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Chapter 1
Introduction

A possible illustration of a machine vision application is the camera pose recovery
problem. It consists essentially in using visual information extracted from a sequence of
images to estimate the motion parameters of each of the cameras involved in the capture
process. As such, it fits in a the concept where visual information is used to solve a
particular problem, concept that defines machine vision. The reason why this particular
example was cited is the interest it represents for this thesis as it will be seen later. For
the time being, it is just one of the many applications of machine vision. For that reason,
it can be defined or described by one (or more) of the activities involved in a common

vision problem and briefly described next.

The capture process is related among other things to the development of sensors and
other devices that allow the user or the machine to capture the environment that will
be studied by a subsequent process. The industry of cameras and other sensors has
gained quite some popularity with the introduction of digital cameras, camera phones,
for common use and panoramic and other complex shaped sensors for specialized markets.

The processing step is the most important one. It also where most of the research
is done and where the variety in algorithms in quite noticeable. Processes vary with
the problems they deal with and as a consequence are as diverse as the needs of the
industry. They include applications such as visual processing with for example image
enhancement and color correction or content-based analysis with feature extraction and
pattern recognition. The main goal here is usually to design an algorithm as elegant,
efficient, simple and portable as possible.

The output or display module is the most exposed and interactive aspect of a vision

system since the encountered devices are used either to display results or are themselves

1



Introduction 2

a result of the previous steps. This aspect is linked to all types of displays, screens,
devices - microscopes, X-ray, LCD, projectors - etc.

Last but not least, the transmission aspect is as important as any of the previous
activities. Less noticeable, it is a very specialized field that has had some popularity lately
due to the high demand in multimedia data traffic on wireless networks. The industry
in that domain mainly has to insure the safe transport and the fidelity in delivering the
information of interest. This transported information is often coded and/or compressed
after the capture step or before visualization.

All the previous activities are not usually considered independently, instead, they are
quite often incorporated as parts of a solution, the ultimate goal being to give a machine

or device the ability to deal with a problem autonomously literally using its vision of it.

The work presented here is part of the NAVIRE project! developed at the University of
Ottawa. This project aims at achieving a virtual navigation in remote real environments
that are rendered from captured panoramas. As such, this project fits all the aspects
mentioned above concerning a machine vision problem : from the capture process all
the way to the output that in this case is used for navigation purposes. As part of
such a project, we are to investigate properties related to the type of images used for
rendering and possibly develop efficient algorithms. We therefore focus essentially on
the processing aspect despite a few notions about the capture process and abundant
outputs. More specifically, we aim at establishing a formal study of spherical or 360°
panoramas through their geometry. This of course, makes great use of well established
properties and methods especially as far as epipolar geometry is concerned. The validity
of the theory that is developed throughout the chapters is tested by confronting it to
problems of increasing size starting from plain images with the notion of rectification and
ending up in the context of the pose recovery problem in the case of cubic panoramas.
Ultimately, one could state that the presented study uses known and efficient tools to

develop new tools which is, in our opinion, a very suitable definition of engineering.

1.1 Thesis Objective

This thesis addresses the problem of camera pose estimation in the context of image-

based virtual navigation in remote environment. The ultimate goal is to recover the 3D

1Visit the website http://www.site.uottawa.ca/research/viva/projects/ibr/ for more information



Introduction 3

motion and structure from spherical images sparsely distributed over the scene of interest
considering that no assumption on the camera locations and on the scene structure are
taken into account. A progression is made from the classical epipolar geometry of planar

images to pose recovery from spherical images.

1.2 Thesis Outline

In the first chapter, we will present a short introduction to epipolar geometry since
the subject has been extensively described and heavily documents in a recent past. This
will be done by giving the reader an explanation of the geometry of two images. We will
mention the epipolar constraint and the epipolar entities that we judged pertinent for
our study. Finally a section will be dedicated to a popular application of the epipolar
geometry which is image rectification. The concept has been once more well documented
through the years especially in the case of stereo images, but here we will add a contri-
bution with our adapted algorithm to three views in horizontal and “L” configuration
based on homography transfer. As it will be the case for all upcoming chapters, this

introductory part is ended by some results to demonstrate the explained procedures.

In the second chapter, we will introduce the concept of cubic panoramas and their
geometry. The work here is largely based on the preliminary study of epipolar geometry
of the first chapter. The novel aspect is the type of images used for they are spherical
panoramas thus essentially implying an implicit multi-camera system. The first section
will present the capture process through a description of the sensor used in our experi-
ments, the PointGrey Ladybug camera. Then will follows a brief explanation of the cube
generation. The most important part of this chapter will be dedicated to a formal pre-
sentation of the geometry of cubic panoramas that can somewhat be seen as an extension
of the classic epipolar geometry to some extent as mentioned above. An application of
this will be the description of the concepts of the fundamental matrix and the essential
matrix in the case of cubic panoramas as well as related epipolar entities : lines and
planes.The final section of the chapter will discuss mainly the rectification process in the
case of cubes as it is inspired from the epipolar image rectification. We will introduce
our motivation for such an application and the methods that were developed to solve
such a problem. A section on some pertinent results obtained during our study will end

this chapter.
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The next chapter - fourth - of our study will take us through the steps of a two-
stage algorithm designed to solve the pose recovery problem in the case of spherical
panoramas. This situation is the natural progression of the rectification process since it
depicts a more general configuration with a random number of cubic panoramas instead
of just two. The first stage is what will be designated as cube alignment. The alignment
will consist of finding the optimal configuration of all cubes such that the only unknowns
of the pose estimation problem are the inter-panorama translations. This is done in
a bundle adjustment type of approach that finds the optimal aligning rotations for all
cubes. The resulting configuration, with only translations as unknowns, is then used
in the second stage that is naturally the translation estimation. This completes the
pose recovery problem and ends the fourth chapter accompanied by results obtained on
different sets of panoramas.

Our study ends with a general conclusion of our research especially as far as the cubic
panoramas are concerned, as well as the possible ramification of the presented algorithms

and our suggestions for future studies that align on this one.

1.3 Thesis Contributions

In the process of achieving the objective stated earlier, this thesis offers three original

contributions :

- An epipolar rectification method for triplets of planar images based on a method

presented in [21] and on the use of homography composition.

- A cubic panorama rectification procedure as an extension of the concept of recti-
fication as presented in [13] as well as in [21]. This method has the advantage of

being easily adaptable to any kind of spherical panorama.

- A pose recovery algorithm from spherical images. Using features tracked across
all panoramas, one can extract the camera positions and elements of the scene
structure in 3D. It is partly based on the bundle adjustment approach described
in [5].
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1.4 Application to Virtual Navigation

It was mentioned earlier that this thesis was part of a much larger virtual navigation
project. Thus, it is only suitable that it contributes to the latter project in some way.
As a matter of fact, cubic panorama rectification and pose recovery applied to spherical
images are both essential tools for some modules of the project. On one hand, cube
rectification eases greatly the process of panorama interpolation necessary for smooth
user navigation by providing rectified panoramas in a more favorable configuration. On
the other hand, pose recovery allows one to locate, up to a scale, the panoramas with
respect to one another if the capture process is not assisted by any positioning system
such as GPS. Pose recovery from spherical images can also improve user navigation by
maintaining a consistent viewing direction when switching from one panorama to another,
given that all relative orientations can be estimated before hand. Overall, our work can

improve the navigation of a user in spherical image-based environment.



Chapter 2

Epipolar Geometry and Projective

Image Rectification

2.1 Introduction

The term epipolar geometry is generally associated to a configuration where a scene is
being observed, captured, analyzed from 2 viewpoints (or more). The intricate relation-
ships that exist between the corresponding points through the images - usually two in
what is called stereo vision - and the scene structure is what really defines the latter term.
In [14] resp. [8], it is defined as “the intrinsic projective geometry between two views”
resp. “the basic constraint which arises from the existence of two viewpoints”. One then
uses these different constraints or relationships to compute or refine correspondences,
disparity or to a further extent solve pose estimation problems for example. Ultimately,
one can observe that the more views one has of a scene the better the knowledge of
the “real” scene geometry is since the potential of information source is larger. This
accordingly trades off with the number of existing constraints, the complexity and the
efficiency of the methods to process the views.

The objective of this chapter is to present some of the basics of the epipolar geometry
to establish a proper starting point for the study presented in this text. To achieve this,
we will limit ourselves to the entities and properties that are of interest for our study.
For a more complete insight in epipolar geometry, the reader is referred to [7, 14] that
pursue the development far beyond the scope of what is needed here.

This chapter thus starts with a presentation of important algorithms and definitions

as an introductory part of the study. State of the art algorithms such as the singular
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value decomposition and the normalized direct linear transform are the main subjects
of this section that is completed by definitions of terms such as projective geometry,
homography, and camera model. These elements are the tools that, from that point on,
will appear to be quasi omnipresent in the study presented here.

Next, follows a section that presents the concepts of epipolar constraint and funda-
mental matrix. Properties arising from the particular relationship between two views of
a scene are summarized here and some entities such as the epipoles, the epipolar lines
and the essential matrix are introduced.

Finally, rectification is cited as an illustration of the concepts presented in preceding
sections. The idea is based mainly on a procedure described in [21, 13]. Extension of the
concept to trinocular vision is also explored for some particular configurations and this

will be the first example of multi-image algorithms throughout all the chapters.

2.2 Introductory notes and useful algorithms

2.2.1 Definitions

Projective geometry is the type of geometry that is often associated to the process of
image formation. Naturally, it is the kind that is referred to in machine vision. Unlike
the euclidian kind, distances are not necessarily conserved by a transformation under
projective considerations. In an euclidian context, one could take the example of a
square in a 2D plane. If a rotation or a translation is applied to the latter square, the
result will be a square of same dimensions only in a different position. This is not the case
in projective geometry. [8] gives the curious reader a more complete insight in projective
geometry. We will limit ourselves to the latter concept in the case of image formation
for a camera.

As far as the camera model is concerned, the one that is used in our study is the well
known and very popular pinhole model. The camera is basically “reduced” to its trivial
form : its optical center through which pass all captured light rays. For such a model
displayed in Fig.2.1, the important entities are the distance to the image plane, the focal
length noted f and the position O of the center of the camera frame in the image plane,
with respect to the upper left corner of the image.

Under such these considerations, we can also use the example of the square mentioned
earlier. Depending on the camera’s location, the projection of the square on the image

plane could be a square, an irregular quadrilateral or even a line as it seen on Fig.2.2.
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Figure 2.1: The pinhole model of a camera.

Thus intervenes the concept of projective transformation that actually defines quite well
the idea of projective geometry. The process of image formation that was just described
in Fig.2.1 and Fig.2.2 is an example of projective transformation where all points in the
scene are projected onto a plane with respect to one unique point.

As it is given in [8], good illustrations of projective transformations are the planar
homography and the calibration matrix. A planar homography H is a plane-to-plane
transformation that could be anything from a simple rotation to a combination of skew,
scale and rotation. It is often used to describe the relationship between two different
projections of the same object onto two different destination planes as shown in Fig.2.3.

Points p, in image plane 2 are related to the points p; in image plane 1 particularly

for the shaded planar section by a homography H such that:

(sz,pr, 1>T = H(plz7p1y7 1>T (21)

The equality in equation (2.1) is up to a scale due to the use of homogenous coordi-
nates. 2D Homogenous coordinates are obtained as planar euclidian coordinates with a
third added coordinate equal to 1 to take into the “scale” factor : (p., p,, 1)7 is essentially

the same point as (sp., spy, s)” with s a non zero real number.
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Finally let us note that, the process of image formation described by Fig.2.1 is summed
up by the calibration matriz K, also a projective transformation such that, for a point
P = (P,, P,, P,,1)7 of the scene expressed with respect to the camera frame coordinate -
these coordinates are called normalized camera coordinates - its projection p = (p,, py, 1)

onto the image plane is given by:

p=I[K 0P (2.2)

The latter equality is up to a scale of course and K is explicitly given by:

K=| 0 f o (2.3)
0 0 1

Given that f is a positive entity and Py is always negative since the subject captured

is always in front of the camera.

2.2.2 Algorithms
Singular Value Decomposition and Linear Systems

This section is essentially a summary of [1]. The singular value decomposition is also
mentioned in [14, 8, 7, 27] where it is described as a simple and powerful tool for solving
least squares problems. Let us first take a look at the algebra associated with this process.

For a given real m by n matrix A, there exists a decomposition in matrices U, S and
V' such that:

A=USVT (2.4)

Each of the decomposing matrices has particular properties. U and V are both
orthogonal matrices meaning UTU = I,, and VTV = I,,. Moreover, they are respectively
constructed from the eigenvectors of AAT and AT A and as such are respectively squares
m by m and n by n matrices. The matrix S is a m by n matrix with the only eventual
non null elements on its diagonal; these are the square roots of the eigenvalues of AAT
or AT A arranged in decreasing order. The elements of the diagonal in S are called
the singular values and the column vectors associated to these values in U an V are

consequently called left and right singular vectors. Singular vectors associated with null
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or the smallest singular value are usually the main point of interest when solving a linear
system of equations in a least square sense.

This decomposition is very often used in computer vision where linear system of
equations are regularly encountered for example in epipolar geometry to compute the
fundamental and essential matrices. The situation that requires the use of the SVD
can be presented as a problem of the form (see estimation of the fundamental matrix,
homography, essential matrix in [7, 8, 31]):

vl Hu; = 0 (2.5)

Where u; and v; are known vectors and the elements of H are sought after. Equation
(2.5) expresses the fact that the problem defining constraint is verified by the known
it" pair of vectors. Usually many pairs (us;,v;) are given producing as many equations
as there are pairs frequently resulting in over-determined systems. These systems are

re-written as :

Ah =0 (2.6)

Where h are the elements of H represented in a single column vector. [1] mentions
that optimal solution of (2.6), in a least square sense, with the constraint |h| = 1 is simply
the right singular vector of A associated to the smallest singular value. The vector h
that is found minimizes the norm of Ah and as such is the solution sought after. This
very useful will appear frequently throughout this text and will be often referred to as
the SVD solution.

The Normalized Direct Linear Transform algorithm

Equation (2.5) was said to represent a frequent problem in computer vision. As a matter
of fact, from correspondences in two images or two frames or two spaces, an entity (for
example a homography, a fundamental matrix, an essential matrix)is sought after that
verifies a well known constraint. The explanation given by Hartley and Zisserman in [14]
is summarized here.

The sets of points u; and v; involved in (2.5) must first be normalized. The normal-
ization as indicated by [14] aims at transforming each set in a scatter of points with its
centroid at position 0 of the space of interest. Moreover the average euclidian distance

from a point to the centroid is to be set to V/2. The reason behind this is the uniformiza-
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tion of the weight of each point in the computation of the fore-mentioned entity and
strongly recommended - with proof - in [14].

Let us take the example of points on two images planes expressed in projective coor-
dinates w; = (u;,,u;,,1)" and v; = (v;,,v;,,1)". If @ and v are the average points, [14]

gives us the normalization transformations :

1 0 —u, 1 0 —u,
T,=(01 -a | :Th,=|01 -7, (2.7)

00 V2 00 V2
T, and T, are applied to each point of the sets u; and v; resulting in new sets 1,
and ;. The associated sought after entity is noted H is computed using the SVD
solution mentioned in the previous section. The final step of the normalized direct linear
algorithm, that we will refer to as normalized DLT or simply DLT in the future, is the

de-normalization of H by applying the following formula :

H=T;TAT! (2.8)

H thus obtained is the entity that links the original sets of points u; and v;.

2.3 Epipolar Constraint and Fundamental Matrix

2.3.1 Fundamental matrix

Fig.2.4 summarizes the epipolar constraint. For two cameras, of respective centers C' and
C’, observing the same point P of a scene (expressed with respect the camera frame in
('), the respective images of the latter point are p and p’. In [8], the epipolar constraint
states that the point p’ has to lie on the projection of the ray sustained by the line
through C' and P in the camera of center C’. This is equivalent to the fact that, in [14],
the same constraint is given as the fact that the rays CP, CP’ and the line CC’ are
coplanar. This constraint is expressed by the fundamental matriz that links the points

p and p’ as follows :

pPT"Fp=0 (2.9)

Moreover, if, as seen in Fig.2.4, the camera frames involved are separated by a trans-

lation ¢ and a rotation R, and each of the cameras has a calibration matrix K and K’ and
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Figure 2.4: Epipolar constraint.

finally, the world coordinate frame coincides with the camera coordinate system centered

in C, [8] and [14] establish an explicit expression of F:

F =Kt RK™ T (2.10)

With [t], defined as the antisymmetric associated to t:

0 —t. t,
the=| t. 0—t, (2.11)
—t, t, 0

F' therefore allows us to characterize the relationship between two cameras using
images points. If instead, normalized coordinate points P and P’ defined in (2.3) were
used, combining (2.3) ,(2.9) and (2.10) results in:

PTEP =0 (2.12)

With E the essential matrix, concept fathered by Longuet-Higgins cited in [8, 14],
and defined by:

E = [t]«R (2.13)
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E thus establishes the relationship between two cameras using normalized coordinate

points. More details on the essential matrix will be presented in Chapter 3.

2.3.2 Properties

Earlier we mentioned that for the image point p and p’, p’ had to lie on the projection
of the ray C'P in the camera of center C’. The latter projection is the epipolar line [

associated to p and computed as:

= Fp (2.14)

Another important entity associated to the fundamental matrix F' is the epipole.
Each of the camera possesses one epipole which is none other that the image point of the
center of the opposite camera in the current camera. Noted respectively e and €/, they
are related to F' in the sense they can be extracted as the right and left singular vectors

of F of null singular value and as such:

Fe=0and F'e' =0 (2.15)

The epipoles, as we will see in later sections and chapters, are important entities
involved in the process of rectification. Moreover let us note that, both epipolar lines
and epipoles points are identical concepts for the essential matrix except that they are
represented in higher dimension. Thus the epipolar lines become epipolar planes and the
epipoles points become epipoles direction vectors.

Finally, F' and F are computed following the same model i.e from matches auto-
matically or hand-selected by the user and fed to the previously discussed normalized
DLT algorithm. Note the similarity of (2.5) discussed in sections 2.2.2 and 2.2.2 with
equations (2.9) and (2.12).

2.4 Epipolar rectification

The need for epipolar rectification is justified by the improvements it provides to classi-
cal machine vision application such as feature matching and disparity estimation. The
objective of epipolar rectification is to create a configuration where the set of epipolar
lines corresponding to a set of matches of a stereo pair is transformed into a set of lines

that are either vertical or horizontal. Identifying corresponding points in both involved
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images thus becomes a scanning and matching problem along the x or y direction which
rather simplifies the feature matching process for example.

Many methods exist and have been implemented to solve the rectification problem
for stereo and trinocular vision. Hartley worked on finding the rectifying transformation
from the fundamental matrix with a strong mathematical justification [13]. Loop et al.
developed a method to find the rectifying homographies and added some constraints to
reduce the distortion introduced by rectification [18]. These methods are applicable to
un-calibrated cameras and, in the case of two views, are close in theory to an algorithm
presented by Mallon and Whelan [21]. The method they proposed follows Hartley’s in
principle but has its own original distortion reduction procedure. This approach is the
one that is used in this section. One might then wonder how the problem of rectification
extends to more than two views. We will limit our study to the case of 3 views mainly
by interest for trinocular systems.

In the case of three views, Luping et al. presented a technique to rectify a triangular
triplet of images using the perspective projection matrices (PPM) [2]. This technique uses
camera calibration and is therefore not suitable for un-calibrated environments. Zhang
et al. proposed a method to obtain the rectification homographies using the fundamental
matrices, minimizing the distortion by adjusting 6 free parameters [30]. This method
uses a set of three constraints on the triplet of images which allow the recovery of the
three rectifying homographies in a closed form. Sun presents three methods that compute
the projection matrices for the three images also using pair wise fundamental matrices
[25]. The projection matrix of the reference image is a composition of 4 transformations;
the other two are derived from the latter. In all these cases, the algorithm is designed
for three views and uses three views constraints to achieve its goals.

The method presented here to solve the three view case is close to the one used
in [30, 25| but is based on the method presented in [21]. This latter method uses the
fundamental matrix in a similar way as in [13] but the novel aspect is the distortion
reduction. It is a method developed for stereo. We therefore mainly describe how this 2-
view algorithm can be adapted to the three view case in conjunction with an intermediate

plane transfer by homography.
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2.5 Projective rectification from the fundamental ma-
trix

The algorithm presented in this chapter to solve the trinocular case is an extension of the
method defined by Mallon and Whelan [21]. It is only suitable that the latter method
is first described to the user. The objective of the authors was to obtain homographies
that will simply be applied to each image to obtain its rectified counterpart, thus solving
the stereo case. The rectification process, which somewhat follows Hartley’s blueprint in

[13], can be summarized as follows:

Fundamental matrix

First, one has to recover the fundamental matrix F' using the 8 point algorithm mentioned
in [31]. Eight or more matches are enough to compute the fundamental matrix. The
Projective Vision Toolkit (PVT [29]) developed by Whitehead and Roth could be used
to automatically find matches for a pair of images. In it latest version, it uses the Lowe’s
SIFT feature detector which provides large numbers of points [19].

These matches verify (2.9) and the normalized DLT algorithm mentioned earlier
is used the estimate F. Note however that one additional step occurs before the de-
normalization : for the estimated normalized matrix F, its least singular value is forced

to 0 to respect the rank 2 constraint.

Epipoles

At this stage, the epipoles e15 (in left image or image 1) and ey (in right image or image
2) are extracted from an SVD decomposition of F. They are respectively given as right
and left singular vectors of I’ associated with the null or least singular value as given

previously in the introductory definitions section.

“Left” Homography H;

From the epipoles, on can compute the rectifying homography H; to be applied on the
left image by forcing the corresponding epipole to infinity in the horizontal direction i.e

from e1y = (e, €12,,1)" to (e12,,0,0)” in projective coordinates. H; is given as:
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1 00
H, = (2.16)
_612y/€12z 1 O
—1/612$ 01
So that :
H1€12 = (6121, 0, O)T (217)

This is the first condition to obtain a rectified pair of images. As a matter of fact,
this homography implies that all the epipolar lines corresponding to matches in the right

image will all be horizontal and this is partially what is needed.

“Right” Homography H-

Once H; is found, an additional constraint on the problem mentioned in [21] is used to
solve for Hy. As a matter of fact, the fundamental matrix of the original setup being
F| the resulting rectified fundamental matrix should equal to the trivial matrix Fj,. [14]
mentions this property when introducing the trivial stereo configurations particularly
the one where both cameras differ only by a translation along the z axis. In such
a configuration, both epipoles are projected at infinity in the x direction forcing the
epipolar lines to be horizontal ultimately resulting in the fact a point in one image
has its correspondent on the horizontal line of same y coordinate in the other image.
Applying the suitable rotation and translation parameters ¢t and R in (2.10) leads us to

the following expression of F}, for such a trivial configuration:

00 0
- 2.18

h 00 1 (2.18)
01 0

Expressing the rectification in terms of the homographies H; and H, leads to the

mathematical constraint by combining (2.1) and (2.9):

H] F,H, = aF (2.19)

With « a scale factor. We know F}, and have computed F' and H;. We want to solve
for Hs and « with :
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1

Hy = 00 (2.20)
hi hy hs
hy hs he

Equation (2.19) is transformed to a system of the type AX = 0 where X stands for
elements h; of the homography Hs in a column with « as its last element . The system
is then solve by using the SVD solution given in section 2.2.2. Steps 2.5 to 2.5 produce
satisfying rectifying homographies with the restricting condition that original epipoles e
and e do not appear within the left and right images respectively as noted by [21]. The
last step of the method summarized in the present section is the distortion reduction
introduced by [21]. Tt is an additional stage that improves the visual appearance of

rectified images often severely distorted by the fore-mentioned process.

Distortion reduction

The distortion mentioned here is not related to lens distortion. It is “inserted” in the
homographies after rectification. The reduction step is not mandatory but it makes the
images look more natural as noted above. Essentially, the final transformations to be
applied to each image of the pair are noted K; = A;H; with i = 1,2. The additional

improving transformations A; are of the form :

Ay = %1 a12 683 (2.21)
0 0 1

The values of a; and ay are found by simplex minimization (C' 4+ + implementation

Nelder-Mead or amoeba algorithm given in [22]) of the function:

n

flai,a9) = Z (01 (I (K5, 1)) — 1)* + (02(J (K, pi)) — 1)?] (2.22)

i=1

Where J is the jacobian of the transformation K; = A;H; at a point p; contained
in a grid over the image plane and o; are its singular values. Interestingly enough the
jacobian J describes “the creation and loss of pixels as a result of the application of K”
[21]. Note that the value of ag is left to the user for flexibility in centering the final image

along the z axis since it only implies an horizontal offset.
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This ends a summary of the method presented in [21] that allows the computation
of rectifying homographies from the fundamental matrix of a stereo pair of images. This
method was chosen for its simplicity and the distortion reduction stage that radically
improves the visual aspect of resulting images. In the following sections, we present
extensions of this latter method that ultimately lead us to the proposed solution to the

trinocular case.

2.5.1 Extension to a “vertical” pair

As announced previously , this section describes one of the extensions added to the
method presented in [21]. For a “vertical” pair of images, the process of rectification is
very similar. By vertical we mean that the cameras of the stereo system have their centers
located one above the other. In the classical case, the cameras are assumed to almost
lie on the same horizontal plane. The differences in each step of the rectification are
only due to the difference of configuration. For the vertical case, the ideal fundamental

matrix F), -and homolog of the previously introduced Fj, in (2.18)- is given by [14]:

(2.23)

The modified rectification algorithm follows:

a. Recover the fundamental matrix F'
b. Recover the epipoles e;5 and ey of the top and bottom images.

c. Recover the homography H; corresponding to the top image. Applying this trans-
formation to the image sends the epipole e, to infinity in the vertical direction :

from e1y = (e1a,, €12,, 1) to €12 = (0, €12,,0)” in projective space). Thus :

1 _
o, = ei./12, 0 (2.24)
0 1 0

0 —1/612y 1
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d. Using the same type of constraint as in the horizontal case (2.5), we obtain a linear
system that is solved the same way using the same formulas but with H; and F},
replaced respectively by H; of equation (2.24) and F,. This allows us to recover

H, which in this case is of the form :

hy hy hs
H, = 2.25
2 0 1 o (2.25)

ha hs hg

e. The distortion reduction step is exactly the same except the transformations are
of the type A;:

1 0 0
A= S (2.26)

ay ay ag

0 0 1
This reflects the fact that the distortion and centering steps will affect the vertical
coordinate and the user-defined value of as corresponds to a translation along the

vertical axis of the rectified image.

This modified version of the rectification procedure insures that, provided epipoles
not within in each image, a point in one image will have its correspondent lying on the
vertical line - its associated epipolar line - of same x coordinate in the other image. Both
presented stereo rectification algorithms solve the trivial horizontal and vertical case for
two images; they also help to solve some trivial trinocular cases when used suitably as

shown in the next sections.

2.5.2 Preliminary Results

An example of image rectification for a horizontal stereo pair is displayed in Fig.2.5(c).
The original images are shown in Fig.2.5(a) and the rectified versions with no distortion
reduction in Fig.2.5(b). The visual improvement as well as the horizontal epipolar lines
are easily observable.

The same is done for a vertical pair and some results are observable in Fig.2.6.
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(c) Rectified pair after distortion reduction

Figure 2.5: Rectification for a “horizontal” stereo pair
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(a) Original vertical pair (b) Rectified vertical pair

Figure 2.6: Rectification for a “vertical” stereo pair

2.6 Rectification of 3 views

The extension to triplets of images is different conceptually but uses the horizontal
and vertical rectification at different stages. The algorithm presented in this section
constitutes a first original contribution of this thesis. It has been presented at ICASSP
2006 [16]. The method has been developed as an introductory study to the problem of
cubic panorama rectification presented in the next chapter. The concept is illustrated
in Figure 2.7. The triplet is processed pair by pair therefore producing 4 homographies.
The images are denoted 1,2 and 3. For 1 and 2, the rectification without the distortion
reduction step gives us H; and H,. Similarly, for images 2 and 3 the rectification without
distortion reduction gives us H} and Hs. The rectification does not include the distortion
since we want to stay consistent on the type of images we are working on : they are all
affected by the same type of effects. The distortion reduction will therefore be the last
phase of this process.

In both cases, unifying the results is the main objective. The solution is based on an
attempt to find a common plane on which lie all rectified images affected by the proper
type of rectification. For that, we explored an homography based solution that relies on

composing the proper plane transformations on the suitable images to achieve our goal
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Figure 2.7: Rectification principle for a triplet of images.
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as shown in Fig.2.7.

2.6.1 Horizontal triplets

The middle image 2 is common to the two pairs so we have Hy and H). Each of the
computed homographies 'sends’ the image plane 2 on two different planes containing
respectively the rectified image 1 i.e Py and the rectified image 3 i.e Pa3 (see Figure
2.7).

Our goal here is to find a way to transfer the plane Pa3 to Pio; as a matter of fact we

want to find the homography h between these two planes. This is done as follows:
e Image 2 is transferred to plane P with Hs
e Image 2 is transferred to plane Po3 with H)
e Image 3 is transferred to plane Po3 with Hj

e h between P;5 and Pog is therefore given by h = HgHé_l : this is the “unification”
mentioned earlier. Using the projection of the middle image in two different planes

to deduct the relationship between both involved planes.

e Image 3 can therefore transferred to plane P by transiting through Psg using Hj

given by :

H} =hHs; = HyH), ' Hy (2.27)

These steps essentially evaluate the homography H} that sends the rectified version
of image 3 to the plane containing the already rectified versions on image 1 and 2 by
using the redundant data provided by the middle image. Finally, distortion reduction
for the horizontal configuration is applied to each homography H;, Hy and H} to insure

that the y coordinates are left untouched.

2.6.2 “L-triplets”

The case of ’L’-shaped triplets is a combination of a vertical pair and a horizontal pair.

All steps in the horizontal triplet procedure are repeated except for what follows:

e The pair 1, 2 is rectified using the vertical pair approach without the distortion

reduction procedure (Section 2.5 to 2.5).
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Figure 2.8: Original triplet of images : horizontal configuration

| : |

Figure 2.9: Rectified triplet of images : horizontal configuration

e The distortion rectification step uses the vertical distortion reduction approach for
the rectified images 1 and 2. For image 3, the distortion reduction is also applied
with the vertical approach described in section 2.5 to level the images 2 and 3 along

the vertical axis.

2.7 Results and Observations for image triplets

For triplets of images, we have an example of a horizontal rectified triplet in Fig.2.8 with
the original images in Fig.2.9. A few epipolar lines are drawn across the 3 images to
show the consistency in the rectification process.

For comparison sake, the first example of “L”-shaped triplet is the same the one
processed in [25]. The original triplet is shown in Fig.2.10. The result obtained in
[25] are given in Fig.2.11. The result obtained using the homography-based approach
presented in this chapter is given Fig.2.12. The desired epipolar lines are obtained in both

cases. The effect of the distortion reduction is however well noticeable when comparing
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Figure 2.10: Original “L”-triplet (courtesy of C. Sun [25])

both results the set in Fig.2.12 looking less distorted and closer to the original images
than the set in Fig.2.11.
Fig.2.13 and Fig.2.14 show another example of rectified “L.”-shaped triplet of images.

2.7.1 Observations

An important observation mentioned earlier and in [21] is the fact that the rectification
is ineffective for images where the epipoles appear in the image plane; suitable images
are therefore to be used. This limitation concerning the capture process is not however
detrimental to stereo system that usually use a quasi parallel setup for the image planes.

Another observation, that is rather obvious, is that a pair or triplet of images has to
be taken close to the ideal configuration before using the corresponding rectification al-
gorithm: i.e. it is impossible to rectify a vertical stereo pair of images with the horizontal
stereo rectification approach.

Finally an important source of error is clearly the fundamental matrix approximation.
For example note that well spread matches over the images help improve radically the
fundamental matrix which otherwise ends up being very localized and valid only for a

few points. It is therefore a very important step that should be handled with care and
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Figure 2.11: Results obtained by C. Sun (courtesy of C. Sun [25])

Figure 2.12: Results obtained by homography-based approach
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Figure 2.13: Original triplet of images of the second example : L configuration
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Figure 2.14: Rectified triplet of images of the second example : L configuration

29
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carried out following one of the many existing techniques. For a set of algorithms, we

suggest the reader to refer to [31].

2.8 Conclusion

This chapter presented an extension to an image pair rectification method based on fun-
damental matrix. Some notions related to the fundamental matrix and to algorithm
used in the diverse computations were given to establish the basis of our work. Thus,
definitions of epipolar entities were given. Moreover, important state-of-the-art algo-
rithms were also summarized (SVD and normalized DLT'). All this led us to the problem
of stereo image rectification. For the classical horizontal pair configuration, an method
developed in [21] was used.

The latter method was summarized and proved to have the advantage of being suitable
for uncalibrated environments as well as producing a pair of rectifying homographies
with a low distortion effect using solely the fundamental matrix. The abundance in the
documentation concerning the computation of the fundamental matrix and the additional
step of distortion reduction both proved to be the deciding factors in our choice of this
rectification method as the basis of our algorithm. An extension to vertical image pair
was also presented to set up the solution in the case of triplet of images.

Extensions to different three-view configurations were thus introduced in section 2.6.
The approach presented , in the case of triplet of images, used a homography composition
in order to rectify all images by projecting them on a common plane with the constraint of
epipoles to infinity in the destination image plane. This proved to be a simple operation
to carry out once the pair-wise rectifications were completed. The cases of horizontal
triplets and “L”-shaped triplets were both treated.

Results were obtained on different sets of images and these were further visually
improved when the proper distortion reduction was applied as the final step. A few ob-
servations were made as far as the performance of the basic stereo algorithm is concerned

and the influence of matches and the fundamental matrix on the overall process.



Chapter 3

Cubic Panorama Rectification

3.1 Introduction

This chapter consists essentially in presenting the concept of epipolar geometry applied
to cubic panoramas. Up to now, the reader has been introduced to different concepts
and entities that help describe the geometry of a scene viewed under multiple angles
particularly two and three. Cubic panoramas as their name indicate it are panoramic
representations of a scene and as such, cover a 360 degrees viewing angle of that scene.
This can be seen as a multiple camera configuration as well. In addition, panoramas
intrinsically represent and carry more information than simpler images and are intuitively
more meaningful to us when displayed in the right format since our vision system is
“quasi” panoramic. Thus, in this chapter, we exploit the common traits between cubes
and images and formally adapt and extend the idea of epipolar geometry, fundamental
matrix and essential matrix.

Cubic panoramas or cubes have some embedded characteristics that make them quite
attractive as a format. As a matter of fact, cubes can be seen as sets of images generated
by 6 cameras in a particular configuration. This allows the stereo algorithms to carry
over in quite a straightforward way to cubes. Moreover, their structure implies a simple
calibration that does depends only on one variable. Finally, [9, 10] shortly mentioned
the hardware advantages of the cubes with a graphic processor : a panoramic image
with a work-around with 6 simple images is quite an efficient representation for further
processing.

The first section of this chapter will introduce the cube capture and generation pro-

cesses. This short paragraph is meant to address the curiosity of the reader on the kind
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of sensor used in our experiment : the PointGrey Ladybug. We also discuss very briefly
the cube generation procedure designed by M. Fiala of the National Research Council
Canada (NRC).

Next, some interesting properties of the cube are explained as an introduction to
the subsequent sections. The concepts of general 3D coordinates conversion to cube
coordinates, face homography and cube calibration are the subjects of this preparatory
section to cube geometry.

The following section describes the adaptation of the fundamental matrix to the
cubic panoramas. Faces in correspondence in a pair of cubes are treated as a stereo
system. Extensively discussed and well known algorithms are then applied to the cubes
to demonstrate the epipolar constraint applied to the latter through the observation of
epipolar lines.

In a natural succession, we present the essential matrix in the case of cubes. The
epipolar constraint and trivial calibration of the panoramas lead to the establishment of
the essential matrix for a given pair. Some results are also shown through the observation
of the epipolar plane and lines.

Finally, an application illustrating the concept of essential matrix and more generally
the epipolar geometry of cubic panoramas is discussed in the last section. Cube recti-
fication extends the concepts of image rectification to the 3D space by using a similar
approach with some interesting differences and results. The goal here is mainly to prove

the validity and reliability of the previously established cube epipolar geometry.

3.2 Cubic panoramas : capture and generation

Cubic panoramas being the subject of the study it is necessary to provide some elements
on the way they are obtained. The capture of the images that are composed into panora-
mas is done using the Point Grey Ladybug camera extensively presented in [24, 11] and
shown in Fig.3.2(b). It is essentially a camera composed of 6 sensors (1024 x 768 pixels
each), 5 laterals and 1 pointing upwards that capture a view of the world at 360 degrees
around the azimuth completed by a top view.

Since the camera’s sensors have been accurately calibrated, it is possible to fuse the
six images to form an almost complete spherical panorama (see Fig.3.1). This panorama
can therefore be considered to have been produced by a central projection camera that
collects all light ray coming from all directions, incident on a point in space. The resulting

two-dimensional plenoptic function can then be re-projected on any type of surface :
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Figure 3.1: Fusion of the camera views to generate a cubic panorama

sphere, cylinder, cube, etc. We use here a cubic representation that have been shown to
be easily manipulable and that can be stored and rendered very efficiently on standard
graphic hardware [4]. This work on the cube generation has been done by M. Fiala from
the NRC in [11].

We extended this procedure by allowing a user to specify a rotation matrix and obtain
as an output the corresponding rotated cube. It remains simply a matter of querying for
the color with the correctly computed light ray. The correspondence between pixels on
cube faces and corresponding 3D light rays through the center of the cube is explained
further in section 3.4 and in more details in appendix A

A cube can be seen on Fig.3.3 laid out in a cross or flat pattern with the faces in
the order (from top to bottom and left to right): up, left, front, right, back, down. The
reference frame chosen in our study is the standard openGL frame that can be seen inside
a cube on figure 3.2(a) with x axis pointing toward the“right” face, the y axis toward

the “up” face and the z axis consequently pointing toward the “back” face.
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(a) Cube reference

frame.
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(b) The Point-
grey  Ladybug

camera.

Figure 3.2: Cube frame and camera used in cube capture.

Figure 3.3: Cube laid out in cross pattern.
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The fact that a cubic panorama is effectively made of six identical faces, each of
them acting as a standard perspective projection camera with 90° field of view, makes
the representation very convenient to handle; all standard linear projective geometry

concepts still being applicable.

3.3 Notations

We introduce some notations and conventions use throughout this chapter for clarity sake.
Let us consider two cubes (C') and (C”"). For each cube, a tag i in the set {U,L,F,R,B,D}
is given to each of the faces with U standing for the “up” face, L for the left face and so
on. For a pair of faces in correspondence, the associated fundamental matrix is noted F;
where i is the tag of the faces. A 3D point is noted X and is equivalent to (X,Y, Z)T.
Its projection on the face i of the cube is noted %; = (x;,9;,1)7. R(0), stands for a
rotation around the axis x of amplitude 6 and ¢ stands for a translation vector. We will
note P; the projection matrix for a given face and K the common calibration matrix
since the 6 faces have identical characteristics. We can therefore write: P, = K[R;|t;]
following the model in [14]. As a reminder, the projection matrix allows us to obtain the
image coordinates of any 3D point by a simple multiplication operation, provided the

calibration and the extrinsic parameters of the camera are known, that is

3.3.1 Exponential representation of rotations

Rotations are important geometric entities referred to quite often in this study. [7, 17]
present a complete insight into what is needed to be known in machine vision about these
particular 3 by 3 matrices of the special orthogonal group also called SO(3). A plethora
of sources will confirm that there exist many representations of rotations. One of the
most popular being the usual 3 by 3 matrix M verifying : MMT = I3 and det(M) = +1
(I3 is the 3 by 3 identity matrix). In kinematics, as well as machine vision where the
problem of estimating a rotation often occurs, the exponential representation is a popular
choice. It is closely related to the concept of antisymmetric matrix and the Rodrigues
formula.

Given a 3D vector v = (vy, ve, v3), [7, 14] describe the associated antisymmetric matrix
associated as :
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0 —7Us (%)
[rl = v 0 —u (3.2)
—7V2 (%1 0

For a rotation of non zero angle ¢ around the axis of unit vector v, the related

Rodrigues vector w is defined in [17] by :

0 = |w| (3.3)
V=g (3.4)

To end this section, a rotation R of associated Rodrigues axis w = 6v can be repre-

sented thanks to an exponential notation as follows :

R = I3 + sinf[v]y + (1 — cosf)([v]x)? (3.5)

Rotation estimation problems in this text - mainly Chapter 2 and 3 - will make
extensive use of this representation. One of the main advantages of such a notation
is that 4 parameters are estimated instead of 9 for the matrix representations, even
if the complexity of the problem in the case of the matrix is decreased by the special

orthogonality constraint. For more details on the SO(3) group, we suggest consulting
3, 7, 14].

3.4 Properties

3.4.1 Calibration Matrix

Further in this study will appear the need to define the calibration matrix K associated

with each sensor for each face of the cube. One of the main advantages of the cubes, as

mentioned earlier in section (3.1), are the constraints that are linked to it. If L is the size

of a cube in pixels - L is set by the user at the generation stage - we can easily deduct the

fore mentioned calibration matrix K in the ideal case. The image plane is at a distance

%, the projection of the camera center in the image plane is always at (%, %, ). The
L

ideal focal distance of all 6 cameras (one for each face) is also 5. Thus we can write :

L

2

K=1| 0 (3.6)
0

O v~ O
— o o
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This notation is with respect with the classical pinhole model of a camera. The same
model is obviously used for each virtual camera associated to each face. (3.6) will prove
to be extremely useful throughout our study despite the fact that the approximation to
the ideal case was made here. The accuracy of the solutions will prove not to suffer at

all from this hypothesis.

3.4.2 Conversion Procedure

In this section we mention a simple and useful method to convert any ray to its cube
coordinates with respect to the cube frame shown previously in Fig.3.2(a). For any ray
guided by a given vector through the origin of the frame, its cube coordinates can be
found by intersecting the direction of the ray with each image plane standing for each
cube face. This will provide us with two possible intersections over the cube. A test of
direction consistency then allows us to recover the proper point on the cube and therefore
obtained the coordinates that are sought after.

How is this useful in our study ? This process is used especially when applying a
rotation on a given cube. After we apply a given rotation to a point of the cube, nothing
guarantees that the new coordinates are those of a point on the surface of the cube. It
is usually a vector placed in the proper direction but not on the cube. To obtain its
correspondent on the cube frame, we therefore have to apply the conversion procedure
mentioned here to recover the proper point and thus the new coordinates of the rotated

point or pixel. The mathematical details of such a procedure are given in appendix B.

3.4.3 Homography between two faces

It was mentioned in the previous section that a ray going through the center of the cube,
intersects exactly 2 faces within their viewing area. As a matter of fact, considering the
infinite extent of each of the images planes (for each face), such a ray actually has an
intersection with each of the latter provided we consider loosely the notion of intersection
at infinity in case of parallelism ray-plane. It is important to note that, unlike the case
of procedure mentioned in the previous section, the resulting point is not necessarily
constrained within the viewable area. Fig.3.4 displays such a situation. The 2 exact
viewable intersections are the points A and B but we can see that the ray of interest
here, through the center C' also intersects the extended planes sustaining the top and
bottom faces at the points D and F respectively, points that are clearly out of the faces

themselves.
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Figure 3.4: Intersections ray-cube.

With that in mind, we are interested to know, for any point of a given face, where
its correspondent lies on the plane sustaining any other face. Faces being planes to
some extent, we are therefore simply trying to find the transformation that transfers
us from the plane of one face to the other and that provides us with a 1 to 1 point
correspondence : this is an acceptable definition of a homography that is none other
than a plane transformation. This will prove very useful in the study of fundamental
matrices over the cubes particularly when it will come to computing epipolar lines over
the cubes. This will be later discussed in the next section.

Recall the notations in section 3.3. Let us consider in this section the faces fr and
f;j for any j in {U,..,B}.Without loss of generality, if we consider the world coordinate
system to be attached to the center of the cube with axis ’aligned’ with the front face

fr, the respective projection matrices for fr and f; are the following:

Pe = K150 (3.7)

and
P, = K[Ri[0] (38)

With I3 the identity matrix of order 3. The projection matrices Py and F; differ only
up to a rotation R; since the focal center is the same for all faces. Note that for all 7,

R; = R(0)4xis with 6 in the set {Z*,0, 7,7} and axis standing for z, y, or z depending

on the face : for example R, = R,(5"). For the detail of the other matrices consult

appendix C. For a point X in space, its projections are xr and x; and are given by :
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and

% = PX (3.10)

From (3.7) and (3.9) we can extract an expression for X as done in [14]:

X — ( ZKllf‘F )

Replacing this expression of X in (3.10) we obtain :

% = ZKR; K '%¢ (3.11)

Let us note :
Hi = KR,K™ (3.12)

As a consequence, (3.11) becomes :
% = ZH%;

which in projective space is equivalent to (notice Z is scalar) :

In the general case, i.e between any two faces ¢ and j, the previous equation applied

to X; and x; allows us to write :

)N(j = KRjRi_lKil)N(i = HZJ)N(Z (314)

with :

Hj;=KR;R;'K™! (3.15)

To conclude this section, we have established a formula (3.14) that allows us to
transfer any point of the cube to its projection through the center of the cube to the

plane sustaining any given face.
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3.5 Fundamental matrices and Epipolar lines

Let us start by mentioning that many elements of the first chapter related to epipolar
geometry for two images appear in this section. As a matter of fact, this section can be
seen as an extension of the concept of fundamental matrix to the case of cubic panoramas.
The formulation of the problem is somewhat different and some constraints need to be
considered to be able to transfer the methodology deriving from conventional stereo
configuration. For any point on a cube, we want to define on what hyper-plane lies its
correspondent in the other cube. The main constraint in this approach is the necessity
to view the pair of cubes as 6 stereo image pairs. This means that the portion of the
scene visible in one face is partly or ideally entirely visible in the corresponding face of
the other cube to ease matching and avoid intermediate re-projection steps as it will be
explained next. It is important to note that this part of the study gives us a starting
point for our study of cubic epipolar geometry by establishing a good theoretical and
mathematical basis illustrated by interesting preliminary results : if a pair of cubes is a
system of 6 stereo pairs therefore generating 6 fundamental matrices, is there any relation
between these matrices given the intrinsic structure of the cube 7

It is obvious that one of the fundamental matrices at least is needed to start answer-
ing this interrogation. First let us note that the standard 8 point algorithm mentioned in
[12, 13, 31] and briefly discussed in the first chapter, is used to compute the “generating”
fundamental matrix between the faces of concern. As mentioned in the preceding para-
graph, we chose to have a slight constraint on the cubes consisting in corresponding faces
displaying enough overlap for an easier matching process. In case the matches are not
all on corresponding faces, a simple and direct remedy to this situation is to apply (3.14)
to the concerned matches to re-project them on the right plane resulting in matches all
in the same face plane, and this, for both cubes.

The matches are extracted from - possibly - corresponding faces manually or using
the PVT Tool described in [29]. The rest of the procedure explained below is carried on
once one of the possible 6 fundamental matrix is computed. The previous relationship
(3.13) established between projections of a 3D point on 2 faces can be combined to the
fundamental matrix expression. For 2 faces i € (U,--- ,B) in correspondence in 2 cubes,

we have the following form of the epipolar constraint :

TF%; =0 (3.16)

Where X; and X, are matches on the i face of respectively C' and C’. Finally, (3.13)
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in (3.16) yields :

X H F;Hixp =0 (3.17)
From which we conclude :
Fr = H"F,H; (3.18)
or :
F,=H;TFH;,~* (3.19)

With H; = KR;K~! as defined in (3.12). A general equation can be found as in
the case of the homography to be able to swap between any two faces i and j when

considering their fundamental matrices. We thus have what follows :

Fy = H"FH' (3.20)
with H;; defined in (3.14)

Thus, given that we are able to compute one of the possible 6 fundamental matrices
for a pair of cubic panoramas, we have proved that it is also possible to recover all the
other fundamental matrices. An illustration of this interesting results is the computation
of the epipolar lines over the cubes.

As a matter of fact, let us consider two cubic panoramas C and C’. For any point X;
on a face i of C, it is possible to recover the corresponding epipolar line on face ¢ of C’ by
simply applying the basic formula : [; = F;X;. For the other lines -exactly 3 since a plane
through the center of a cube intersects the latter in 4 lines - the point X; is re-projected
onto all the remaining faces of interest using 3.14 resulting in points X; and associated

epipolar lines given by the same formula as previously :

This formula is actually also valid for the “generating” face i since Hy; = I3. (3.21)
is therefore a general formula to obtain the epipolar lines associated with a given point
provided that one of the fundamental matrices was recovered before hand causing all
matrices to be easily computable. Some examples of lines associated to points for a pair
of cubes are displayed in Fig.3.7 as junctions of white segments. The points marked by

red squares on one panorama and the epipolar are the white lines in the other panorama.
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Note the consistency of the geometry since all lines are joined when considering adjacent
faces. This is an illustration of the epipolar plane that will be mentioned in the next
section in more details : one point is associated to a set of lines due to the fact that it

is actually associated to a plane through the center of the other cube !

3.6 Essential Matrix and Epipolar plane

In the previous sections we established the epipolar geometry based on a stereo approach
that relied on a calibration matrix considered ideal and on the restraining consideration
that we were dealing with 6 stereo pairs. The notion of essential matrix is introduced
here for many reasons and helps making the study of the geometry simpler as it is a
compact form of all relationships for all faces. It also a way to reinforce the geometry
already established with fundamental matrices as all approaches should fuse in a single,
uniform, consistent and elegant solution.

In this section we mainly try to define properly the simplest relationship in a cubic
panoramas correspondence. For two images, we were introduced to the link point-line.
For two cubes, we had in the previous section the link point-lines. Here we establish
the link point-plane and show the consistency with the previous method. Only here, the
process proves to be simpler and more efficient. It will therefore become our tool of choice
when dealing with cubic panoramas epipolar geometry. First some more justifications
on the study of the essential matrix will be given, then will follow some computation

details. This section ends with some results to illustrate the methodology adopted.

3.6.1 Essential matrix vs. Fundamental matrices

The fundamental matrix of two cameras, as we have seen in the previous chapter, is

given by solving the epipolar constraint provided some matches are known (at least 8):

TFx=0 (3.22)

If the rotation and the translation between both cameras are respectively R and ¢,

K being their common calibration matrix, the expression of F' was given as :

F=K7"'t,RK™ (3.23)

With ¢, the antisymmetric matrix derived from the vector . Recall it is given by
(3.2).
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By definition [14, 31], the essential matrix embeds more information than its coun-
terpart discussed in the previous section. As a matter of fact, it is an expression of the
epipolar constraint in terms of the normalized coordinates of the points of interest (i.e
their coordinates in the 3D camera frame): if an image point is noted X then, given the

calibration K, the associated point p of corresponding normalized coordinates is defined
by :

x=Kp or p=K'x (3.24)
As done in [14], by replacing (3.24) and (3.23) in (3.22), we obtain the following :

Pt Rp=0 (3.25)

By definition the essential matrix is :

E=1.R (3.26)

Up to a scale, F characterizes completely the geometry between two cubes, just as
completely as the fundamental matrix in the case of stereo images. This will be referred
to often, in the rest of the text, as F establishing the geometry of a pair of cubes. That
being said, (3.25) becomes :

pTEp=0 (3.27)

We need to know the calibration information to be able to estimate E since normalized
coordinates are to be used (Refer to equations (3.24) and (3.27)). Nonetheless, in the
case of the cubic panoramas, we have seen that the calibration matrix was as intuitive
as it is simple and intrinsically linked to the structure of a cube; previously established
equation (3.6) specifies its value.

Moreover, normalized coordinates in the case of cubes are equivalent to cube frame
coordinates. Estimating E then becomes a matter of solving the classical problem of
the epipolar constraint adapted to the case of cube frame coordinates with for example
the 8 point algorithm used previously for the fundamental matrices and discussed in
(12, 13, 31, 14, 8].

As a summary, the essential matrix presents the advantage of using cube coordinates
that coincide with normalized coordinates. What is usually a difficult entity to recover -
i.e normalized coordinates - is well known here in the case of the cube due to its structure.

As a consequence, a cube is treated as a whole and not as a multi-camera system as for
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, 2)—Cube coordinates : 3D

Figure 3.5: Conversion from 2D image coordinate to 3D cube coordinates.

the case of the fundamental matrices. This mainly results in simpler algorithms and

more “global” approaches.

3.6.2 Matches : From 2D to 3D

Similarly to what is done for fundamental matrices, the support of the algorithm consists
in matches between a pair of cubes. This is needed before any computation of any kind
can take place. Thus, the matches needed for the estimation of E are selected for the
sake of simplicity on the cross pattern images of the cubes either manually or using for
example the PVT tool [29].

As noted earlier, the 2D coordinates of a point on a face of the cube allow an easy
recovery of the corresponding 3D coordinates of that point in respect to the reference
frame displayed on figure 3.2(a). This is used during the matches selection and consists
in what follows.

Applying the right offset values (coordinates of top left corner of face in the cross
pattern image) in the x and y directions converts these coordinates into their equivalent
with respect to the faces of interest. Omnce these “face” coordinates are known the
“conversion” to 3D coordinates in the cube frame seen in figure 3.2(a) is a matter of
applying a simple transformation noted T;. If x is a 2D point on face i, p = T;x. The
expressions of the transformations 7; can be found in appendix B. The conversion process
is illustrated in Fig.3.5
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Figure 3.6: Epipolar plane through the camera centers and a 3D point.

3.6.3 The epipolar plane

Fig.3.6 illustrates the concept of epipolar plane. By definition, it is simply the plane
through both cubes centers and the 3D point X [14]. Approaching the problem from the
point of view of E is a switch of paradigm that proves to be quite efficient. The dimension
of our “working” space is increased by one and this has the advantage of making us work
with a plane instead of lines.

Equation (3.27) is in some way the expression of the epipolar plane. As a matter of
fact [8] gives the following geometric interpretation of the constraint. Vectors p and p/
are coplanar if they correspond to matches over two cubes : (3.27) is the dot product of
p' (resp. p)and the normal to the plane in question given by Ep (resp. p'l E). A plane
through the origin of a coordinate frame is totally defined by its normal. This why Ep
can be referred to as the epipolar plane with respect to the reference frame of cube C’
(resp. pT'E is the epipolar plane with respect to reference frame of cube C).

It the intersection of this plane with both cubes that provide the set of epipolar lines
that where computed individually earlier. The epipolar plane therefore gives a closed
form of the geometry associated with two cubes once it is totally defined i.e once F is

computed from pre-established matches.
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3.6.4 Estimate E

The proper form of matches being known at this point ,we apply the 8 point algorithm
discussed by [8, 14] among others to solve for E from the known p; on C' and C’ : we
solve the classical equation pf Ep; = 0. As a matter of fact we use a variant of the DLT
algorithm used in the first chapter (Chapter 2) to evaluate either a fundamental matrix

F or a homography H from pre-selected matches.

Scaling

The first step in the DLT algorithm is the normalization of the matches used in the
estimation. Recall that this normalization aims at transforming the set of points into a
cloud of centroid at 0 and of average distance to the centroid equal to /2. This procedure
is much simpler in the case of E for cubes by the fact that the points all belong to a

cube since all matches are already centered in 0. We therefore just apply a scaling of the

3 coordinates of all p; by their maximum possible absolute value which is % with L the

side of the cube.

Forming a new system of equations

Next, we need to re-write (3.27) into an equation of the form :

Ah =0 (3.28)

where h = (eq, €1, ,eg)? stands for the elements of E in a single column vector.

Each pair i of matches (p;, p;) produces one equation of the form :

A;h =0 (3.29)
With :

A = Pingz piypéz pingz pingy piypéy pizpéy pz'zpéz pz-ypéz Pizpéz] (3-30)

The resulting matrix A is just a concatenation of all row matrices A; produced by all

available pairs.



Cubic Panorama Rectification 47

First estimate of F

The third step of the algorithm is the resolution of the new equation (3.28). [8] states
that the solution to such a system with the right singular vector corresponding the
smallest singular value of A just as it was the case for the fundamental matrix and the
homography computation. This result in h that provides us with an estimate of £ noted
E.

Singular values equalization

The the singular values of the best estimate E of E are equal and typically if a and b are
the two singular values of E, we force them to s = aTer , the third singular value being
null [8]. E is then recomputed by multiplying the new diagonal matrix of singular values

(now equal) by the left and right singular decomposition matrices.

Observations

We obtained decent accuracy when using this slightly modified DLT. Let us note however
that a strong match localization affects the accuracy of E as the latter is precise for those
matches but does not respond well to extrapolated points i.e points not in the original
cloud of matches. Matches well spread over the surface of the cubes are therefore strongly

suggested.

3.6.5 Results

The pair of cubes that has been rectified is displayed in Fig.3.11. Note that they re-
spectively the same as the cubes in Fig.3.3 and Fig.3.7. All the previous tools being in
place, we should be able to estimate the essential matrix between two cubes provided a
“good” set of matches. We have seen the matches selection and the transformation to
cube coordinates. Then we presented the concept of epipolar plane that necessitated the
estimation of E. The latter was also described and obviously required the fore mentioned
matches. Once the essential matrix is known, it is possible to obtain for any point of the
surface of the cube, its associated epipolar plane i.e also the set of associated epipolar
lines.

As a matter of fact, for a point X on a face of a cube C in correspondence with
another cube C’, its cube coordinates are p = T;X with the T; given in appendix B. To

this point p in C' corresponds the plane Ep in cube C’. The intersections of Ep with C’
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Legend

Lines from Fi

Lines from E

Figure 3.7: Epipolar lines over a cube from the E and the matrices F.

are provided by a set of equations in appendix B : the result is a set of 4 lines that should
be identical to the previously computed epipolar lines from fundamental matrices. To
give an example of the consistency our approaches, a sample of lines obtained with both
methods are displayed on figure 3.7 : white lines are generated using F' and red lines
are generated with E. The points selected in the other cube of the pair are indicated by
small red squares on Fig. 3.3.

As predicted, both solutions fusion to equally describe the geometry between two

cubes. Only, the essential matrix is simpler and more intuitive.
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Figure 3.8: Distance point to plane for all matches

Numerical observations

This paragraph is a short numerical example of the estimation of the essential matrix for
a sample pair of cubes. The pair used here is the same one that appears in Fig.3.3 and

Fig.3.7. Its essential matrix is computed using 56 matches and has the value :

—0.0189908 —0.0853818 —0.0272546
—0.143047 —0.0851576 —0.307995 (3.31)
—0.0159993  0.332007  —0.0973107

It is a priori difficult to evaluate the accuracy of the DLT algorithm used for the
estimation. A good measure to achieve this is the distance from a point to its associated
epipolar plane. Ideally the distance should be null since the point should lie on the
plane so the smaller the better when it comes to this entity. The way to compute it is
simple. Given a plane P through 0 of normal n = (a,b,c)”, and a point p, the distance

point-plane is given for example by [28]:

In.p| ez + by + cz|
Il ~ Var s 025 2

Thus we compute this distance for all matches and the resulting graph is shown in

d(p, P) =

(3.32)

Fig.3.8. The average error is 0.7452pixels which is a very satisfactory result despite the
fact that there is some pre-processing during the cube generation and that some ideal

assumptions were made about the calibration matrix among other things.
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3.7 Application: cube rectification

Characterizing the geometry of a pair of cubes was done previously by using an extension
to stereo images procedures through multiple fundamental matrices. Moreover, a closed
form recovery was also introduced and used the essential matrix. Up to a scale, the latter
completely characterizes the relationship between two cubes. The procedure to obtain
it consisted in getting matches over the cubes, convert them into cube coordinates, and
finally estimate the essential matrix E using a variant of the 8-point algorithm.

The present section will help cement the previously established theory with more
than the epipolar lines, the only illustration we have seen so far. As a matter of fact,
just as rectification was used in chapter one to demonstrate epipolar geometry for stereo
images, we present the equivalent in the cubic panorama case that is not surprisingly

named cube rectification.

3.7.1 Objective

Cube rectification is to cubic panoramas what epipolar rectification is to planar images.
As a matter of fact, for a pair of cubes, the associated essential matrix E carries the
information of the epipoles directions and of the rotation between the frames. Using
that information, just as it is done with the fundamental matrix in the case of planar
images, we aim at finding the rotations that - by analogy with the homographies for
images - will be applied to each of the panoramas to obtain a rectified configuration.
In such a configuration, both panoramas have all their corresponding faces parallel and
coplanar as can be seen in Fig.3.9. This extension to the equivalent planar image concept

is particularly useful as a starting point of in-between viewpoint interpolation for cubes.

3.7.2 Principle

For two images, the epipoles were literally sent to infinity in the x direction to solve the
rectification problem as it is done for example in [13, 21] : two rectifying homographies
H, and H, were applied to each image to achieve rectification. To be able to rectify
two cubes in any configuration, on top of computing the essential matrix E for the pair
of cubes, we follow an analog principle by finding two rotations R; and R, that align
the cubes in a preferred configuration. As a matter of fact, if we define p; = R;m; or

m; = R;lpz- for 7 € 1,2 and the points p; and p, of cubes C and Cy, we have from (3.27)
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(a (b)

Figure 3.9: (a) Cubes in general configuration (b) Rectified cubes

P Ep = 0 (3.33)
(Rng)TE(lel) =0 (334)
mIREERm; = 0 (3.35)
maE,m; = 0 (3.36)
With :
E, = RJER, (3.37)

After applying the rotations R; to each cube Cj, the resulting configuration can be
seen on figure 3.9. It basically shows that the rotations R; are such that the = axis of both
cubes coordinate systems merge into a common axis between both cubes going through
both centers (baseline axis): the difference between the cubes €y and Cy becomes only
translational along the x axis, the original rotation being reduced to the identity matrix.
In such a configuration [14, 21] shows that, using equation (3.26), the corresponding

essential matrix is :

E, =[1,0,00l=1 0 0 —1 (3.38)
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This is a lot reminiscent of what is done for example in [13, 21] for the case of stereo
images where homographies become rotations and the fundamental matrix is replaced
by the essential matrix.

The interest of such a procedure resides in the possible use in other applications. For
example such rectification could greatly ease cubic panorama interpolation, disparity
estimation just like in the case of stereo rectification in the case of images. It could
also help stabilize an almost linear sequence of cubes aligning them one by one along a
common direction reducing navigation jitters.

Let us note that [11] also mentions a rectification process. The main difference is that
the cubic panoramas are only rectified by a rotation along their vertical axis. This implies
that the cubes must lie, in their original configuration, in the same plane. In our case, we
cast away this constraint by solving the general configuration problem. Therefore there

is no restriction on the capture process of the cubic panoramas of interest.

3.7.3 Extracting Epipoles

Needless to say, computing the essential matrix F(see previous section) is the preliminary
step of this procedure. Once E is known, we then need to recover its epipoles. Similarly
to their definition in the chapter on epipolar geometry for images, the epipoles in the
cubic panorama context are unit vectors encoded in the essential matrix and noted ey
and es. ey (resp. eg) is basically the direction in which Cy (resp. C) is located with
respect to the cube C}’s (resp. Cy’s) frame.[8, 7] notes as a property of the essential

matrix that :

Fei=0and el E =0 (3.39)

Both vectors e; and ey are recovered from a SVD decomposition of E. They respec-
tively correspond to the right and left singular vectors of least singular value that is

ideally 0. Fig.3.9 displays the epipoles of the pair.

3.7.4 Computing rotation R,

To recover the first rotation Ry, the x axis of the C'; reference frame has to be aligned

onto e;. In other terms, the rotation R, needed here is such that :

R1(1,0,0)" = ¢; (3.40)
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This can be done in a geometrical manner. In general, if we are looking for a rotation
R such that for two non null and non collinear vectors u and v, we have Ru = v we can

proceed as follows :

e First look for the axis of rotation w. It is given in this case by the cross product

w=uX"7.

e Next, we recover the angle 0 such that R = R,,(#). This is done using the following

formulas :

wv = ||ull||v]]| cos(u,v) (3.41)
uxv = |ul||v]]sin(u,v) (3.42)
They allow us to recover :
tang = LY (3.43)
u.v

Once the axis w and the angle 6 are recovered we use equation (3.5) to obtain R.
Special attention is needed for collinear vectors, situation in which the rotation is a trivial
one : either identity, or a reflection. For orthogonal vectors u.v = 0 and the division by
0 implies a § angle. This can also be “caught” before hand. To recover Ry, we thus need

to consider v = (1,0,0)" and v = ¢; and those special cases if necessary.

3.7.5 Computation rotation R,

For R,, an identical procedure as the one used for R; is used here. The only difference is
the fact that the x axis of the reference of Cs is aligned onto —e, instead of e; as it would
have been the case for R;. This insures that both resulting = axis point int the same
direction, thus insuring the ideal essential matrix F,.for the new configuration defined in
(3.38).

Both rotations R; and Ry are now known. Applying the latter of the respective
panoramas guarantees a configuration in which both cubes = axis are aligned. However,
nothing implies that the cubes are in the proper configuration face wise : the faces of
the cubes also need to be aligned similarly as what is done with image rectification.
Therefore an additional rotation on one of the cubes, in our case C5, has to be evaluated
to compensate the rotation computed above and finalize the rectification process (see
Fig.3.10).
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but y and z axis
non parallel

Figure 3.10: Rectification process with compensating rotation
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3.7.6 Computing the tweaking rotation R,y

We chose to compensate the rotation Ry applied on cube C5 with an additional rotation
noted R,44. To achieve this goal, two methods were designed both trying to solve the

same problem of estimating R,4q such that :

(RugaR2)"ER, = E, (3.44)

The rotation Ry in section 3.7.5 is then pre-multiplied by R,4q to obtain the final
rotation on Cy. To avoid any possible confusion, we will note R, the final rotation

applied to C5, by ro the rotation computed in section 3.7.5. We therefore have :

R2 = RaddTQ (345)

The first solution is a “brute force” one. The problem is solved as it is by solving (3.44)
as a minimization problem with the elements of R,4q as variables. The second solution
is a direct and geometrical one in which we use our knowledge of the configuration of

both cubes to compute the unknown rotation.

Using minimization

The solution presented here follows the template laid out by [21] for its distortion reduc-
tion algorithm (see image rectification in chapter 1 for more details). As a consequence

the problem is re-written as follows :

(Raqars) TE,R* —aE =0 (3.46)

« is a new unknown on top of the elements of the rotation R,4q and stands simply
for a scale factor. As a matter of fact, the equalities in (3.44) or (3.46) are up to a scale
factor.

We know that the additional rotation will be of axis z. We also know F,, Ry, r, and
E. The fact that we know the axis of rotation reduces the number of unknowns in the
equation above to 2 : the rotation angle 6 around the = axis and «. The equation (3.46)

can then be considered of the form :

£(0,0) =0 (3.47)

It is a minimization problem that we solved in C'++ using the simplex algorithm [22].

But really, any state of the art multi-variable function minimization algorithm could be
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used (for example the popular fminsearch in Matlab). Once 6 is found, we use (3.5) to
obtain Radd = R$(¢9>

Direct geometric solution

The rotation that we are looking for is a rotation of angle 6 around the x axis. As
a matter of fact, once the rotation R; and 7y are applied, both cubic panoramas are
in a configuration where they differ only by a translation on the x axis and by an
unknown rotation of angle 6 around the x axis (see Fig.3.10). The essential matrix E!

that corresponds to such a configuration is given by :

E. =t,R.(0) (3.48)
but also by :
E. =r]ER, (3.49)
1 0 0
Using (3.2) and the general formula R,(f) = | 0 cosf —sinf | allows us to write
0 sinf cosf
(3.48) as :
0 0 0
E = 0 —sinf —cosf (3.50)
0 cosf —sinf

The fact that all variables on the right hand side of (3.49) allows us to recover the
values of sin # and cos @ by considering (3.49) equal to (3.50). Using the inverse tangent,

6 is computed and as a result, so is Ryqq = R.(0).

3.7.7 Results and Observations

Both methods were implemented on the same pair as the one studied in the previous
section. Each cube of the pair is shown respectively in Fig.3.3 and in Fig.3.7, and both
panoramas are displayed in Fig.3.11. The essential matrix is computed from 56 matches
and has the value given in (3.31). The procedure explained in 3.7.2 is followed to compute
the rotations R and Rs.
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Minimization approach

The minimization based method produces the rotations :

—0.9121 0.0679 —0.4042 —0.9660 0.0853 0.2442
R, = 0.0742 0.9972 0.0000 and Ry = 0.1517 0.9515 0.2676
0.4031 —0.0300 —-0.9147 —0.2095 0.2955 —0.9321

(3.51)

The product expressed in equation (3.37) should ideally give us the matrix E,. Com-
puting this product with our estimated rotations is a good measure of how close they

are to ideal solutions. For the minimization based method, we have :

0.0000  0.0000  0.0000
RITER, = | 0.0000 0.0008 0.3541 (3.52)
0.0000 —0.3541 0.0098

The result is quite satisfying since the resulting matrix is really close to the ideal
essential matrix up to a scale factor of —0.3541.
Direct geometric solution

For the direct geometric solution, we obtain the following rotations from the same essen-

tial matrix and matches as above :

~0.9121 —0.0742 —0.4031 —0.9660 0.1690  0.1958
Ri=| 00742 09373 —0.3404 | and Ry=| 0.1517 0.9833 —0.1006
0.4031 —0.3404 —0.8495 —0.2095 —0.0675 —0.9755

(3.53)

The rotations obtained here are very close to the ones obtained in the previous case.
This shows the consistency in the approach. However the product that is used as a test

measure gives us, in this case :

0.0000  0.0000  0.0000
RYER, = | 0.0000 0.0000 0.3542 (3.54)
0.0000 —0.3542 0.0000

This is what is expected in terms of ideal essential matrix up to a scale factor of
—0.3542. (3.52) and (3.54) show that both approaches a quasi identical. The almost
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imperceptible advantage goes to the direct geometric solution from a numeric point of
view. This decision is much clearer when it comes to simplicity and efficiency as select