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Abstract

This thesis presents methods for novel image synthesis from cubic panoramas taken

with multi-sensor cameras. The pre-captured cubic panoramas are used to interpolate

arbitrary views to allow a virtual walkthrough of the remote real environment. In our ap-

proach, the “transfer” and “triangulation” methods are adopted to analyse the geometry

of cubic panoramas and recover accurate essential matrix between cubes. To generate

novel view between two aligned cubes, a warping model is applied to warp cubes to

approximate navigation. This technique, called cube warping, works by simplifying the

model of pixel displacements between cubes. A new raytracing like image-based interpo-

lation method is also proposed for free-viewpoint cube synthesis. Instead of attempting

to recover dense reconstruction precisely, our method try to reconstruct colours with

colour invariance constraints. Due to the fact that photo consistency has more to do

with colour than shape, our algorithm can generate a complete novel scene view with

maximized photo consistency.
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Chapter 1

Introduction

The main theme of this thesis is to perform panorama view synthesis for image-based

navigation. The work is part of the NAVIRE project 1 developed at University of Ottawa.

The project objective is to develop image-based rendering(IBR) system to allow a person

to virtually navigate through a remote real environment using pre-captured panorama im-

ages. To achieve smooth and natural navigation, a dense grid of pre-generated panoramic

images of the environment and appropriate synthesized virtual views among grid nodes

are required.

Ideally, the pre-captured panoramic images are dense enough such that there is no

perceivable transition when switching from one cube into another. The early approaches

to synthesize and navigate in virtual environments have used movies created by pho-

tography or computer rendering. In Lippman’s approach[43], the streets were filmed at

10-foot intervals. To simulate navigation of the walk-through, two video disc players were

used to retrieve corresponding views. Later, in [52], at every selected point, the virtual

museum was simulated with a 360 degree panning movie which generated by computer

rendering images. Navigation between two connected view points were simulated with

1http://www.site.uottawa.ca/research/viva/projects/ibr/

1



Introduction 2

bi-directional transition movie.

Continuous video can provide seamless visualization of environment. However, there

are some problems. On one side, since the movie or video is often arranged between two

points with bi-direction, it has limited navigability and interaction. On the other side,

taking continuous video pervasively may involve huge amount of data and put enormous

burden on storage and network transmission. This is especially the case considering the

high resolution(6x1024x1024) display of cube panoramic images. Therefore, it is imprac-

tical to use movie-based approach. The navigation should be achieved by both ensuring

a dense coverage of the environment and through appropriate viewpoint interpolation

[38].

1.1 Relevant Work

1.1.1 Geometry-based rendering

Traditional approaches for the navigation of virtual environments use 3D geometric

primitives to render novel views. These methods are called geometry-based rendering.

Geometry-based rendering utilizes strategies such as ray-tracing, soft shadows, global il-

lumination, caustics, hierarchies and anti-aliasing to render scenes. These methods often

take very long time even for simple scenes rendering. For complex renderings, geometry-

based rendering adopts simplified techniques to accelerate processing either by reducing

the geometric complexity of the scene [27][31][13][23][47] or by reducing the rendering

complexity through texture mapping [8][68][53][24].

Under appropriate models, geometry-based rendering can produce convincing novel

view with good solution for occlusion problems. However, it has following limitations:

• Acquisition of realistic surface models is a laborious and difficult task and it is very
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difficult, if not impossible, to model very complex scenes.

• It takes days or even more than one week to complete rendering very complex envi-

ronments, such as those images appearing at Internet Raytracing Competition[1].

Therefore, for real-time rendering, the rendering engine has to make some limita-

tion on scene complexity and rending quality.

McMillan and Bishop said in their renowned paper [49]: While geometry-based ren-

dering technology has made significant strides toward achieving photorealism, creating

accurate models is still nearly as difficult as it was ten years ago. Technological advances

in three-dimensional scanning provide some promise in model building. However, they

also verify our worst suspicions –the geometry of the real– world is exceedingly complex.

Ironically, the primary subjective measure of image quality used by proponents of geomet-

ric rendering systems is the degree with which the resulting images are indistinguishable

from photographs.

1.1.2 Image-based rendering

Image-based rendering (IBR), as a powerful alternative to traditional geometry-based

techniques for image synthesis, use images as primitives to render novel views. Compared

with geometry-based techniques, the IBR can avoid the tedious, laborious 3D modeling

stage and produce faster rendering for complex scene due to its independence of the

scene complexity. The existing approaches for image synthesis with IBR method can be

classified into two categories: (i) reconstruction-based methods; (ii) interpolation-based

methods.
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Reconstruction-based methods

For reconstruction-based methods, a 3D reconstruction, either explicit or implicit, is

performed first. Then, the constructed scene is projected into new viewpoint followed

with texture mapping. Although struggled with the difficult problems of estimating

dense or quasi-dense correspondence, these methods can handle occlusion issues well and

generate novel views with arbitrary viewpoints.

Laveau and Faugeras [40] employ the epipolar constraints to perform a raytracing

like search of corresponding pixels in reference images for novel view pixels. In Layered

depth images (LDI) [60], “multiple overlapping layers” are constructed by using stereo

techniques. Both the depths of visible surface points and those of occluded scene points

are stored in the input image. To rendering an arbitrary novel view, it is only need to

warp a single image, in which each pixel consists of a list of depth and color values. Kang

and Szeliski [35] use panoramas to recover 3D scene information. At different locations,

the panoramas are produced with sequences of precaptured images. Then, 3D scene data

are constructed by using stereo techniques. Finally, the rendering is performed with the

models generated by the constructed 3D data.

Interpolation-based approaches

Interpolation-based methods try to generate photorealistic points of novel views directly

by interpolating the corresponding pixels of the input images. Even with lifelike novel

views and low computation costs, interpolation-based methods [11, 59, 42] often have

limitations of producing the novel views with restrained viewpoints.

One typical interpolation-based technique, Seitz and Dyer’s view morphing [59] ap-

proach employs a three-step algorithm to guarantee the intermediate view being geomet-

rically correct. A prewarp stage is applied to rectify two reference images first. Then the



Introduction 5

intermediate morphing stage is performed to interpolate the coordinates and colours of

corresponding pixels. At last, a postwarp stage is followed to neutralize the prewarping

effects. In Chen and williams’ view interpolation [11], the flow fields are established first,

followed with the morphing techniques to interpolate pixels from two input images. The

plenoptic modeling [49], light field [41], lumigraph [25], and concentric mosaics [62] are

all based on plenoptic functions. Given the original seven-dimensional plenoptic func-

tions, all these methods place different constraints on the parameters in order to reduce

its dimensions. The more constraints we put, the simpler the plenoptic function will be,

and the more limitations we will have on our view spaces.

1.2 Thesis Objective

Cube, introduced by Greene [26], can be stored and rendered very efficiently in modern

graphic hardware [10]. Thanks to the Point Grey Ladybug camera, the significant prob-

lems relating to cube capture and generation when used with real, non-graphic images

are easily solved. However, the greatest difficulty of cubic representation, namely esti-

mating image flow fields across the boundaries between faces and at corners is still a big

challenge to solve. In fact, how to solve such problems consists of a necessary step in

virtual cube generation.

This thesis, destined to generate virtual cubes for image-based navigation, will apply

techniques and applications of computer vision to solve the problems relating to virtual

cube generation.

1.3 Thesis Contributions

This thesis has made following original contributions:
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• A method for feature matching between cubic panoramas is proposed. The method

applies non-panorama feature matching techniques to cubic panoramas, and then

adopts a subsequent process for outlier removals. This method has the advantage

of estimating accurate feature matches, which leads to a robust computation of

essential matrix between cubes.

• An online, low-cost cube warping algorithm is suggested. A warping model is

constructed for generating novel views between two aligned cubes. The approach

is based on a simplified model of cube pixel displacements when a navigator moves

from one cube to another.

• A novel raytracing like image-based interpolation algorithm is proposed. Instead of

attempting to adopt traditional dense reconstruction approaches, the method try to

reconstruct colours with colour invariance constraints. By designing a guided depth

searching strategy, the method can generate a novel scene view with maximized

photo consistency.

1.4 Thesis Outline

The thesis begins with an introduction of cubic panoramas in Chapter 2: capture, gener-

ation, mathematic model and geometry. The chapter firstly presents a brief explanation

of cube image form, the camera used to capture the cube as well as cube generation

process. Then cube feature matching techniques with a subsequent process for outlier

removals will be followed. The next section of Chapter 2 will discuss the cubic epipo-

lar geometry, mainly on cube essential matrix, rotation matrix and translation vector.

After that, the accurate estimation of essential matrix, rotation matrix and translation

vector will be illustrated, and a global consideration of the cube as whole and not as a
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multi-sensor-camera system will be suggested.

Chapter 3 discusses our method of cube warping : a new fast, online approach to

generate novel view between two aligned cubes with small translation. We will construct

a simplified model of cube pixel displacements for simulating walkthrough. Then, the

optical flow techniques will be used to decide the “warping scales”. After the warping

model applied, the result will be discussed. The algorithm costs will be also covered.

Chapter 4 considers how to generate an arbitrary novel cubic view given a set of input

cubes. A new raytracing like image-based interpolation method is proposed. The pro-

cesses for choosing novel viewpoint and retinal planes will be described. Then the colour

reconstruction with colour invariance constraints will be emphasized. The occlusion and

disocclusion issues will be also covered. Finally, new cubic images will be generated with

our algorithm and be compared with the actual cubes.

The conclusions as well as a short comparison of our two algorithms will be given in

chapter 5.

A number of appendixes will be given at the end of the thesis. Some properties of

cube geometry will be covered in Appendix A, Appendix B and Appendix C, mainly on

transformations between cube image point and 3D space point. Appendix D will present

the cube intrinsic matrix. The 3D triangulation reconstruction method will be discussed

in Appendix E.



Chapter 2

Cubic Panorama: Geometry

2.1 Introduction

Panoramic images can provide an unobstructed or complete view of an area. They can be

in the forms of cylinder, sphere or cube. The panoramic images are used in applications

such as robotic navigation, virtual environment navigation or immersive viewing. A

number of techniques have been developed traditionally to generated panoramic images.

Such techniques include capturing with a lens of very large field of view, taking an image

onto a long film by using a panoramic camera, using catadioptric cameras (mixture of

mirrors and lenses, such as parabolic cameras or mirrored pyramids) and applying image

mosaic techniques.

The NAVIRE project 1 developed at University of Ottawa uses cubic panoramas

generated from the Point Grey Ladybug spherical digital video camera. The goal of

the project is to develop image-based rendering(IBR) system to allow a user to virtually

walk through a remote real environment using pre-captured panorama images. The cubic

panoramas are captured by a multi-sensor panoramic camera with high resolution. With

1http://www.site.uottawa.ca/research/viva/projects/ibr/

8
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six planar images, cubic panoramas are easy to manipulate and are efficient for rapid

rendering in modern graphics cards.

Cubic panoramas, or cubes for short forms, are very suitable for 3D reconstruction

because of their implicit calibration and cube face relationships. In this chapter, we

address the characteristics of the cubes, the geometry of the cubes as well as the rotation

and translation of the cubes. Two-view from cubic panoramas is of particular interest

because of the special camera configuration and its resulting epipolar geometry.

This chapter is structured as follows: The next section discusses the cube capture

and generation processes. The feature matching techniques will be presented in section

3. After that, the cubic epipolar geometry are followed. Sections 4 will describe some

experimental results and analysis. The chapter is completed with a brief conclusion.

2.2 Cubic panoramas : image generation

2.2.1 Notations

We make heavy use of elementary projective geometry in this chapter. The reader who is

unfamiliar with these topics is referred to the recent computer vision books[30, 17]. We

write vectors and matrices in bold face and scalars in italic. We also write scene and image

quantities in capitals and lowercases, respectively. When possible, the corresponding

scene and image quantities are written with the same letters. Cube images, C, cube

faces, F , and 3D scenes, S, are all expressed as sets of points. For example, a cube image

2D point (x, y, 1)T = x ∈ C or a cube face 2D point (x, y, 1)T = x ∈ F is the projection

of a scene 3D point (X,Y, Z, 1)T = X ∈ S.

A cubic panorama is made of six identical faces. Each of them can be seen as a

image plane of a standard pinhole camera with 90◦ field of view. We name the six
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(a) Point Grey Lady-
bug camera.

(b) Cube reference frame.

Figure 2.1: Point Grey Ladybug camera and cube reference frame

faces as: up, left, front, right, back, down, and label each face of the cube as Fi, for

i ∈ {U, L, F, R, B, D}, with U standing for the up face, L standing for the left face and so

on. As shown in Figure2.1(b), the cube reference frame is chosen as follows: the original

point is located at the center of the cube with the x axis pointing to the “right” face,

the y axis toward “down” face and the z axis toward the “front” face.

2.2.2 Cube generation

The cubic panoramas used in NAVIRE project are captured with the Point Grey La-

dybug camera (see Figure2.1(a)) 2. The Ladybug camera consists of six 1024x768 color

CCDs, with five CCDs positioned in a horizontal ring and one positioned vertically, which

capture a view of the environment with 360 degrees around the azimuth as well as a top

view.

After captured, the six raw images, with roughly 80 pixels overlap between neigh-

bouring sensors, need to be stitched together to form a panorama image. This can be

done by fusing the six images to form a spherical mesh first, and then projecting it into

2http://www.ptgrey.com/
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Figure 2.2: A cube image laid out in cross pattern

six cube faces. Since there is no sensor positioned downward, there is a black hole in the

bottom face of the cube.

An example cube of images taken with the Ladybug and projected to generate cubic

panorama is shown in Figure2.2. Here cube faces are laid out in a cross pattern with

the faces in the order (from top to bottom and left to right): up, left, front, right, back,

down.
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2.3 Cubic panoramas : feature matching

Feature matching is a foundation of computer vision. It has been widely used in camera

calibration, 3D reconstruction, object recognition, image-based navigation, etc. Even

though feature matching has been intensely covered in the literature, its applications to

panoramic images are still less-addressed.

In this section, we will introduce some methods of feature matching and their appli-

cations in cubic panorama. Since we are only interested in applying such applications

in cube, we will discuss them in general. For detail discussions, readers can refer to the

related articles.

2.3.1 Feature detection

In order to find feature matches, the feature points should be detected first. There are a

lot of feature point detectors in the literature [28, 67, 20]. According to the evaluation

work of Schmid [57], Harris feature point [28] detector performs best among some of

them due to its reliable and invariant to noise and perspective distortion. In fact, it is

the most commonly used feature point detector. The basic idea of Harris detector is to

find image locations where the intensity changes in two directions. The most significant

intensity changes are given by the eigenvectors of the auto-correlation matrix, which

takes into account the first derivatives of the intensity on a local window (Gaussian).

Harris detector is widely used in computer vision because of its lower computation cost

and strong stability to noise, image deformation, and illumination variance. However,

its performances degenerate quickly with scale variation. Also, Harris features are not

distinctive enough to match the features.

For a feature to be scale-invariant and distinctive, many region detectors have been

developed. Among them, Harris-Laplacian [50], Hessian-Laplacian [51] and Scale In-
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variant Feature Transform (SIFT) [45] are some of the most popular and effective ones.

Using a scale-adapted Harris function, the Harris-Laplace detector searches keypoints

first. Then it selects the feature points for which the Laplacian-of-Gaussian reaches a

stable peak at a value considered as the scale. The Hessian-Laplace detector uses Hessian

determinant for scale detection. A Laplacian-of-Gaussian function is also used for select-

ing a maximum over scale. SIFT convolves Difference-of-Gaussian(DoF) function with a

image region and searches for scale-space extremes. It detects the blob-like structures,

as well as edges.

2.3.2 Feature matching

Feature matching is the process to find corresponding features in two or more different

views of same scene. There are a lot of approaches for matching features. They can

be classified into two categories: region-based matching and feature-based matching.

According to evaluation work of [51], region-based matching perform better than feature-

based matching.

A popular region-based matching method is variance normalized correlation (VNC)

[72]. The main idea of this corresponding method is: for a correlation window around a

feature point in the first image, try to search a window area of the correlated point in

second image, and perform a correlation operation. Such correlation approach can give

good results as long as the image baseline is not widely separated.

In order to make features invariant to illumination changes and rotation, SIFT applies

a descriptor with a 3D histogram of gradient locations and orientations. The contribu-

tion to the location and orientation bins is weighted by the gradient magnitude. The

descriptor is very robust to small geometric distortions. With the combination of a scale-

invariant region detector and the descriptor, SIFT relies on the distinctiveness of features
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to identify right correspondences without any ambiguity.

2.3.3 Outlier removal

Although many feature matching processes are robust enough, some false matches may

survive. This is especially the case when we try to find as many matches as possible. The

reason is quite obvious: the tough matching constraints not only discard the outliers but

also block good matches. Therefore, an outlier removal process is needed to eliminate

outliers.

Outlier removal: epipolar constraints

The principle to eliminate mismatches through epipolar geometry is very simple: discard

points that lie too far from related epipolar lines. Consider a candidate match (x,x′),

if they correspond, x′ lies on the epipolar line l′ = Fx corresponding to the point x.

Here F is fundamental matrix. In other words x′TFx = x′T l′ = 0. This is a necessary

condition for points to be matches. A similar condition applies to essential matrix E

with the following equation:

x̂′TEx̂ = 0 (2.1)

We use following function to compute the distance to the epipolar line and validate

correspondences:

1

2

(
d (x̂′

i,Ex̂i)
2
+ d

(
x̂i,E

T x̂′

i

)2
)

(2.2)

Where d is Euclidean distance, and (x̂i, x̂
′

i) is the ith candidate match expressed in

normalized coordinates(see [30], Page 257). The initial threshold of tolerated distance

from epipolar lines is preset at a high value (for example 6 pixels) first, and then is

iteratively decreased during the refinement steps as the epipolar geometry (here we mean
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essential matrix) becomes more and more precise.

The effectiveness of this method for outlier removal depends on how accurate the

essential matrix E is computed. More details on essential matrix discussions will be

given later. If no outlier exists, 8 point algorithm [44] can be used to compute essential

matrix. Since points are mismatched, some robust techniques are need to discard the

false matches and estimate robustly the essential matrix. Among those robust methods,

the random sampling consensus (RANSAC) [18] and least-median-of-squares(LMedS)

[72] are two most popular ones.

The presence of mismatches affects the robustness of estimating epipolar geometry,

and the accuracy of epipolar geometry in return determines the effectiveness of outlier

removal. As we can see the feature detection, feature matching and outlier removal are

no longer considered as separated steps.

Outlier removal: 2D reprojection constraints

Because the intrinsic matrix K of cubic panorama is implicit known, we can also use

another method to remove outliers by 2D reprojection constraints.

Considering a candidate match (x,x′) of the image pair I and I ′ of the same scene S,

if cameras are fully calibrated the 3D point X can be reconstructed from the points x and

x’ by the method linear triangulation (see Appendix E). Then, 3D point X is projected

back to the image pair I and I ′. If the new back-projected points exhibit large 2D errors

(large distance from the original points), the candidate match (x,x′) is misdetected and

should be removed.
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2.3.4 Cube feature matching

As noted before, a cubic panorama has six non-overlapping identical faces. Each face

may be regarded as a image plane of a standard pinhole camera with 90◦ field of view,

and all the cameras which take the six face images are identical and centered at the same

optical center, which is also the cube center.

For cube feature matching, it is natural to detect and match features on a face-by-

face basis. However this is often proved to be problematic. Match candidates might

not be on the same corresponding face of the cubes. Sometimes features on one face

of a cube even end up with being on three different faces of another cube. Also, for

virtual navigation applications, the cubes are often taken in any desired positions with

any arbitrary rotations. Therefore there may be rotation and/or scale variations. Thus,

a feature matching method with scale-invariant should be used.

To sum up, the matching and detection are processed on two cube images laid out

in cross pattern (see Figure2.2). We use scale-invariant Lowe’s SIFT method to detect

and match initial features with stringent threshold. Next, the robust RANSAC method

is used to compute essential matrix E. Then two correspondence validation steps are

followed: “epipolar constraints” step first and “2D reprojection constraints” step next.

Again the essential matrix E is compute with more accurate matches. After that SIFT

method is applied again to find more matches with relaxed threshold, and eventually,

more precise matches are found by using recovered essential matrix E to remove the

outliers.
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2.4 Cubic panoramas : epipolar geometry

2.4.1 Notation

We first introduce some notations and conventions used throughout this section. Con-

sidering two cubes, cube C and cube C ′, we choose the reference frame system shown in

Figure2.1(b), and attach the world reference frame to cube C. Given a 3D point X, we

use xi as its projection on the face i of cube C, for i ∈ {U, L, F, R, B, D}, with U standing

for the up face, L standing for the left face and so on. We also denote x′

i as the projection

of point X on the face i of cube C ′. The intrinsic matrices for cube C and cube C ′ are

noted as Mint and M′

int, respectively. In the same way, the extrinsic matrices are written

as Mext i and Mext
′

i. The projection matrices are expressed with Pi and P′

i, where i

stands for different face.

2.4.2 Intrinsic or calibration matrix

Cubic panoramas are very suitable for 3D reconstruction because of their implicit cali-

bration and cube face relationships. All six cube faces can be regarded as images taken

by the same camera with 90◦ field of view, which rotates about its optical centre 90◦ at

a time with fixed focal length. Therefore, in the case of a cube of side d with the frame

shown in Figure2.1(b), the image plane is at a distance d
2

from camera center, and the

principal point is always at
(

d
2
, d

2

)
of image plane. Thus the cube intrinsic matrix Mint

or calibration matrix K may be written as:

K =




d
2

0 d
2

0 d
2

d
2

0 0 1




(2.3)
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For two cubes, cube C and cube C ′, if they have same cube size of side d, their

respective intrinsic matrix Mint and M′

int will be equal:

Mint = M′

int = K =




d
2

0 d
2

0 d
2

d
2

0 0 1




(2.4)

2.4.3 3D point and its projection to cube faces

As shown in Figure2.1(b), the front face camera of cube C is attached to the world frame.

The camera projection matrix for front face of cube C is:

PF = KMext F = K [I3|0] (2.5)

With I3 being identity matrix of order 3.

As noted before, all six cube faces can be regarded as images taken by the same

camera, which rotates about its optical centre 90◦ for different faces with fixed focal

length. Therefore, the relations between extrinsic matrix of front face and those of other

faces can be written as:

Mext i = RiMext F = [Ri|0] (2.6)

Where Ri is given in appendix A.

Then the camera projection matrix of an arbitrary face of cube C becomes:

Pi = KMext i = K [Ri|0] (2.7)
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Given a 3D point X, its projection on the face i of cube C:

xi = PiX = KRiX (2.8)

Thus:

3X = P−1

i xi = (KRi)
−1 xi = RiK

−1xi (2.9)

By replacing equation 2.9 into following equation, we have:

xF = PFX = KX = KRiK
−1xi (2.10)

or

xi = KRiK
−1xF (2.11)

In the general case, the conversion of two cube image points between different cube

faces, i and j can be written as:

xj = KRjK
−1xF = KRjK

−1KRiK
−1xi = KRjRiK

−1xi (2.12)

2.4.4 Fundamental matrix between two cubes

A cubic panorama has six faces. Between any face i of cube C and face j of cube C ′,

there is a fundamental matrix, noted as Fij, i, j ∈ (T, L, F,R,B,D). Therefore, there

are totally 6 × 6 = 36 fundamental matrices between two cubes. However, due to the

intrinsic relationship between the faces, all these fundamental matrices are related. Thus,

after any one of them is estimated, all others can be computed from it.

First, let us denote the fundamental matrix between the two front faces of cube C

3For rotation matrix, we have R
−1

i
= Ri
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and cube C ′ as FFF . According to epipolar geometry, we have:

x′T
F FFFxF = 0 (2.13)

where xF , x′

F are a pair of matches in the front face of cube C and cube C ′, respectively.

More general, for a pair of correspondences xi, x′

j, we also have:

x′T
j Fijxi = 0 (2.14)

From 2.10 and 2.13

x′T
j

(
KRjK

−1
)T

FFFKRiK
−1xi = 0 (2.15)

Comparing 2.14 and 2.15, we can write:

Fij =
(
KRjK

−1
)T

FFF

(
KRiK

−1
)

(2.16)

In addition, from 2.12 and 2.14, we can get:

x′T
n

(
KRjRnK

−1
)T

FijKRiRmK−1xm = 0 (2.17)

So, in the general case, we have the following equation for two arbitrary fundamental

matrices:

Fmn =
(
KRjRnK

−1
)T

Fij

(
KRiRmK−1

)
(2.18)
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2.4.5 Essential matrix between two cubes

Essential matrix

The essential matrix is the specialization of the fundamental matrix. For a 3D point X

and a camera matrix P = K [R | t], the image point is x = PX. By removing intrinsic

matrix from x, we have:

x̂ = K−1x = [R | t]X (2.19)

x̂ is called normalized image coordinate. The defining equation for the essential

matrix is:

x̂′TEx̂ = 0 (2.20)

Substituting for x̂ and x̂′, it yields:

x′TK′−TEK−1x = 0 (2.21)

Comparing this with x′TFx = 0, we obtain:

F = K′−TEK−1 (2.22)

or

E = K′TFK (2.23)

Essential matrix between two cubes

Same as fundamental matrix, there are totally 6×6 = 36 essential matrices between two

cubes. Between any face i of cube C and face j of cube C ′, the essential matrices are

noted as Eij, i, j ∈ (T, L, F,R,B,D). As noted before, the intrinsic matrix is same for
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any two cubes: K′ = K. Thus, the equation 2.22 and 2.23 can be written as:

Fij = K−TEijK
−1 (2.24)

and

Eij = KTFijK (2.25)

Therefore, for EFF , the essential matrix between two front faces of cube C and cube

C ′, we have:

EFF = KTFFFK (2.26)

Replacing FFF with Fij from equation 2.16, and after some manipulations, we get:

Fij = (KRj)
−T EFF (KRi)

−1 (2.27)

Comparing 2.14 and 2.27, we conclude:

x′T
j (KRj)

−T EFF (KRi)
−1 xi = 0 (2.28)

Essential matrix EFF between two front faces is very important. It provides a conve-

nient method to compute rotation matrix R and translation vector t between two cubes.

More discussions on this will be covered next. With equation 2.28, we can estimate es-

sential matrix EFF given a group of matches between two cubes. The correspondence
(
xi,x

′

j

)
can be any face image points of cube C and cube C ′, respectively.

Essential matrix and 3D coordinates of cube points

In last section, we handled every cube as a six-sensor camera and concluded that there

are 6 × 6 = 36 essential matrices between two cubes. However, if we treat a cube as
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a whole and not as a multi-sensor-camera system, there is only one essential matrix

involved.

Due to the special representation of cube, the coordinates of a 2D image point on a

cube face can be expressed by the corresponding 3D coordinates on the cube face. Each

image point of a cube can be mapped to a 3D vector on the cube face. For details and

their transformation, please refer to Appendix C.

According to the work of [36], there is only one essential matrix involved if we use 3D

vector on the cube face instead of 2D image point. Therefore, the method to computer

essential matrix between two cubes can be simplified with following setps: first, find

matches between two cubes; second, transform the 2D matching image points into 3D

vectors on the cube face; third, estimate essential matrix with the 3D vectors.

2.4.6 Rotation matrix and translation vector between cubes

Each cubic panorama is captured from a point in space. Two different cubes will have

different reference frames, related by a rotation matrix R and translation vector t.

Considering two cubes, cube C and cube C ′, we choose the reference frame system

shown in Figure2.1(b), and attach the world reference frame to the front face camera of

cube C. We use the similar reference frame system for cube C ′, and cube C and cubeC ′

will have different world points and orientations, expressed by a rotation matrix R and

translation vector t. Thus, the camera projection matrices for cube C and cubeC ′ will

be:

PF = K [I3|0] P′

F = K [R|t] (2.29)
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Therefore, we have following equation for the essential matrix EFF :4

EFF = [t]
×

R (2.30)

The equation 2.30 is very important in representing the relationship between two cubes,

and will be used all through this thesis. To be succinct, we will use E instead of EFF in

the future part to express cube relationships when there is no confusion involved.

One of the most important properties of the essential matrix E is: equation 2.30

can be used to extract rotation matrix R and translation vector t (up to scale) as per

existing methods.5 Since all the cubes have the same calibration matrix K given the

same cube size, R and t provide the sufficient requirement for 3D reconstruction of the

environment or building a cube map for an interactive navigation.

Therefore, with the essential matrix E and R, t recovered from it, a cube can be

treated as a whole and not as a multi-camera system. This will result in more global

approaches and simplify the processing algorithms.

2.4.7 3D reconstruction between two cubes

Since the calibration matrix K is implicitly known, cubic panoramas are very suitable

for 3D reconstruction. After the rotation matrix R and translation vector t (up to scale)

are extracted, a 3D point may be reconstructed from a pair of matches by the method

of linear triangulation (For details, please refer to Appendix E).

Considering two cubes, cube C and cube C ′, with the reference frame system as

Figure2.1(b) and world origin at the center of cube C, their camera projection matrices

4For details, please refer to [30], Section 9.6
5Section 9.6 of [30],Chapter 5 of [17]
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are:

PF = K [I3|0] P′

F = K [R|t]

For the correspondence
(
xi,x

′

j

)
, image point on face i of cube C and face j of cube

C ′, respectively, the equation 2.10 is used to transfer them into front face of cube C and

cube C ′:

(xF , yF , 1)T = xF = KRiK
−1xi (x′

F , y′

F , 1)
T

= x′

F = KRjK
−1x′

j

Then, the 3D point X can be reconstructed for the match
(
xi,x

′

j

)
by the linear

function of AX = 0, with

A =




xFp3T
F − p1T

F

yFp3T
F − p2T

F

x′

Fp′3T
F − p′1T

F

y′

Fp′3T
F − p′2T

F




(2.31)

Where pnT
F is the row vector of the nth row of the PF .

This is a linear equation, which is easy to find the solution by using Direct Linear

Transformation (DLT) algorithm (see [30]).

2.5 Experiments

We have performed a number of experiments to recover cube epipolar geometry, mainly

essential matrix E, rotation matrix R and translation vector t.

The experiment scheme is as follows:

1. For two cube images laid out in cross pattern, detect and match few but accurate

features by using Lowe’s SIFT method with stringent threshold.
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2. Estimate essential matrix E and discard misdetected matches by robust RANSAC

method. The equation 2.28 is used to compute E. Epipolar constraints or 2D

reprojection constraints is used to validate correspondences.

3. Extract rotation matrix R and translation vector t from essential matrix E by

using equation 2.30

4. Find more matches by using Lowe’s SIFT method with relax threshold, and use

computed E to remove mismatches by epipolar constraints or 2D reprojection con-

straints.

5. Estimate E, R and t more precisely with more accurate matches.

Cube 1 and Cube 2 (shown in Figure 2.3) are two cubes used for feature matches.

Figure 2.4 shows the matching results from Lowe’s SIFT method. In order to find as

many matches as possible, we used relax threshold for feature matching. The matches

are drawn with red arrow line, with one end showing matching point of one cube and

arrow end pointing to the corresponding matching point of another cube. There are 837

initial putative matches, and some of them are obviously mismatched. These matches

are validated with two different methods: outlier removal by epipolar constraints and

outlier removal by 2D reprojection constraints. After epipolar constraints is applied,

there are 219 mismatches are removed (shown in Figure 2.5). Figure 2.6 shows the

result of outlier removal by 2D reprojection constraints. For this method, 222 outliers

are deleted and rejected. From the results, we can see both methods can remove the

mismatches effectively.

For epipolar constraints, it is necessary to explicate the computation of distance be-

tween normalized coordinate point and its epipolar line.
(
x̂ = (x̂, ŷ, 1)T , x̂′ = (x̂′, ŷ′, 1)T

)

is a correspondence with normalized coordinate for cube C and C ′, respectively. We need
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Figure 2.3: Two cubes used to detect matches
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Figure 2.4: Matches obtained by SIFT (837 matches)

Figure 2.5: Matches after validated with epipolar constraints (618 matches)
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Figure 2.6: Matches after validated with 2D reprojection constraints (615 matches)

to compute distance of x̂′ to its normalized epipolar line Ex̂ = (a, b, c)T . This distance

can be calculated by following equation

d (x̂′,Ex̂) =
|x̂′ · (Ex̂)|
‖(Ex̂)‖ =

|ax̂′ + bŷ′ + c|√
a2 + b2

(2.32)

The distance d (x̂,E′x̂′) can be computed the same way. We average these two dis-

tances and compare it with a threshold to decide if the putative match is an outlier. In

our experiment, the outlier threshold was set to 2.5. The Figure 2.7 shows the simulation

result of distances between matches and their epipolar lines. The distances greater than

5 pixels in x-axis are truncated for appropriate display on the figure. The vertical line at

2.5 of this cumulative histogram is epipolar distance applied as a threshold to eliminate

outliers. The horizontal line at 618 shows that there are 618 inliers after validation with
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epipolar constraints.

For outlier removal with 2D reprojection constraints, we reconstruct 3D point X (up

to scales) from match
(
x = (x, y, 1)T ,x′ = (x′, y′, 1)T

)
of cube C and cube C ′, respec-

tively. Then reproject X back to cube C and cube C ′, and get the points: x̃ = (x̃, ỹ, 1)T

and x̃′ = (x̃′, ỹ′, 1)T . The following function is used to compute the reprojection error:

ǫ (x, x̃) =

√
(x− x̃)2 + (y − ỹ)2 (2.33)

Also, the reprojection error ǫ (x′, x̃′) between x′ and its reprojected point x̃′ is calculated

the same way. Then these two distances are averaged and compared with a threshold to

filter outliers.

Figure 2.8 shows the results of reprojection errors for the method of outlier removal

with 2D reprojection constraints. In this cumulative histogram, the vertical line at 0.6

is reprojection error applied as a threshold to eliminate outliers. The horizontal line

at 615 shows that there are 615 inliers after validation. The reprojection errors greater

than 3 pixels in x-axis are truncated for appropriate display on the figure. There are 837

putative matches (shown in Figure 2.4) before validation and the average reprojection

error for all these putative matches is 103.09 pixels. After threshold of 0.6 pixels applied,

222 outliers are removed with 2D reprojection constraints. The average reprojection

error for final 615 matches is 0.1876 pixels. This is a quite favourable result considering

an ideal pinhole camera model is used for cubic panorama.

We explore two more experiments to test the accuracy of our method in computing

rotation matrix R and translation vector t as well as their importance in the relationships

among cubic panoramas. We adopt a useful application of projective geometry: transfer.

That is: for a set of images, given the position of a match in two images, determine

the corresponding positions in all other cubes of the set. Our approach consists of the



Cubic Panorama: Geometry 31

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

Cumulative histogram for the method of outlier removal with epipolar constraints

N
um

be
r o

f m
at

ch
es

 w
ith

  a
 

di
st

an
ce

 to
 e

pi
po

la
r l

in
e 

le
ss

 th
an

 x

Distance of match to epipolar line

618

2.5

Figure 2.7: Cumulative histogram for the method of outliers removal with epipolar
constraints. The vertical line at 2.5 is epipolar distance applied as a threshold to eliminate
outliers. The horizontal line at 618 shows that there are 618 inliers after validation.

following steps:

1. Use previously stated methods to find matches and compute Rj, tj pair by pair

for any two cubes of the set.

2. Given correspondences xi ←→ x′

i of the first two cubes, triangulate the 3D points

Xi from them using the computed Rj, tj.

3. Project the 3D points Xi into all other cubes of the set using the computed Rj, tj.

4. check if the projected image points are corresponding to the points xi ←→ x′

i.

For the first experiment we computed rotation matrix R and translation vector t pair

by pair among a set of six outdoor cubes. Two corresponding points were chosen manually

from two cubes next. Then, a 3D point was constructed from them and projected to
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Figure 2.8: Cumulative histogram for the method of outliers removal with 2D repro-
jection constraints. The vertical line at 0.6 is reprojection error applied as a threshold
to eliminate outliers. The horizontal line at 615 shows that there are 615 inliers after
validation.

all other cubes of the set. The experiment results are shown in Figure 2.9. Two points,

marked with a cross, were chosen in right face of cube a and left face of cube b. The

“transferred” image points are shown with small crosses in cube c, cube d, cube e and

cube f of Figure 2.9. These points are pretty accurately “transferred” to the locations

they are supposed to be. The reprojection errors expressed as distances between the

reconstructed image points and real image point are shown in Table 2.1.

Table 2.1: Reprojection errors
Cube Cube c Cube d Cube e Cube f

Reprojection error 0.012 pixels 0.128 pixels 0.332 pixels 0.002 pixels

In the next experiment, a group of 3D points are constructed from detected matches

of the first two cubes, and then projected to all other cubes of the set. We used a set of
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six indoor cubes. A part of the detected matches are shown in right face of cube a and

cube b of the Figure 2.10. Some “transferred” image points were drawn with red dots in

cube c and cube d of Figure 2.11, as well as cube e and cube f of Figure 2.12. Again,

the results show that the locations of the “transferred” points are accurate.
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Figure 2.9: Transfer 1: Two corresponding points are chosen from cube a and cube b.
A 3D point is constructed from them, and then projected into all other cubes of the set:
cube c, cube d, cube e and cube f
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Figure 2.10: Transfer 2a: A group of 3D points are constructed from matches
shown(drawn with red dots) on cube a and cube b. They are then projected into all
other cubes of the set(shown in Figure 2.11 and 2.12).
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Figure 2.11: Transfer 2b: The constructed 3D points are transfered to two cubes of the
set: cube c and cube d
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Figure 2.12: Transfer 2c: The constructed 3D points are transfered to other two cubes
of the set: cube e and cube f
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2.6 Discussion and conclusion

All the results show good performance of cube geometry. In particular, very good 3D

reconstruction and transfer applications have been presented due to the accurate esti-

mation of essential matrix E, rotation matrix R and translation vector t.

A number of assumptions are made for our approach. We assume that an ideal

pinhole camera model is used for cubic panorama. We also assume that one cubic image

is taken with six identical ideal cameras whose optical center are all fixed at cubic center.

All these cameras have 90◦ field of view, and none of their image planes are overlapped.

Based on these assumptions, we explicated cube intrinsic matrix and relationships

of cube face. We also deduced epipolar geometry for cubic panoramas. Because of six

sensors involved, we concluded that there are total 36 fundamental matrices between two

cubes. However, all these fundamental matrices are related. In fact only one of them is

independent and from which the others can be computed.

To simplify the processing of the cube with global approaches, the essential matrix

between front faces of two cubes is used. A point in any face of the cube can be changed

into front face frame, and therefore processed with a global consideration. This results in

the extraction of a more convenient relationship between cubes, namely rotation matrix

R and translation vector t. With the essential matrix E and R, t recovered from it, a

cube can be treated as a whole and not as a multi-sensor-camera system.

In spite of ideal pinhole camera model assumption, our experiments show a very good

3D reconstruction result. In addition, the very small reprojection errors indicate the ef-

fectiveness and efficiency of our approaches. With camera models established successfully

and geometry of cubic panoramas constructed accurately, it simplifies the applications

in virtual navigations.



Chapter 3

Cube Warping: Single Node

Navigation

3.1 Introduction

Visual navigation requires seamless visualization of environment from different viewing

positions and orientations. A key component in most virtual environment navigation

system is how to produce novel views given a grid of pre-captured reference images.

A lot of image based rendering techniques in the literature are proposed to generate

novel views from several referent images. Most algorithms require feature matches. and

some even need dense correspondences. The challenges for image based rendering to

produce arbitrary views are:

• Dense correspondences are hard to compute automatically, especially when the ref-

erence images have large difference in rotation and scale due to viewing orientations

and zooming (common in navigation) or large baseline separations.

• Although feature extraction and feature matching can be fast, it often requires

39
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assumptions about the type of features, and the correspondences are often not

evenly distributed.

• Even with complex scene rendering in prior, the additional pre-processed data,

such as 3-D depth maps or dense/quasi-dense correspondence maps, can put huge

burden on storage and network transmission.

• In some scenario, for example walking-through the hallway, the scene is homoge-

neous and it is practical to use some very low-latency algorithms to approximate

virtual navigation.

In addition, there are huge communication costs for transmitting high-resolution cube

images to allow on-line users to virtually walk-through. Therefore, it is more practical to

provide fast algorithms to enable remote client machines to generate virtual cube images

during the transmission of two real cube images.

Because of the computation costs and communication burden of the existing tech-

niques, we want to develop a new method to meet following objectives:

1. Produce photorealistic novel view that is an acceptable approximation for real

scene.

2. Guarantee a real-time novel view image synthesis regardless of the scene complexity.

3. Minimize pre-computed information storage and network communication require-

ments.

4. Allow for novel view rendering on remote client computers.

These goals are very difficult to fulfill. However, for very small translation, we found

a warping algorithm which can meet these objectives.
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In this chapter, we present an approximate method for panorama navigation called

cube warping. Our approach is completely automatic and requires only a single cubic

panorama as input. By using image warping techniques, our method simulates cam-

era model of walkthroughs. Our algorithm is quite basic. Nevertheless, our resulting

novel views look surprisingly realistic and provide good approximation for small cube

translation.

3.2 Related work

Image warping is a geometric transformation which maps all pixels in one image plane

into pixels in another image plane (see Figure 3.1). The warping addresses the problem

of how to transform one image into another smoothly. The warping techniques can be

grouped into two classes depending on if interpolation between two or more warped

images is involved.

Figure 3.1: Image warping

One group of warping techniques, commonly referred to as “morphing”, are often

used in educational or entertainment industry. Morphing performs 2D geometric warps

on source and destination images, aligns their features into intermediate feature positions,
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and interpolates their colors to generate in-between novel images. Field morphing [7] uses

multiple line pairs to effectively specify the features on source and destination images. By

adopting reverse mapping method, every pair of lines on the images defines a coordinate

mapping from the pixels of intermediate image into the pixels of two original images.

Because this method uses cross-dissolve to blend colors, it suffers from “ghosts” effect.

Mesh warping [70] uses nonuniform meshes to specify the image features. Warps are

computed from the correspondence of mesh points with spline interpolation. When

complex meshes are involved, it is tedious to specify the features.

Another group of warping techniques generally do not involve image interpolation.

They may be used to remove camera optical or perspective distortions [7] or document

distortions [4], to register or align two or more images [46, 29], or to stitch mosaic

images on smooth surfaces, such as cylindrical [49, 12, 35] or spherical [66, 71], for

panorama composing. All these techniques apply geometric transformations to relocate

image points from source images to destination images. Transformations can be global

or local in nature. Global transformations are often defined by a single equation which

is applied to the whole image. Local transformations are applied to a part of image and

they are difficult to express concisely.

Our method is belong to the second group. To achieve completely automatic and

real-time navigation, we propose to have only a single cube panorama as input, and use

warping strategy to approximate walking-through. Several methods are able to perform

local navigation from a single image. Hoiem et al.[33] use a single photograph to create

a 3D rough model. Instead of attempting to precisely recover computationally intensive

model, their algorithm statistically model geometric classes defined by their orientations

in the scene. The different areas of input image are labeled and then “cut and folded” to

generate novel views. This method produces very good results but works only on some
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certain images. Visual local navigation using warped panoramic images[9], the main

inspiration for our method, presents an algorithm that uses panoramic images to per-

form local navigation. By modeling image deformations of small camera translation, the

panorama image is warped to simulate local homing. Because it omits feature extraction

and feature matching, this approach can achieve a fast, on-line local navigation.

3.3 Cube warping

3.3.1 Basic idea

QuickTime VR [12] is probably the earliest effort for the application of the virtual en-

vironment navigation. The pre-captured cubic panoramas are distributed as a grid of

nodes (2D lattice) in the navigation area, shown in Figure 3.2. The irregular navigation

path can be approximated by the path along the grid lines.

Figure 3.2: Multiple node navigation. An unconstrained navigation path is quantized
to the nearest grid nodes



Cube Warping–Single Node Navigation 44

To accomplish smooth navigation, the intermediate views are generated between any

two neighbouring nodes of the lattice. Our goal is to synthesize novel view between any

two neighbouring cubic panoramas. This means we are only interested in approximating

very short displacement: forward, backward and sideways translations.

Figure 3.3: Cube navigating

Figure 3.3 shows a cube navigation. We are concerned with four kinds of cube moving:

forward, backward, to the left, and to the right. When a cube moves forward, the front

face of cube image zooms in, the back face zooms out, and other faces move from front

to back. A forward moving model is shown in Figure 3.4. Here cube faces are laid out

in a cross pattern with the faces in the order (from top to bottom and left to right): up,

left, front, right, back, down.

A similar deformation happens when the cube moves backward or sideways. The

backward moving model is shown in Figure 3.5. For sideways’ moving (to the left or

to the right), we may rotate cube around y−axis for ±90◦ first, and then use forward

moving model.
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Figure 3.4: Forward moving. A cube is heading forward along z−axis (see cube frame
in Figure 2.1(b))
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Figure 3.5: Backward moving. A cube is heading backward along minus z−axis

(a) Front face warping (b) Back face warping

Figure 3.6: Cube forward warping
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According to cube moving models, we can apply specific local warping to approximate

transformations on cube image. The forward moving can be performed by warping six

faces of cube as follows:

1. Front face: Zooming in (see Figure 3.6(a)) as cube moving forward. The four

trapezoidal areas are magnified out of the front face boundary. They are warped

into four rectangles and moved into left, top, right and down face respectively.

2. Right face: The face image is moving right. As pixels are moving out, the empty

space of the left side is filled with a rectangle, which is warped and moved from

front face. The right side of the right face is moved out of the face boundary. It is

warped into a small trapezoid and relocated into right side of back face.

3. Top, right and down face: The similar transformations are applied as front face.

4. Back face: Zooming out (see Figure 3.6(b)). The empty space (four trapezoidal

areas) through image reduction are filled with pixels moving from left, top, right

and down face respectively.

3.3.2 Optical flow and warping scale

For two cubic nodes, we are interested in warping a cube into another one. A natural

question is, how much scale we need to warp so that the warped cube can approximate

the destination cube as closely as possible. We call this problem as cube homing. This is

the problem similar to robot homing [3, 21, 9]. Our problem, however, is a simplified case

in that we already know the heading orientation(we just have small translation involved,

and no rotation). To solve cube homing problem, we adopt optical flow to compare

warped cube with destination cube and minimize the difference. One of the optical flow

algorithms for homing problem can be found in [56].
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Pixel displacements: precise and approximate

Figure 3.7: Optical flow comparison for cube warping-ideal scenario

As we walk-through from one cube to another cube(with no rotation), we approximate

every very small step by warping the first cube by one or two pixels. Thus, we generate

a series of warped cubes. All this cubes can be regarded as cubic frames. We compute

optical flow of every cube in the frames with the destination cube. Ideally, if a warped

cube matched the destination cube, the optical flow between them would be zero, as

shown in Figure 3.7. However, since we just use approximate model for cube warping,

the real optical flow is similar to Figure 3.8.

In fact, an precise cube warping could be applied if the 3D structure models of

the environment were available. The exact optical flow of the objects in the images

depends on their distance in the environment relative to the cube. Indeed, the closer the

objects are to the camera, the more their pixels will move in the images. Figure 3.9 and

Figure 3.10 show pixel displacements between two neighbour cubes. Because the objects

(computer and monitor) are much closer to the camera of “right” face , the monitor is
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Figure 3.8: Optical flow comparison for cube warping-real scenario

dislocated much larger than other objects in the cube images, as shown in Figure 3.9. In

Figure 3.10, the pixel displacements are closer in the whole image due to comparatively

same distance of the objects’ position relative to cameras.

As we discussed earlier in this chapter, it is both computationally expensive and too

much cost on storage and network transmission to perform precise cube warping. Since

the cube nodes are dense, the translation between two neighbour cubes is very small.

Thus, the difference of the largest pixel displacement and the smallest one will be small.

In this case, our simplified warping model can provide good approximation.

Optical flow

We use optical flow method to solve cube homing problem. Optical flow is a measurement

of the local image motion based upon local derivatives between the first and the current

frame. It quantifies every image pixel displacement between two image frames.
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Figure 3.9: Feature displacements for two neighbour cubes: cube 1 and cube 2
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Figure 3.10: Feature displacements for two neighbour cubes: cube 3 and cube 4
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There are a lot of approaches to solve optical flow problem in the literature. These ap-

proaches can be classified into several types. The first type, called differential techniques,

compute velocity from spatiotemporal derivatives of image intensity [34, 46]. The second

type of approaches use region-based matching to find best matches between image regions

at different time [2, 63]. The third class is based on the output energy of velocity-tuned

filters in the Fourier domain [32]. These approaches are called energy-based methods or

frequency-based methods.

Figure 3.11: The image area at position (x, y, t) is relocated at (x+δx, y+δy, t+δt)

Generally, there are three assumptions for optical flow calculation:

• There are only rigid transformations for all objects in the scene.

• There is no occlusion involved.

• There are no illumination variations.

All these assumptions will make sure that objects in the image at time t will still be the
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same in the image at time t + δt, see Figure 3.11. This can be represented as:

I(x, y, t) = I(x + δx, y + δy, t + δt) (3.1)

After performing a 1st order Taylor series expansion and get rid of High Order Terms,

we get:

I(x + δx, y + δy, t + δt) = I(x, y, t) +
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt (3.2)

From Equation3.1 and Equation3.2, we have:

∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt = 0

and then:

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0 (3.3)

Here vx = δx
δt

and vy = δy

δt
are the x and y components of optical flow or image velocity.

By using Ix, Iy and It to represent ∂I
∂x

, ∂I
∂y

and ∂I
∂t

, we finally rewrite the Equation3.3 as:

(Ix, Iy)




vx

vy


 = −It (3.4)

more compactly as:

∇I · ~vT = −It (3.5)

This is a one equation with two unknowns. Therefore it does not have an exact

solution. Lucas and Kanade [46] use a weighted least-square fit of local first-order cal-
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culation to provide an additional constraint by minimizing the residual function ǫ in the

neighborhood window. This can be represented as following equation:

ǫ(vx, vy) =
∑

x,y∈Ω

W 2(x, y)[∇I(x, y, t) · ~vT + It(x, y, t)]2 (3.6)

where Ω is a image neighborhood of size (2ωx + 1)(2ωy + 1), typically, ωx, ωy ∈

{2, 3, 4, 5, 6, 7}, and W (x, y) denotes a window function that gives more influence to

constraints at the centre of the neighbourhood than those at the periphery. For more

mathematical expressions, readers can refer to [6].

Although proposed 20 years ago, Lucas and Kanade’s approach can give very good

optical flow results. In Performance of Optical Flow Techniques [5], Barron et al. evalu-

ated it as: “the most reliable were the first-order, local differential method of Lucas and

Kanade.”

Many new approaches for computing optical flow have appeared in the literature.

Shi-Tomasi’s optical flow algorithm [61] extends Lucas-Kanade’s Newton-Raphson style

search methods to work under affine image transformations. Their method works good

for relatively small feature displacements, but fails at large displacements and deteri-

orates for rotation on the image plane. The spline-based image registration technique

[65] uses coarse-to-fine image registration strategy to track features with larger displace-

ments. Although all the new approaches claim to have better optical flow results, often

their performances are only marginally better. When the motion is mostly translational

between frames and translation is small, Lucas-Kanade’s method still be one of the best

and probably the most efficient algorithm.

For the navigation problem, we are only concerned with linear motion with no rota-

tion. We are considering a small number of frames at a time, and image warping due

to local image plane rotation is not expected. Therefore, we use Lucas-Kanade’s optical
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flow algorithm to solve our cube homing problem.

Warping scale

For cube homing problem, our objective is to warp the source cube so that it will approx-

imate the destination cube as close as possible. Thus, we need to decide what warping

scale we should take. We are only interested in very small translation, and the smaller

the cube translation is, the fewer the pixel displacement is. Therefore, we require that

the maximum pixel displacement between source cube image and destination cube image

should be less than 80 pixels.

For forward warping, our homing processing is as follows:

1. Set the warping step ∆ = 1, and initial warping scale t = 0.

2. Set t = t + ∆, and warp the source cube for t pixel(s).

3. Compute optical flow ~Vt(i) = (Vtx(i), Vty(i)) between warped cube and destination

cube, where i ∈ [1, N ], N = numbers of image pixels.

4. Calculate average norm of optical flow ‖̃Vt‖ = 1

N

∑N

i=1

√
Vtx(i)

2 + Vty(i)
2.

5. Repeat step2 until tmax = 90.

6. For t ∈ [1, tmax], find homing step T = t such that ‖̃VT‖ is minimum.

After having homing step T , we can decide warping scales t0 of an arbitrary warping

position between source cube and destination cube as a function of s ∈ [0, 1]:

t0 = s · T (3.7)
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Figure 3.12: Two neighbouring cube images with relatively large translation(top and
bottom faces cropped)
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Figure 3.13: The average norm optical flow of different warping scales
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Figure 3.14: Two neighbouring cube images with relatively small translation(top and
bottom faces cropped)
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Figure 3.15: The average norm optical flow of different warping scales
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Figure 3.12 are two cube images with relatively large translation (top and bottom

faces cropped). Their average norm optical flows, calculated through above homing

processing, are shown in Figure 3.13. As expected, this is similar to what we have

analyzed before, see Figure 3.8. In this experiment, the source cube is warped one pixel

at a time for 89 different warping scales. The optical flows between every warped image

and destination image are computed and plotted. From the plot, we can easily find that

homing step T = 42 when ‖̃VT‖ is minimum.

For relatively small image translation (see Figure 3.14), Figure 3.15 shows similar

result as Figure 3.13. In such case, the homing step T is equal to 12. Although both

experiments show the same result, the minimum values of their ‖̃VT‖ (average norm of

optical flow) are different. For large image translation , the minimum ‖̃VT‖ is equal

to 9.2, whereas for small image translation, it is equal to 3.4. This result is consistent

with our assumption: our cube warping model simulates the small cube translation. The

smaller the cube translation is, the more accurately our warping model approximates the

real cube moving.

3.3.3 Algorithm overview

Our objective is to generate novel view of an arbitrary location between two neighbouring

cubes. First, let us normalize the translation between two neighbouring cubes as 1.

Translation s ∈ [0, 1] is an arbitrary location from the source cube (see Figure 3.16).

As we stated previously, our warping models work well only for small cube translation.

Therefore, if s ∈ [0, 0.5], we warp source cube forward to approximate novel views. If

s ∈ (0.5, 1], we warp destination cube backward.

The algorithm for generating a novel cube view between two neighbouring cubes is

as follows:
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Figure 3.16: The cube distance

1. Using the previously stated cube homing method to compute the homing step T .

2. If s ∈ [0, 0.5], warping source cube forward to approximate novel views. The

warping step is: t0 = s · T

3. If s ∈ (0.5, 1], warping destination cube backward to approximate novel views. The

warping step is: t0 = (1− s) · T

3.3.4 Algorithm cost

The computation costs and communication costs for navigation through cube warping

are very low. Table 3.1 shows the computation costs of our algorithms. The cube image

resolution for our experiment is: 6 faces×512×512. For any two neighbour cubes, we use

optical flow algorithms to compute their warping scale. The computation time for this

process is 18.85 seconds in an AMD 64x2 1.6GHz, 1024MB memory laptop computer.

Since we are only interested in how much warping scale we need for cube homing, this

process can be pre-computed. Therefore, the only on-line computation is cube warping

process, which generates virtual cubes and takes 0.25 seconds. Such on-line warping
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operation can be processed on remote client computers.

The communication costs are shown in Table 3.2. For remote navigation through

cube warping, the clients need to download our cube warping program (104KB) and

Intel OpenCV .dll files (2.12MB). It only needs extra one byte for the transmission of

pre-computed warping scale, which is a integer in the range of [1, 89], between any two

neighbour cubes. After the transmission of one cube and warping scale , the client

computer can generate novel virtual cubes while waiting for new neighbour cube data.

This actually alleviates communication burden.

Table 3.1: Computation Cost
Pre-processing Warping scale pre-computation 18.85 seconds
On-line precessing Cube warping running time 0.25 seconds

Table 3.2: Communication Cost

Warping applications
Warping program 104KB
OpenCV .dll files 2.12MB

Warping scale between two cubes 1 byte

3.4 Simulation results

We present here two experiment results performed from two pairs of neighbour cube

images: cube5, cube6 and cube7, cube8. Figure 3.17 shows two precaptured cube images

with no rotation. These two images have raltively larger translation(70 Centimeter VS

35 Centimeter) than those two images shown in Figure 3.19.

First, we use cube homing method (See Section 3.3.2) to compute the homing step

T . For cube5 and cube6, the computed homing step T1 = 42, and for cube7 and cube8,

T2 = 12. Then for translation s1 ∈ [0, 0.5] between cube5 and cube6, we forward warp

cube5 with the warping step t1 = s ·T1, whereas for translation s1 ∈ (0.5, 1], we backward
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warp cube6 with the warping step t1 = s ·T1. We perform the same experiment with the

cube7 and cube8.

Figure 3.18 shows the experiment results of cube warping for cube5 and cube6. From

top to bottom, the images (top and bottom faces cropped) are: cube5, forward-warped

cube5 with s1 = 0.25 and t1 = 10, forward-warped cube5 with s1 = 0.5 and t1 = 21,

backward-warped cube6 with s1 = 0.5 and t1 = 21, backward-warped cube6 with s1 =

0.75 and t1 = 10, and cube6. From the resulting images we can see that there are smooth

transitions between cube5 and cube6. For halfway view between cube5 and cube6, the

image generated from forward-warping of cube5 is very close to the image generated from

backward-warping of cube6.

The experiment results of cube warping for small translation, cube7 and cube8, are

shown in Figure 3.20. From top to bottom, the images (top and bottom faces cropped)

are: cube7, forward-warped cube7 with s1 = 0.25 and t1 = 3, forward-warped cube7 with

s1 = 0.5 and t1 = 6, backward-warped cube8 with s1 = 0.5 and t1 = 6, backward-warped

cube8 with s1 = 0.75 and t1 = 3, and cube8. The resulting images show the similar

results as the cube warping of cube5 and cube6. As expected, two halfway views between

cube7 and cube8, one view generated from forward-warping of cube7 and another view

generated from backward-warping of cube8, are closer than those generated from cube5

and cube6. This result is consistent with our previous analysis: our cube warping model

works well with small cube translations.
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Figure 3.17: Two original cubes with relatively larger translation: cube 5 and cube 6
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Figure 3.18: Two neighbouring cube images and their in-between warped images(top
and bottom faces cropped)
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Figure 3.19: Two original cubes with relatively smaller translation: cube 7 and cube 8
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Figure 3.20: Two neighbouring cube images and their in-between warped images(top
and bottom faces cropped)
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3.5 Discussion and conclusion

3.5.1 Assumption

The method makes an equal distance assumption: all the objects have same distance

from the location of snapshot. Such assumption has been used by others [9, 22].

At first sight, the equal distance assumption seems not to be realistic. However, if the

translation is small between two neighbouring cubes, the difference of the largest pixel

displacement and the smallest one will be small. Therefore, the resulting error remains

small for our cube warping algorithm, which uses identical pixel displacement models to

approximate cube translations.

The experiment results show that our cube warping algorithm works well under small

translations. It has been observed that for translations up to 40 centimeters in normal

circumstances, our method can produce smooth in-between images. However, under

certain condition, we must limit the translations under 30 centimeters or less. Such

condition is: some objects have very large distance from the camera whereas others have

very close distance. For such condition, the difference of the largest pixel displacement

and the smallest one will be relatively large. Thus, smaller translations could reduce the

difference, and as a result, reduce the resulting errors.

3.5.2 Conclusion

This chapter presented a new novel view generation technique that incorporates the

model of pixel displacements between aligned cubes into a cube warping model. By

making our “same distance” assumption, we find that we are able to generate good

in-between novel images for small cube translations.

Our method, although with simplified models, has following advantages:
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• It is a fast, on-line algorithm, which can run on client computers.

• The very low computation and communication costs of the method can alleviate

the burden of the high definition cube images on storage and network transmissions

and loading time.

• Our pixel displacement model provide a good solution to the greatest difficulty

of cubic representation, namely estimating image flow fields across the boundaries

between faces and at corners.

However, our method is just an approximation of real cube walkthrough. Its appli-

cations are limited in the situation where small cube translations are involved.



Chapter 4

Cube Interpolation: Multiple-Node

Navigation

4.1 Introduction

In the previous chapter, we proposed a fast, online algorithm for cube navigation. Al-

though the computation and communication cost is very low and the resulting novel

views look surprisingly realistic, its applications are limited due to the following reasons:

• Since cube warping uses only one cube to approximate walkthrough and involves

no interpolation from two or more cubes, it works well only for small translation

(less than 40 centimeters).

• By cube warping, it is only practical to simulate walkthrough between two cubes,

in particular, with no rotation. Therefore the camera motion is restricted to a

straight line.

• It is difficult, if not impossible, for cube warping to perform navigations in a global

configuration, namely generating an arbitrary virtual view among a set of reference

68
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cubes.

In order to acquire seamless visualization of environment from different viewing posi-

tions and orientations, it is desirable to generate virtual images for an arbitrary position

with no limitation on gaze directions given a set of reference views.

4.2 Related work

Visual navigation is an intensively researched area, and there are various image-based

rendering techniques in the literature for generating novel views from sampled images.

These methods can be classified into two categories: (i) viewing with restrained view-

points; (ii) viewing with arbitrary viewpoints.

4.2.1 Viewing with restrained viewpoints

(a) View morph (reproduced from[59]) (b) MCOP (reproduced from[19])

Figure 4.1: Viewing with restrained viewpoints of two different algorithms

Image-based rendering methods can also be grouped into reconstruction-based meth-

ods and interpolation-based methods, and most interpolation-based methods are belong
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to the category of “Viewing with restrained viewpoints”. These methods try to generate

points of lifelike novel views directly by interpolating the corresponding pixels of the input

images. Even with photorealistic novel views and low computation costs, interpolation-

based methods [11, 59, 42, 69] have the same limitation as our cube warping method in

that the new viewpoint has to lie on the straight line connecting the projection centers

of reference viewpoints.

One typical interpolation-based technique, Seitz and Dyer’s view morphing [59] ap-

proach produces novel images of any viewpoint on the line linking two optical centers of

the reference cameras. It employs a three-step algorithm to guarantee the intermediate

view being geometrically correct or 3D shape preserving. A prewarp stage is applied to

rectify two reference images before intermediate morphing stage if they are not parallel.

Finally, a postwarp stage is followed to neutralize the prewarping effects. Although the

images produced are geometrically correct and appear strikingly lifelike, the new view-

point is constrained to a straight line. This is shown in Figure 4.1(a). The new viewpoint

is limited along the line linking two reference camera centers C0 and C1.

Another type of rendering methods can provide a richer user experience by allowing

the observers move freely in a circular region. The Multi-Center-Of-Projection (MCOP)

[55] samples the modeling images by placing the camera around the interested objects

(shown as 4.1(b)). The virtual view is generated by interpolating these images. The nav-

igation is restricted around a circular line with orientation of outside-in. By constraining

camera movement along planar concentric circles, Concentric Mosaics (CMs) [62] can

provide similar walkthrough experiences by compositing slit images taken at different

locations of each circle.
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4.2.2 Viewing with arbitrary viewpoints

Most reconstruction-based methods can provide a walkthrough experience with a user-

specified rotation and translation. After a 3D reconstruction performed, it is a just a

problem of projection and texture transfer to generate a novel view with an arbitrary

viewpoint. Although reconstruction-based methods can be used to render nearly all

viewpoints, computer vision techniques such as feature correspondence or stereo must

be employed to solve the very difficult problem of acquiring dense or quasi-dense corre-

spondence maps.

In [48], a generalized disparity value associated with each point in the reference

image is computed first. This disparity value is then used to determine an image-warping

equation that maps the visible points in a reference image to their correct positions in any

desired view. Layered depth images (LDI) [60] method constructs “multiple overlapping

layers” by using stereo techniques. LDI stores not only what is visible in the input image,

but also what is behind the visible surface. To rendering an arbitrary novel view, it is

only need to warp a single image, in which each pixel consists of a list of depth and color

values.

Plenoptic modeling [49] can allow rendering from arbitrary viewpoints without ex-

plicit 3D reconstruction. After cylindrical panoramas composed, it computes stereo

disparities between cylinder pairs, and then project disparity values to an arbitrary

viewpoint. Dornaika [15] applies the invariance of the parallax field to achieve a user-

specified view synthesis. His approach recovers the parallel field from the computed

dense or quasi-dense correspondences first. Then the invariance of the parallax field is

exploited to warp the reference image into novel view. Laveau and Faugeras [40] employ

the epipolar constraints to perform a raytracing like search of corresponding pixels in

reference images for novel view pixels. The dense correspondences are also computed in
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their approach.

All these methods, with 3D reconstruction explicitly or implicitly, can synthesize

novel view with an arbitrary rotation and translation. However, they all require solving

the difficult dense or quasi-dense feature correspondence problem to extract disparity or

depth values. Dense correspondences are hard to compute automatically, especially when

the reference images have large difference in rotation and scale due to viewing orientations

and zooming or large baseline separations. Sometimes it is almost impossible to compute

dense correspondences due to the lack of texture regions in real image.

As for cubic panoramas, the correspondence problems are even more significant.

While cubes can be easily stored and rendered by computers, the greatest difficulty of

cubic representation is estimating image flow fields across the boundaries between faces

and at corners. Therefore, we need to find a new algorithm to provide unconstrained

cubic navigations without the computation of dense correspondences.

Our approach is similar to that of [40] in that we use a ray-tracing like algorithm. For

every pixel in the new target image, a search is performed to locate the corresponding

pixels in reference images. However, instead of computing dense correspondences, we use

colour invariance constraints to guide the searches. In addition, we use multiple cubic

panoramas for more accurate sence reconstruction.

4.3 The algorithm

In this section, we give details of the principle of the approach.
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4.3.1 Basic idea

Our goal is to generate the photorealistic novel cubic views for virtual navigation. Given

a set of precaptured cubic panoramas, we are interested in yielding arbitrary novel views

so that we can achieve seamless visualization of environment from arbitrary viewing

positions and orientations.

Figure 4.2: Novel view generation: a raytracing like approach

Our approach is straightforward and well-known in image synthesis: the scanning

must take place directly in the new target image. The raytracing like methods follow the

optical ray coming from every pixel of target view into the world instead of projecting a
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world point onto the image. For every pixel in the target image, a search is performed

to locate the corresponding pixels in reference images. The search is guided by colour

invariance constraints.

Let us consider the example of the case where two cubes are available (see Figure 4.2).

We have two reference cubes, cube C0 and cube C1, and the world frame is attached to

the frame of cube C0. The Euclidean transformation between the world (cube C0) and

C1 coordinate frames is: R01 and T01. We need to generate the novel view Cs, which

has an Euclidean transformation of R0s and T0s from the world frame. Our method is

as follows:

For an image pixel xs(i) of target cube Cs, we trace the optical ray Osxs(i) into the

world in order to find 3D point X(i), the intersection of the ray with the objects of the

environment. If no occlusion involved (often the case for cubic panoramas), x0(i) and

x1(i), the projection of the 3D point X(i) into cube C0 and cube C1 respectively, should

have same colours. This colour consistency information is used to guide the search for

the depth value of the 3D point X(i).

4.3.2 Choosing an arbitrary novel view

To set up the novel view, we must choose the new viewpoint and the new retinal plane

first. For cubic panoramas, the process of choosing the new viewpoint and the new retinal

plane is simple and intuitive. As noted before, a cubic panorama has six non-overlapping

identical faces. Each face may be regarded as a image plane of a standard pinhole camera

with 90◦ field of view, and all the cameras which take the six face images are identical

and centered at the same optical center, which is also the cube center. This means the

new retinal plane is always fixed with the six faces of the cube at the new viewpoint.

Therefore, we only need to set up the new viewpoint and cube orientation. This can
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be easily decided by its rotation matrix R and translation vector t related to the world

frame, which is often attached with one of the reference cubes.

4.3.3 Colour consistency

Figure 4.3: Colour consistency (reproduced from [64]): On the left, the pixels from two
images have the same colours at a point on a surface. On the right, the pixels from two
images show inconsistent colours at a point not on the same surface.

Colour consistency, introduced by Seitz et al.[58], is widely used in the techniques

for volumetric scene reconstruction [58, 14, 37, 16, 39]. As shown in Figure 4.3, it is

used to differentiate surface points from others in a scene. It is assumed that the scene

is completely composed of rigid Lambertian surfaces under constant illumination. If two

pixels show inconsistent colours, they must be projected from different scene points.

The colour consistency of a set of pixels can be defined as the maximum of absolute

difference of colour channels between all pair of pixels [16]. Let X be a 3D point, and

Ri(X), Gi(X), Bi(X) are the three colour channels of visual information at the projection

of X on view i, we have:

|γiRi(X)− γjRj(X)|+ |γiGi(X)− γjGj(X)|+ |γiBi(X)− γjBj(X)| < Θ (4.1)
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with

γi = 1/ (Ri(X) + Gi(X) + Bi(X)) (4.2)

The threshold Θ is applied to decided if the pixels are the projection of the same scene

point X. To reduce the effects of the illumination variations, the components of chro-

maticity are used in Equation 4.1.

Another method to measure the colour consistency of a given 3D point is by com-

puting standard deviation of its projected pixel colours[54, 39]. Let R̄(X), Ḡ(X), B̄(X)

be the three colour channels of visual information at X averaged over n views, we can

compute the deviation of view i over this average as:

di(X) =

√(
Ri(X)− R̄(X)

)2
+

(
Gi(X)− Ḡ(X)

)2
+

(
Bi(X)− B̄(X)

)2
(4.3)

This deviation will be low if all the cameras see the same surfaces point X. Otherwise,

cameras viewing different points of the scene surface will result in a large deviation.

4.3.4 Implementation 1: Brute-force depth searching

Our first approach is trying to find depth information with exhaustive searching. Given

a image point of a novel cube, we transform it into a 3D vector xs(i) in the cube face first

(For details, please refer to Appendix C). As shown in Figure 4.2, we trace the optical

ray Osxs(i) into the world so that the ray intersects with the objects of the environment

at 3D point X(i). This 3D point can be expressed as:

X(i) = λs(i)xs(i) (4.4)

Where λs(i) is depth (up to scale) of 3D point X(i).
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The brute-force depth searching algorithm is as follows:

For λs(i) = λmin; λs(i) < λmax; λs(i) = λs(i) + step;

compute X(i) = λs(i)xs(i)

project X(i) to cube C0, C1,...,Cm, compute dk(X(i)) with Equation(4.3)

if
∑

dk(X(i)) < threshold, then λs(i) is right depth, break

else choose the pixels with minimal
∑

dk(X(i))

Ideally,
∑

dk(X(i)) = 0, λmin = 0, λmax =∞, and step should be set to an infinitly

small increment. However, according to our experiments, if we set λmin = 0.0005, λmax =

2 (the depth is up to scale) and step = 0.0002, the true depth will fall within the

searching range.

After the depth λs(i) is found, we can project the X(i) = λs(i)xs(i) to all the input

cubes in the set. This will result in a set of projected image points, namely, x0(i), x1(i),

... ,xm(i) of input cubes C0, C1, ... ,Cm, respectively. Then the colour values of novel

view pixel xs(i) can be interpolated with the input image points x0(i), x1(i), ... ,xm(i).

To illustrate our brute-force depth searching method, we performed a simlulaton test

and the results are shown in Figure 4.4. In our test, we used five cubes: four cubes

as input cubes and one cube as assumed “virtual” cube. We extracted their rotation

matrixs and translation vectors pairwise first. After that a image point, marked with

a cross in the figure, is chosen from “virtual” cube. Then the brute-force searching is

performed and the searching ranges are shown with a searching line in all four input

cubes of the set.

As shown in Figure 4.4, the ranges of brute-force searching are very broad. This

is especially true when the objects are close to cameras, such as the searching ranges

of cube a and cube b in the figure. The broader the searching ranges are, the more
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Figure 4.4: Brute-force depth searching: A point is chosen from “virtual” cube s. Then
the brute-force searching is performed and the searching ranges are shown in all input
cubes of the set: cube a, cube b, cube c and cube d
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“same” colour pixels there are in the searching ranges of input cubes, and the higher the

probability is to find the wrong pixels in the input cubic images.

Another problem with brute-force depth searching is its extravagant computational

costs. With brute-force searching, it takes several seconds to generate a depth value for

only one pixel of novel view. This is apparently impractical to generate a novel image

with 2048*1536 pixels.

4.3.5 Implementation 2: Depth searching guided with sparse

reconstruction

As mentioned above, the method with brute-force depth searching partly failed to gen-

erate good results. This blind searching has a very high computational cost and often

ends up with finding the wrong pixels in the input cubic images. Therefore, we need

to narrow down the searching range to speed up the searching process and reduce the

chance of getting wrong depth results.

We improve our method by guiding the searching with sparse reconstruction. Firstly,

we find sparse feature matches pairwise from the input cubes of the set. Then we con-

struct the 3D points with the matches. In order to get depth information as dense as

possible, we found an augmentation method by transferring the constructed 3D points

from all the input cubes into one cube frame and computing the depth values from these

3D points. These computed depth information can be transformed into the novel view

frame and used to guide the searching for right depth. These procedures are shown in

Figure 4.5.



Cube Interpolation–Multiple Node Navigation 80

Figure 4.5: Guided depth searching with sparse 3D reconstruction
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Sparse reconstruction and its augmentation

For guided depth searching, we need to compute feature correspondences first, the denser

the better. Since dense and precise feature-based reconstruction is very difficult to ac-

quire, we use sparse feature matches to compute sparse reconstruction and apply transfer

techniques (See Section 2.5) to augment sparse reconstruction.

For a set of cubes, we attached the world frame with the frame of cube C0. The

Euclidean transformation from the the frame of cube Ci into the that of cube Cj is

denoted as Rji, tji. We also express the depth information of the jth pixel (x(j)) of cube

Ci as λi(j), or more concisely as λ(i) if there is no confusion involved. The 3D object

point related to depth λi(j) is represented as Xi(j).

Our sparse reconstruction and its augmentation can be computed as follows:

• Use the method of Chapter 2 to find matches and compute Rij, tij pairwise for

any two cubes of the set.

• Given xj(i) ←→ xk(i), the ith correspondence of cube Cj with the cube Ck in the

set, triangulate Xj(i), the 3D point (up to scale) in the frame of cube Cj.

• Transfer all computed 3D points Xj(i) of cube Cj frame into cube C0 frame (world

frame) with following equation:

X0(i) = R0iXj(i) + t0i

• Get rid of same 3D points from X0(i), then compute the depth values λ0(i) of all

the 3D points from X0(i) with following steps:

1. Intersect 3D point X0(i) = (X0(i) , Y0(i) , Z0(i) , 1)T with cube C0 to acquire

P0(i) = (x0(i) , y0(i) , z0(i) , 1)T , the 3D point on the face (image plane) of
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cube C0. For details, please refer to Appendix B.

2. Compute the depth value as: λ0(i) = X0(i) /x0(i) = Y0(i) /y0(i) = Z0(i) /z0(i)

Guided depth searching

After we found relatively dense image points x0(i) and their depths λ0(i) of one cube

(often attached with the world frame), we can project these points and depths to the

novel view cube Cs, and obtain a set of image points x̃s(i) and their depths λ̃s(i) in

cube Cs. Since these points are relatively dense and are often feature points of edges and

corners, their depths can be used to guide the searching for right depths of other image

points near them.

Referring to Figure 4.2, the guided depth searching algorithm is as follows:

project X0(i) = λ0(i)x0(i) to novel view Cs; get x̃s(i) and λ̃s(i)

For i = 1; i ≤ number of x̃s(i); i = i + 1;

let λs(i) = λ̃s(i), compute X(i) = λs(i)xs(i)

project X(i) to cube C0, C1,...,Cm, compute dk(X(i)) with Equation(4.3)

if
∑

dk(X(i)) < threshold, then λs(i) is right depth, break

else choose the pixels with minimal
∑

dk(X(i))

To further narrow down the searching range, we can sort these image points and their

depths into six groups according to which cube face they belong to. Then the searching

are performed within six different faces of the novel cube, guided with corresponding

depth information.

A similar experiment was performed to illustrate our guided depth searching ap-

proach. For comparison, the experiment was set up with the same cube sets and pro-

cedures as the brute-force depth searching. The only different is that the searching is
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Figure 4.6: Guided depth searching: A point is chosen from “virtual” cube s. Then the
guided searching is performed and the searching ranges are shown in all input cubes of
the set: cube a, cube b, cube c and cube d
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guided with known depth information.

The simulation results are shown in Figure 4.6. Compared with Figure 4.4, the

searching ranges are far smaller than that of the brute-force depth searching. Therefore,

the searching guided with computed depth information can reduce the chance of getting

wrong depth results.

The guided depth searching also improve the searching speed dramatically. To gen-

erate novel cube view from 4 input cubes, the computation time for the two depth

searching methods is shown in Table 4.1. The cube image resolution for our experiment

is: 6 faces×512×512, and the experiment is processed in an AMD 64x2 1.6GHz, 1024MB

memory laptop computer.

Table 4.1: Computation costs of two depth searching methods
Method Brute-force depth searching Guided depth searching

Computation costs 26 hours 33 minutes 3 seconds 1 hours 23 minutes 38 seconds

4.3.6 Occlusion and disocclusion

All IBR systems must deal with the problems of occlusion and disocclusion. An occlusion

occurs when a visible surface in some input images becomes occluded in other input

images or output image. This often results in one type of situation: folds. Traditional

solution for folds problems is using Z-buffer techniques, providing depth information is

available. Some algorithms even force the input views within very small translations so

that visibility ambiguity does not pose a serious problem.

Another visibility issue is disocclusion problem. A hole happens in output image

where part of scene is seen by output image, but not by the input images. To fill in

holes, most commonly used methods include interpolating with neighbouring pixels of

output images, or using redundant input images for better visibility.
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Cubic panoramas can provide a 360-degree field of views plus 90-degree“UP” and

“DOWN” view. Therefore, the visibility problems are highly ameliorated because of the

use of cubic panoramas. However, due to the view positions and camera orientations,

there are still some occlusions and disocclusions involved. Our solutions to these problems

is using oversampling. That is we use redundant cubes to provide better surface coverage.

To generate a novel pixel from a set of N input cubes, we apply our guided depth

searching method to find the depth for which the best colour consistency is obtained

among the N cubes. Then the input cube with the pixel colour that differs the most

from mean colour value is eliminated. (See Equation4.3). The novel pixel is finally

interpolated with N-1 pixels of the input cubes.

4.4 Experiments

A number of experiments have been performed to test our cube interpolation algorithm.

In our experiments, we used 4 pre-captured cubes to generate virtual cubes. In order to

compare the virtual cube with real captured cube, we interpolated the virtual cube with

the rotation matrix and translation vector of a real cube. If our algorithm works well,

the virtual cube should be the same as the real cube.

For the first experiment, we used 4 indoor cubes, cube 1, cube2, cube3 and cube4

(shown on Figure 4.7), as input views. The largest translation among these input cubes

is about 1 meter. The world frame is attached with the frame of cube 1. We also used

the rotation matrix and translation vector (related to world frame) of a real cube, cube

a (shown on Figure 4.8), to generate virtual cube. Therefore, this virtual cube should

have the same viewpoint and orientation as cube a.

Figure 4.7 shows the four input indoor cubes. The virtual cubes generated from

these four cubes is shown as the top image on Figure 4.8. The result as a whole is quite
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good considering the complexity of the scene and relative large translation. However,

there are some small reconstruction errors, especially on the “computer monitor” on the

right face of the virtual cube. The reason is that the “monitor” is very close to camera,

which results in a large searching range. As stated previously, the closer the objects

are to camera, the broader the searching ranges, and the higher the probability is to

reconstruct pixels with wrong colours. As expected, we also noticed that the virtual

cube appears to be the same as the real pre-captured cube a ( shown on the bottom of

Figure 4.8).

The next experiment shows the cube interpolation results of outdoor cubes with large

translation. The experiment is set up the same as the first one but differ only by the

translations of input cubes. The largest translation among these outdoor input cubes

is about 10 meter, which is a very severe condition for image interpolation. Compared

with the last experiment, the scene is even more complex. The four input outdoor cubes

are shown on Figure 4.9, and the virtual cube is shown as the top image on Figure 4.10.

The experiment shows the similar results as last one. However, the accuracy is not as

good since the translation is too large. For example, there are very large reconstruction

errors for bikes in the scene. The main reason is the large translations among input

cubes result in the very small resolution of bikes in cube 6 and cube 8 shown on Figure

4.9. Also, the homogeneous colours in the scene (the colours of the floor and the main

building are almost same) put more challenges on our method.

To test the brute-force depth searching method, more experiments on this method are

also performed and the results are shown on Figure 4.11. As expected, the reconstruction

errors are too big and the virtual cubes appear to be non-realistic.
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Figure 4.7: Indoor cube sequence (top and bottom faces not shown) used to generate
virtual cubes.
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Figure 4.8: Virtual cube Vs. real cube for indoor cubes: the top cube is a virtual view
generated from 4 cubes shown on Figure 4.7. This virtual cube is designated to produce
the same view as the bottom real cube
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Figure 4.9: Outdoor cube sequence (top and bottom faces not shown) used to generate
virtual cubes.
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Figure 4.10: Virtual cube Vs. real cube for outdoor cubes: the top cube is a virtual view
generated from 4 cubes shown on Figure 4.9. This virtual cube is designated to produce
the same view as the bottom real cube
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Figure 4.11: Virtual cubes generated with brute-force depth searching. Compared with
virtual cubes generated with guided depth searching shown on Figure 4.8 and 4.10 , there
are much more reconstruction errors.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, panorama view syntheses for image-based navigation have been studied

for the purpose of performing virtual navigations of remote environment with an image-

based rendering(IBR) system. In particular, cubic panorama has been introduced and

its geometry as well as mathematical models have been discussed. Two algorithms have

been proposed for generating virtual cubic panorama views.

Cubic panorama is a representation of panorama images with a set of six planar

projections in the form of a cube. A cubic panorama can be modeled with a panorama

image taken with six identical ideal pinhole cameras whose optical center are all fixed at

the cubic center. All these cameras have 90◦ field of view, with non-overlapping image

planes. According to this model, there are 36 non-independent essential/fundamental

matrices between two cubes. However, only one of these matrices is independent and

from which the others can be computed. Therefore, only one essential matrix is needed

to express the epipolar geometry of two cubes, and a cube can be treated as a whole

and not as a multi-sensor-camera system. In addition, cubic panoramas have implicit

92
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intrinsic matrix (See Appendix D). It is not necessary to take full calibration procedures

(i.e. only computing the essential matrix is needed) for 3D reconstruction.

In our cube warping algorithm, we proposed a fast, full-automatic method for cube

view synthesis. Our method is based on image warping. First, a simplified model of cube

pixel displacements is constructed to simulate a walkthrough from one cube to another.

Second, the optical flow techniques are used to decide the “warping scales”. Then the

warping model based on the pixel displacements is applied to warp a input cube to

approximate a real cube navigation. Although the approximate model is adopted, the

experiment results show that our approach works well under small translations. Despite

the limitation of its applications, the cube warping method has following strengths: (i)

ability to produce photorealistic novel view; (ii) real-time novel view image synthesis

regardless of the scene complexity; (iii)very low computation and communication costs.

In our cube interpolation algorithm, we presented an efficient method for view in-

terpolation from multiple cube views. The main strength of our approach is the ability

to control the location and orientation of the novel views with R, t and synthesize

arbitrary viewpoint views far away from (big translations) the input reference cubes.

Instead of attempting to adopt traditional dense reconstruction approaches, the method

try to reconstruct colours with colour invariant constraints. By designing a guided depth

raytracing like searching strategy, the method can generate a novel scene view with max-

imized photo consistency. The solutions to the visibility issues were also provided in

the text. Despite the high computation expense and small reconstruction errors, the

cube interpolation method can produce complex virtual cube views for an arbitrary po-

sition with no limitation on gaze directions given a set of reference views, and therefore

can acquire seamless visualization of environment from different viewing positions and

orientations.
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In comparison of two algorithms, please refer to the following table:

Table 5.1: Comparison of two algorithms
Algorithm Cube warping Cube interpolation

Computation costs < 1 seconds Several hours
Viewpoint Limited on a straight line No limitation
Results Photorealistic, but approximate With artifacts, but accurate

5.2 Future work

The problem of panorama view syntheses for image-based navigation, however, is far

from solved. Future work could include the following improvements:

• Instead of only estimating cube epipolar goemetry pairwise with our feature match-

ing approach, use bundle adjustment method to recover essential matrices in a

global consideration.

• For cube warping algorithm, rectify and align the cubic panoramas with the method

of [36] before cube warping to free our method’s limitation on aligned cubes.

• For cube interpolation method, instead of searching the depth of one pixel at a time,

try to perform a search on a window of the target image to locate the corresponding

pixels in reference images.

• For guided depth searching, use segmentation techniques to lower computation

costs and improve searching accuracy near region boundaries.



Appendix A

Cube Face Rotation Matrices

Cubic panoramas are very suitable for 3D reconstruction because of their implicit cali-

bration and cube face relationships. Kangni and Laganière have given a good analysis

of cube geometry in [36]. This and following appendices is partially based on their

discussion.

A cubic panorama is made of six identical faces. Each of them can be seen as a

image plane of a standard pinhole camera with 90◦ field of view. We name the six

faces as: up, left, front, right, back, down, and label each face of the cube as Fi, for

i ∈ {U, L, F, R, B, D}, with U standing for the up face, L standing for the left face and so

on. As shown in Figure2.1(b), the cube reference frame is chosen as follows: the original

point is located at the center of the cube with the x axis pointing to the “right” face,

the y axis toward “down” face and the z axis toward the “front” face.

Since all the camera optical centers are the same at the cube center, the relationship of

the six faces with the frame in Figure2.1(b) can be simply expressed as a rotation matrix.

The rotation matrix Ri for i ∈ U, L, F, R, B, D mentioned in the text can be expressed as

follows:
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RU = Rx(
π

2
) =




1 0 0

0 0 –1

0 1 0




RL = Ry(−
π

2
) =




0 0 –1

0 1 0

1 0 0




RF = Rx(0) =




1 0 0

0 1 0

0 0 1




RR = Ry(
π

2
) =




0 0 1

0 1 0

–1 0 0




RB = Ry(π) =




–1 0 0

0 1 0

0 0 –1




RD = Rx(−
π

2
) =




1 0 0

0 0 1

0 –1 0






Appendix B

Transformation of Arbitrary 3D

Point and Cube Face 3D Point

Because cubic panoramas are omnidirectional, given an arbitrary 3D point P = (X,Y, Z),

we can find its projection P0 = (x0, y0, z0) onto one of the cube faces. On the contrary,

given any 3D point P0 = (x0, y0, z0) on cube face, we have a line of 3D point along vector

P0. This line of 3D point can be expressed as Pi = λi ∗P0 = λi ∗ (x0, y0, z0). Here λi is

depth scale.

The projection of an arbitrary 3D point with cube is equal to simply finding the

intersection of this point with one of the cube faces.

B.1 Basic geometry: point, line, plane in 3D space

R. Harley and A. Zisserman have given an excellent discussion of point, plane, plane and

quadrics in [30]. Based on their discussion, we adopt following basic geometry for our

future cube analysis.
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B.1.1 points

A point P in 3D-space IP 3 has 3 degree of freedom, and its homogeneous representation

is P = (P1, P2, P3, P4)
T . P4 = 0 represent homogeneous points at infinity. If P4 6= 0, a

homogeneous 3D points are often represented as P = (X,Y, Z, 1)T .

B.1.2 planes

A plane in IP 3 may be expressed as

aX + bY + cZ + d = 0

It also has 3 degree of freedom. The homogeneous representation of the plane in 3D

space may be written as: Π = (a, b, c, d)T .

A point P is on the plane Π if

ΠTP = 0 (B.1)

or

aP1 + bP2 + cP3 + dP4 = 0

B.1.3 lines

A line can be defined by the intersection of two planes or the join of two points. It has

4 degree of freedom in IP 3 space. To represent an object with 4 degrees of freedom, we

need a homogeneous 5-vector. The problem is we can not find simple operations for a

5-vector with the 4-vector representation of points and planes.

Plücker matrices provide a good solution to this problem. Here a line in 3D space is

represented by a four-by-four skew-symmetric homogeneous matrix. In particular, the

line joining two 3D points P1, P2 can be represented by the skew-symmetric matrix L
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as

L = P1P
T
2
−P2P

T
1

(B.2)

For example, given a point P = (1, 2, 3, 1)T , the line joining it with original point

P0 = (0, 0, 0, 1)T is represented as

L =




0

0

0

1




[1 2 3 1]−




1

2

3

1




[0 0 0 1] =




0 0 0 −1

0 0 0 −2

0 0 0 −3

1 2 3 0




The intersection of the line L with the plane Π is a point P:

P = L Π (B.3)

In the case of a cube of side 512, the line L of above example intersect with “front”

face plane ΠF = (0, 0, 1,−256)T , which is (Z = 256), at point:

P0 = L ΠF =




0 0 0 −1

0 0 0 −2

0 0 0 −3

1 2 3 0







0

0

1

−256




=




1

3
× 256

2

3
× 256

256

1




B.2 3D point and cube face intersection

Given an arbitrary 3D point on any object, its image in cube may be simply acquired

by projecting this 3D point with one of the six cube faces.
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B.2.1 Line equation for a 3D point vector

The line equation of a point vector P = (x, y, z, 1)T is the line joining it with original

point P0 = (0, 0, 0, 1)T :

L =




0

0

0

1




[x y z 1]−




x

y

z

1




[0 0 0 1] =




0 0 0 −x

0 0 0 −y

0 0 0 −z

x y z 0




(B.4)

B.2.2 face plane equation

For the reference shown in Figure2.1(b), since all the faces are perpendicular to one of

the X,Y, Z axis, their equations are simple. Given a cube of size d, its face equations

are given below:

“up” face Y = −d

2
: ΠU =




0

1

0

d
2




“left” face X = −d

2
: ΠL =




1

0

0

d
2




“front” face Z =
d

2
: ΠF =




0

0

1

−d
2



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“right” face X =
d

2
: ΠR =




1

0

0

−d
2




“back” face Z = −d

2
: ΠB =




0

0

1

d
2




“down” face Y =
d

2
: ΠD =




0

1

0

−d
2




(B.5)

B.2.3 3D vector and face point conversion

There is only 90◦ field of view for each face camera. An arbitrary point vector in space

can only intersect one point on one cube faces. After having equation of 3D line and face

plane, we can easily find this point on cube (of size d) face with following strategies:

1. Use Equation(B.3) to compute intersection of 3D point (Equation(B.4)) with

all six faces (Equation(B.5))

2. From the 6 computed intersecting points, eliminate four points which have absolute

coordinate value bigger than d/2

3. The remaining two points are from two opposite faces. Find the coordinate with

absolute value of d/2. Eliminate last point if the sign of the coordinate is different
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with the sign of corresponding coordinate of original 3D space point



Appendix C

Transformation of Face 3D Vector

and Face Image Point

Given a cube of side d under the frame in Figure2.1(b), we want to convert between cube

face 3D vector and cube face 2D image coordinates. We observed: for right and left face,

x = ±d
2
; for down and up face, y = ±d

2
; for front and back face, z = ±d

2
. This gives us a

group of simple transformation matrices Ti, for i ∈ {U, L, F, R, B, D}, to convert between

cube face 3D vector and cube face 2D image coordinates.

TU =




1 0 −d
2

0 0 −d
2

0 1 −d
2




TL =




0 0 −d
2

0 1 −d
2

1 0 −d
2



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TF =




1 0 −d
2

0 1 −d
2

0 0 d
2




TR =




0 0 d
2

0 1 −d
2

−1 0 d
2




TB =




−1 0 d
2

0 1 −d
2

0 0 −d
2




TD =




1 0 −d
2

0 0 d
2

0 −1 d
2




(C.1)

For a cube face image 2D point p = (x, y, 1)T and a cube face 3D vector P =

(X,Y, Z)T , the conversion function are:

p = TiP

or

P = inv(Ti)p

inv() means inverse matrix.



Appendix D

Cube Intrinsic Matrix

As mentioned in appendixA, cubic panoramas have implicit calibration parameters. It

is not necessary to take full calibration procedures for 3D reconstruction (up to scale).

A cubic panorama is made of six identical faces. Each of them can be seen as a

image plane of a standard pinhole camera with 90◦ field of view. All the six cameras are

centered at the same camera center, which is also the cube center. In the case of a cube

of side d with the frame shown in Figure2.1(b), the image plane is at a distance d
2

from

camera center, and the principal point is always at
(

d
2
, d

2

)
of image plane. Thus the cube

intrinsic matrix may be written:

K =




d
2

0 d
2

0 d
2

d
2

0 0 1




(D.1)
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Appendix E

3D Reconstruction: Linear

Triangulation

This appendix discusses how to compute the position of a scene point in 3D space given its

image in two views and the camera projection matrices of those views. We will describe a

simple 3D reconstruction method: linear triangulation. This appendix is partially based

on the discussion of [30].

Figure E.1: 3D reconstruction by linear triangulation
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As illustrated in FigureE.1, a 3D point X = (X,Y, Z, 1)T projects to the two images,

I and I ′, at image points x = (x, y, 1)T and x′ = (x′, y′, 1)T . We assume that cameras

are calibrated. Thus, camera projection matrices, P and P′, are available.

For two images, we have following measurements:

x = PX

x′ = P′X
(E.1)

Then, we can use cross product, x×(PX) = 0 and x′×(P′X) = 0, to get three equations

(up to scales) for each image point, of which two are linearly independent. For example,

x× (PX) = 0 can be written as:

x
(
p3TX

)
−

(
p1TX

)
= 0

y
(
p3TX

)
−

(
p2TX

)
= 0

x
(
p2TX

)
− y

(
p1TX

)
= 0

(E.2)

Where piT is the row vector of the ith row of the P. These equation are linear in

the components of X. Therefore, EquationE.1 can be composed into a linear equation:

AX = 0, with

A =




xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T




(E.3)

This is a linear equation with a total of four equations in four homogeneous unknows.

It is easy to find the solution to this equation by using Direct Linear Transformation

(DLT) algorithm (see [30]).

For above linear triangulation algorithm, it is assumed that camera matrices are
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known exactly and the errors in the measured image points x and x′ are negligible.

However, since there are errors in the measured image points as well as camera matrices,

the simple triangulation by back-projecting rays from the measured image points will

not intersect in general. This means there will be no 3D point X which exactly satisfies

x = PX, x′ = P′X.

To solve such problems, there are some more sophisticated algorithms which are

projective-invariant and can minimize reprojection errors. For more details, please refer

to [30]. Nevertheless, the linear triangulation method described above can generate good

result.



Appendix F

Glossary of Terms

geometry-based rendering (GBR) A rendering approach in which objects and en-

vironments are modeled and rendered with geometric primitives.

image-based rendering (IBR) A rendering approach in which objects and environ-

ments are modeled and rendered with image data instead of geometric primitives.

node One pre-captured cell of cubic panorama image in the navigation grid. Navigators

can walk-through from one node into another node.

reference image The prestored real image at the node of grid. It is used to interpolate

novel views.

cube homing The precess of warping one cube to approximate another cube.

equal distance assumption All the environment objects are assumed to have same

distance from the location of snapshot.

transfer For a set of images, given the position of a point in one (or more) image(s),

determine the positions in all other images of the set.
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