N
particles in a way to populate more distinct probable zones
in a moderate way. Thus, it explores the search space in a
better way and offers an ability to detect newly appearing
objects. The exploration task is also enhanced in this ap-
proach through the introduction of static particles. For these
reasons, we opted to use a similar logic for people detection
and tracking. The Explorative Particle Filtering (ExPF) we
propose here brings some amelioration to the previously de-
scribed algorithms. Moreover, our approach is conceived in
a way to guarantee a good multiple targets tracking.

At time t the three steps of the ExPF algorithm are de-
signed as follows (Figure 3):

• Selection: We use the strategy of fixed survival rate
explained previously; from the set of N particles cre-
ated and weighted at t − 1, we pick a fixed number of
M distinct particles. These M particles represent the
M biggest maxima of the sampled a posteriori den-
sity P (Xt−1/Zt−1). This set of M particles is divided
into two subsets: The first containing the H particles
labelled as representing people at t− 1 and the second
containing B particles considered as representing oc-
cluded people or noise. The choice of these particles
will be discussed later.



• Prediction: Our 3D model is configured through its
3D position and orientation. As we are tracking walk-
ing people, the evolution of these parameters during a
single time step (the difference between two images)
is constrained by the maximal velocity of human dis-
placement. Thus, a deterministic evolution strategy
can be applied to the particles, instead of using a walk-
ing trained model or Bayesian noise. In fact, we re-
place each of the H particles selected earlier by a set
of L particles representing a multidimensional interval
of particles constructed according to the dynamic con-
straints of the state variables. These L particles repre-
sent the probable current positions of the particle they
are replacing. We then add the B particles picked ear-
lier. The remaining S = N−(H∗L+B) particles will
then be chosen in a way to cover the different regions
of the state vector search space. The presence of the
B particles and S particles guarantees that the algo-
rithm detects the objects newly appearing in the scene
or recovering from an occlusion.

• Measure and decision: The set of N particles created
after the prediction step is now weighted given the ob-
servation (image) at time t using the likelihood func-
tion described in section 3. The a posteriori density
P (Xt/Zt) is thus represented by these N weighted
samples. By finding the maxima of this function we
can find the most probable positions of people in the
scene. This can be done by sorting the N particles
and picking the M configurations having the greatest
weights. But some of the heaviest particles can be very
close to each other (having overlapping 2D representa-
tion) and thus the M chosen particles would represent
some but not all the objects in the scene.

Our idea is to deal with the N particles as clusters of
close particles and not as independent ones. In fact we
sort the N particles then classify them into different
clusters. The distance between two particles is cal-
culated using the 2D representation of each one; the
percentage of the two images’ overlapping surface, to
the smallest of their respective surfaces would be the
distance between the particles. A particle’s distance
to a cluster is calculated as its distance to the particle
considered as its center. When no cluster is found at a
minimum distance from a certain particle, a new one is
created and the particle would be its center. Else, the
particle is assigned to the closest cluster which center
will be updated in a way to integrate the new assigned
particle. In order to represent the maxima of the a pos-
teriori density, we then select the M distinct clusters
centers representing the most probable zones instead
of the M heaviest particles.

In order to get precise position estimation, each of

these M particles is then optimized regarding the like-
lihood function. The particle optimization process is
similar to a multidimensional gradient descent opti-
mization but without the need to calculate the gradient
explicitly. For each of the state variables we consider
three possible directions to take: move forward, back-
ward or stay in place. We then combine these possi-
bilities for the three state variables we use to position
our model (3D coordinates). Thus, we now have 27
possible directions to take in order to reach the clos-
est maximum weight. For each of these directions we
calculate the new weight of the particle (if it moves in
this direction), and we move it in the direction which
maximizes its weight. We iterate this direction esti-
mation and moving process until no weight increasing
direction is found. We then reduce the step with which
we move the particle and search again for the direc-
tion to take as long as it is possible to maximize the
weight. We re-iterate this scheme (estimating-moving
then step reduction) until the step we use is small. The
orientation is optimized later using the same method.

The M optimized particles are then weighted and la-
belled as representing people or noise (occluded per-
son for example) using a threshold. This can be justi-
fied by the fact that the likelihood of a person presence
in a certain position is equivalent to the weight of the
3D model (particle) which is configured as being at this
same position. The H particles labelled as people and
B particles labelled as noise constitute the M particles
set which will be used in the selection step at t + 1.

The ExPF algorithm organises the particles search space in
an optimal way in order to detect and track multiple tar-
gets and has the ability to detect newly appearing objects
or those recovering from occlusion. The use of a fixed sur-
vival rate as well as the presence of static and noise particles
permit a good exploration of the entire space. On the other
hand, the optimization process we use increases the estima-
tion precision.

5. Application and results

The 3D model we use is designed in a way to respect a
normal body measurments. We run the ExPF algorithm us-
ing N = 625 particles. For each image we weight the par-
ticles and sort them. Using the particles distance described
earlier we then classify them into clusters; for each particle
we calculate the distances to the already existing clusters. If
no cluster was found at a distance smaller than 0.5, a new
one is created and the particle is considered as the new clus-
ter’s center. Else, the particle is assigned to the closest clus-
ter. When a particle pj is assigned to a cluster Ci each of its



Figure 3. The three steps structure of the ExPF algorithm at t.

center state variables sk(k = 1..4) is updated as to respect:

sk(Ci) =

∑
pl

sk(pl)

Ni

where pl is a particle of the cluster Ci and Ni is the number
of particles in the cluster Ci.

We consider the M = 40 centres of the M clusters con-
taining the heaviest particles as the maxima of the likeli-
hood function. We then optimize these particles as detailed
in section 4. These particles can represent people or oc-
cluded people or noise (heavy shadows for example). Thus,
we use a threshold to discriminate the H people particles
from others.

We use these M particles in order to construct the N par-
ticles set used for detection in the next time step (image).
Each of the H particles is replaced by L particles repre-
senting the possible configurations of the particle. They are
estimated using the current configuration of the particle and
the evolution constraints of each of the degrees of freedom
of the 3D model. The normal walking speed of a person is
about 5Km/h; when dealing with 25Hz video feeds we can
estimate the maximal displacement of a person between two
frames to be 5cm; If the value of one of the 3D coordinates
at time t is a then its value at t + 1 will be included in the

interval: [a-5;a+5]. This interval can be discretized with
3 values{a-5;a;a+5}; the 3D coordinates of a particle can
thus have any configuration of the combinations of these
values. As the orientation variation is very difficult to esti-
mate we try to update it during the optimization step only
and not through the deterministic update. As a result, we
replace each of the H particles with L = 33 = 27 particles.
In addition to these updated particles we add the B parti-
cles labeled as noise. The rest of the N particles which we
call static particles are chosen as to cover the entire search
space.

We applied our approach under these conditions in or-
der to track people in video feeds issued from the CAVIAR
benchmark images[1]. We use feeds provided by a single
camera at 25images/sec. The ExPF algorithm and methods
were developed using C++ and OpenCv functions. The pro-
cessing was done offline using a P4 3Ghz PC. It takes about
500ms in order to detect and estimate people positions in
each frame. The processing time can be reduced by apply-
ing a multi threads architecture.

The first set of images (Figure 4) shows the tracking re-
sults of two people in the scene with one person disappear-
ing behind a wall and then reappearing in the scene after
2s; the algorithm was able to track this person as soon as
it completely reappears in the scene. Our method demon-
strates the ability to detect newly appearing objects. That
was made possible by the use of the static particles. Ac-
tually, all the particles already created around the position
of the person before occlusion disappear before the person
reappears. In fact, these particles will be related to the back-
ground and not to a person anymore, as soon as this person
disappears behind a part of this background and thus will
have a null weight.

Figure 4. Tracking of people with occlusion by the background. At
t = 0 (top left image) the person disappears behind the wall and
stays entirely occluded by this wall for almost 50 frames (2sec).
Thanks to the presence of static particles, the tracker was able to
detect the person again as soon as it reappears in the scene (bot-
tom left image). This demonstrates the newly appearing objects
detection aspect of our algorithm.



In the second set of images (Figure 5) we try to detect
a person briefly disappearing behind another one. These
images show that our approach was successful in detecting
both people presence even when they are too close to each
other and sharing the same blob. In contrary to the first set
of images, the person briefly disappears behind another per-
son and not behind a part of the background. The particles
created by the person’s presence in the scene before being
occluded keep having small weights for some consecutive
observations as they now describe another person but do
not disappear. They are labeled as noise particles. As soon
as the occluded person reappears, these particles will have
big weights again and thus the algorithm would be able to
detect the reappearing body rapidly and precisely. By us-
ing the clustering technique we kept these particles alive
and we prevented the particles related to the person in front
from monopolizing the particles creation.

Figure 5. Tracking of people with mutual occlusion. These im-
ages show that our method is able to distinguish the presence of
both people even when they are close to each other and thus share
the same blob (top right and middle left images for example). At
t = 1.5s (middle right image) one person is completely occluded
by the other. The clustering strategy we adopt keeps the parti-
cles related to the occluded person alive but they now have small
weights as they evaluate the likelihood of the person in front. They
are described as being noise particles. However, as soon as the oc-
clusion was over (bottom left image), they had bigger weights and
were labeled as describing a person again.

The last set of images (Figure 6) illustrates the multi-
ple targets aspect of the ExPF algorithm. All the people
present in the scene were detected and tracked in a satisfac-
tory way. Thanks to the optimization step, the system was
able to give an acceptable estimation of the people positions

in the scene even when they are close to each other. As we
are using a reduced number of particles, we have a slim
probability of directly having the ones that fit the best to the
image, in the set of N particles we use. In fact, the heaviest
particles in this set were pushed towards the maxima of the
likelihood function and thus a more precise estimation was
accomplished.

Figure 6. Multiple people tracking. Our system was able to detect
and track all the people present in the scene with a good precision
thanks to the optimization technique we use. People having only a
part of their upperbody in the image are considered as represented
by noise particles and thus were not detected.

6. Conclusion

In this article we presented a new method for people de-
tection and 3D tracking in video feeds using a new particle
filtering based method. The Explorative Particle Filtering
we introduced reorganizes the used particles set in order to
have a good exploration of the search space even with a
small number of particles. Thus, this algorithm has the abil-
ity to track the people who newly enter the scene and those
recovering from occlusions. It also provides a good estima-
tion of the 3D positions by optimizing the particles in accor-
dance to the likelihood function applied. We do not use any
complex features extraction approach nor trained shapes or
colors models. Moreover, we do not apply a dynamic model
to update the particles which makes our method simple to
apply. The first results are encouraging and demonstrate
the tracker’s success in detecting people entering the scene
or reappearing after being partially or completely occluded.
However, some amelioration should be applied to reduce
the processing time and enhance the tracking precision es-
pecially for the model’s orientation. The Explorative Parti-
cle Filtering can also be applied in different single or mul-
tiple targets tracking tasks and not only for people track-
ing. It reduces the Condensation algorithm complexity as
it needs fewer particles to maintain a balanced exploitation-
exploration strategy.
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