
Real-Time Virtual Viewpoint Generation
on the GPU for Scene Navigation

by

Shanat Kolhatkar

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the M.Sc. degree in

Electrical and Computer Engineering

School of Information Technology and Engineering

Faculty of Engineering

University of Ottawa

c© Shanat Kolhatkar, Ottawa, Canada, 2010



Abstract

In this thesis we present a method for achieving real-time view interpolation in a

virtual navigation application that uses a collection of pre-captured panoramic views as

a representation of the environment. In this context, viewpoint interpolation is essential

to achieve smooth and realistic viewpoint transition while the user is moving from one

panorama to another. In this proposed approach, view interpolation is achieved by first

computing the optical flow field between a pair of adjacent panoramas. This flow field can

then be used by the view morphing algorithm to generate, on-the-fly, virtual viewpoints

in-between existing views. Realistic interpolation is obtained by taking into account both

scene geometry and color information. To achieve real-time viewpoint interpolation, a

GPU implementation of the viewpoint interpolation algorithm has been developed. We

ran our algorithm on multiple interior and exterior scenes and we were able to produce

smooth and realistic viewpoint transitions by generating virtual views at a rate of more

than 300 panoramas per second.

ii



Acknowledgements

Acknowledgements

iii



Contents

1 Introduction 1

1.1 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 6

2.1 View Morphing and View Interpolation . . . . . . . . . . . . . . . . . . . 6

2.1.1 Virtual View Generation . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Virtual Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Epipolar Geometry Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Optical Flow Estimation 14

3.1 Basic Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Theory discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Slanted Surface Handling . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Implementation discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Algorithm Architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 The Matching Function . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 The Goodness Functions . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Estimating the optical flow on panoramic images 23

4.1 Extended cubic representation . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Smoothing the flow vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



4.3 Epipolar Geometry Correction . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Epipolar Geometry Estimation . . . . . . . . . . . . . . . . . . . 34

4.3.2 Estimation of the flow fields on a cubic panorama . . . . . . . . . 35

4.3.3 Reprojecting the Optical Flow . . . . . . . . . . . . . . . . . . . . 36

4.3.4 Constraining the Optical Flow Algorithm . . . . . . . . . . . . . . 40

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 View Interpolation 43

5.1 Basic algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Feature Extraction and Warp Computation . . . . . . . . . . . . 43

5.1.2 Morphable Interpolation . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Interpolation on Pairs of Real Images . . . . . . . . . . . . . . . . . . . . 45

5.3 Results using the various flow correction schemes . . . . . . . . . . . . . 49

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Real-Time Implementation 53

6.1 Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Multi-Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 GPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.1 A Brief Explanation of GPU Programming . . . . . . . . . . . . . 55

6.3.2 View Interpolation Implementation . . . . . . . . . . . . . . . . . 56

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Results 59

7.1 On the Data Acquision Times . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 On the Interpolation Evaluation . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 On The Use of Epipolar Constraint . . . . . . . . . . . . . . . . . . . . . 66

7.4 On The Importance of Small Distances between panoramas . . . . . . . . 68

7.5 On the importance of Static Scenes . . . . . . . . . . . . . . . . . . . . . 72

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusions and Future Work 75

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Environment Representation 78

vii



B The NAVIRE Viewer 80

viii



List of Tables

3.1 This tables shows a comparison of the optical flow algorithm that we

used (Ogale) with other already existing optical flows. These results were

retrieved using the middlebury test set provided in [35]. All the algorithms

were ran on a set of four pairs of images. Each pair of images had its

associated ground truth displacement which was manually defined. The

result values in each cell of the table was obtained by comparing this

ground truth to the result obtained by running each optical flow algorithm

on every pair of images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.1 Table showing some of our RMS results comparing a ground truth image

with: the origin image; the target image; the linearly interpolated image;

the interpolated image using uncorrected flow; and finally the interpolated

image using the smoothed flow . . . . . . . . . . . . . . . . . . . . . . . 61

ix



List of Figures

3.1 Example of an optical flow on a pair of panoramas. The top image is

the origin image and the bottom is the destination image, and the arrows

represent the flow vectors for selected pixels. The arrows’size has been

increased to be more readable. . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Representation of the different types of panorama representation: cylin-

drical (left), spherical (middle), cubic (right). . . . . . . . . . . . . . . . . 24

4.2 Example of the deformations happening when using a spherical represen-

tation for 360◦ panoramas. Even though the viewing position is the same

and only the viewing direction varies, the size of the different objects is

radically different. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Example of a cubic panoramas, displayed in an unfolded form . . . . . . 27

4.4 Example of our extended cubic panoramas, displayed in an unfolded form. 27

4.5 Example of our extended cubic panoramas, displayed in 3D, showing 3 faces. 28

4.6 This figure illustrates the geometry of the extended cubic representation

drawn in 2D. A’ is the projection of A on a different face, and the vectors

AB and A’B’ are their respective flow vectors on each face. In this case,

only the best displacement vector is kept. The vector CD is one that does

not have a corresponding displacement vector on the other face and does

not require additional processing. . . . . . . . . . . . . . . . . . . . . . . 28

4.7 This figure shows an interpolated frame computed from a normal cubic

panorama (top) and from an extended cubic panorama (bottom) at the

same view position. Both are unfolded view of 256x256 face images. Some

mistakes can be seen in the interpolation from normal cubes that are not

present in the extended cubic representation (e.g. the fluorescent on the

ceilling). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

x



4.8 This figure demonstrates how we retrieve the replacement smoothing flow

for pixel pA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.9 This figure illustrates the uncorrected flow that we retrieve from the optical

flow algorithm (top) and the optical flow after smoothing it using our

scheme (bottom). We draw the arrows for certain neighborhoods so the

improvements of the optical flow can be seen more clearly. . . . . . . . . 33

4.10 Illustration of the epipolar geometry on a cubic panorama. . . . . . . . . 34

4.11 Illustration of the reprojection of the 3D epipole point onto a cubic panorama.

(Illustration is seen from a top view). E is the 3D epipole point, O is the

center of our cubic panorama, and A, B, C and D are the projections of

E on the different faces of the cube. . . . . . . . . . . . . . . . . . . . . . 36

4.12 Illustration of the flow vectors for a single face of the cube. . . . . . . . . 37

4.13 Illustration of the problems that can happen when reprojecting the cal-

culated flow field onto the estimated flow field. The reprojection might

be too long or too short and will loose the information obtained while

calculating the optical flow which leads to different artefacts in the result

image, such as blurring. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.14 This figure illustrates the reprojection correction step applied to the flow. 39

4.15 For a given estimated flow vector (arrow), the flow vectors that are ac-

cepted by our constraining scheme are the one that have the same starting

pixel as the estimated flow vector and one of the colors pixel as their end-

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.16 This figure illustrates the constraining of the flow followed by a smoothing

correction as described in this section. . . . . . . . . . . . . . . . . . . . 41

5.1 This Figure shows the origin and target pairs used to do the interpolation

of the images shown in Figure 5.2 . . . . . . . . . . . . . . . . . . . . . . 46

5.2 This shows 2 different interpolation: the top one using a linear interpo-

lation scheme and the bottom one the interpolation method presented in

Section 5.2. Both are interpolated from the same origin and target images

that are shown in Figure 5.1, and using the weigths c = w = 0.5 . . . . 47

5.3 This shows 2 different interpolation: the top one using a linear interpo-

lation scheme and the bottom one the interpolation method presented in

Section 5.2. Both are interpolated from the same origin and target images

that are shown in Figure 5.1, and using the weigths c = w = 0.5 . . . . 48

xi



5.4 The top images are a part of 2 captured panoramas. On the left the

origin image and on the right the target image. The bottom images are

interpolated images with interpolation coefficient 0.5. On the left the

interpolation with a smoothed flow and on the right we applied without

smoothing. We can see that without smoothing the plant looks blurry and

has many artefacts, whereas it keeps its sharpness and shape when using

the smoothing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 This Figure shows a middle transition image using the smoothing correc-

tion flow only (top) and the epipolar reprojection and smoothing correc-

tion (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 On the top is an interpolated image (with w=c=0.5) using the smoothing

correction, and on the bottom is the corresponding image when using the

epipolar constraining of the optical flow and the smoothing step. . . . . . 52

6.1 This graph is an example of a possible panorama setting. Let us suppose

that our buffer size is 7. If the user is currently at the viewpoint P1,

then the buffer is filled with the panoramas and displacement fields of the

following viewpoints: P1, P0, P2, P5, P8, P3, P6. If the user is currently

at P1, then the buffer is filled with the data of the viewpoints: P2, P1,

P3, P8, P6, P5, P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1 This image shows an example of the visual improvements that are at-

tained by using the smoothed optical flow (bottom image) compared to

the uncorrected version (top image). . . . . . . . . . . . . . . . . . . . . 62

7.2 Going from the top to bottom image, we have: the origin image; the

linearly interpolated image; the uncorrected flow interpolated image; the

interpolated image using a smoothed flow; the real image captured at

the interpolated location (ground truth); and the destination image. All

interpolation uses the best matching parameter c = 0.45. . . . . . . . . . 63

7.3 Going from top to bottom image (and left to right), we have the compar-

ison images of the real panorama captured at interpolation location with:

the origin image; the target image; the linearly interpolated image; the

interpolated image using uncorrected flow; and finally with the interpo-

lated image using the smoothed flow. All interpolated images use the best

matching parameter c = 0.45. This is the same sequence as the one in

Figure 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



7.4 An outside sequence. Top and bottom images are the captured origin

and destination. The other images are (from top to bottom) interpolated

images using the smoothed optical flow field with c=0.2, 0.4, 0.5, 0.6 and

0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.5 A Zoom on a part of our transition sequence. On the left the transition

images of a certain pair of images, interpolated using a flow with epipolar

constraining and smoothing, and on the right the interpolated sequence

using a flow with only the smoothing correcting. . . . . . . . . . . . . . 67

7.6 This image shows the position of the different interpolated images that we

used to demonstrate the degradation of the interpolation quality with the

increase of the distance between viewpoints. . . . . . . . . . . . . . . . . 69

7.7 This image illustrates the degradation in the flow calculation algorithm

with the increase of the distance between viewpoints from an indoors cap-

ture sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.8 This image illustrates the degradation in the flow calculation algorithm

with the increase of the distance between viewpoints from an outdoors

capture sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.9 This image illustrates the artefacts that occur when a moving object is

present in our scene, such as the car in this example. . . . . . . . . . . . 73

7.10 This image illustrates the artefacts that occur when a moving object is

present in our scene, such as the car in this example. . . . . . . . . . . . 74

A.1 An example graph representing the environment captured during one of

our capture sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.1 In this figure we can see the navigation window and GUI of the NAVIRE

viewer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.2 In this figure we can see the one of our map feature, which allows us to

see the map full screen for a more detailed view. . . . . . . . . . . . . . . 82

B.3 This figure shows the map creation interface of our application. . . . . . 82

xiii



Chapter 1

Introduction

This work was developped within the scope of the NAVIRE project (virtual NAVigation

in Image-based representations of Real world Environment) that aims at achieving real-

time navigation in image-based renditions of real environments. The project covers all

aspects of the image-based environment representation and navigation problem:

• the acquisition and storage of high quality panoramas

• the estimation of the pose between panoramas

• the interpolation of views

• the rendering and navigation tools

Our goal is to provide the user with an intuitive software to navigate any given envi-

ronment in real-time, and provide the highest degree of realism and immersion possible.

This work presented in this thesis constitutes an important step towards this goal by

providing a real-time navigation application, but has the current drawback of having

slight artefacts during the transitions.

There has been a lot of interest from the computer graphics and the computer vision

fields towards image-based modeling and rendering methods [19]. Virtual navigation

is one important application of such research, including virtual tours of tourist places,

museums, as well as real-estate virtual visits. Any kind of application where achieving

photorealism is a goal can actually benefit from advances in this field.

Recent virtual navigation applications use collections of images in order to allow

users to remotely explore a given existing environment. The Google Street View system

is a good example of a large-scale image-based model of city landscape. The system by

1



Introduction 2

Furukawa et al. [56] is another example of virtual navigation system; this one focusing on

virtual tours of indoor spaces. In order to improve the quality of the virtual exploration

experience in an image-based model, several aspects could be improved. Exploration can

be made more immersive by improving the overall quality of the images shown to the user.

Using very large display (e.g. CAVE) or head-mounted display is a solution of choice

when these are available. The recourse to panoramic imagery rather than regular limited

field-of-view images also greatly contribute to the quality of the experience. Virtual

exploration also implies the possibility of moving inside the environment. A multitude

of points of view must then be available; too often these are limited to a linear path

that the user is forced to follow during his exploration of the site. In order to visit

the scene, users have to hop from one panorama to another through a series of mouse

clicks. Such saccadic motion is unavoidable when the panoramas are far from each

other and this greatly reduces the quality of the immersion and can make the user loose

his sense of direction in the environment. To alleviate both problems, the user should

be able to see the motion that took place to transition between viewpoints. This is a

difficult problem since the relative position of the panoramas might not be known and no

depth or geometrical information about the scene is generally available. Because of this,

it is difficult to create realistic transitions between pairs of views, especially since the

movement of the scene objects depends on their relative distance to the point of view.

Several methods have been developed to solve the problem of smooth and realistic

viewpoint transition. These are based on video transitions, interpolated views and/or 3D

modeling. In the simplest case, videos from one viewpoint to another are taken during the

capture of the scene. This allows for transitions of good quality, but brings many other

problems, such as the space required to store such videos, the limitation imposed on the

ways a user can transit from one location to another and finally the necessity to re-acquire

every possible transitions from a given view to a newly added view. Interpolation between

pairs of views can be done using different schemes. Using simple linear interpolation of

pixel intensities to generate view transitions is a straightforward solution but to produce

realistic transitions, more sophisticated approaches are required. Finally, 3D modeling

approach aims at fully reconstructing the environment, either manually or automatically,

such that viewpoint interpolation becomes a 3D scene re-projection task. Creating dense

3D models of natural scenes is however very costly; consequently this is not a practical

approach.

In this thesis we focus on the second type of approach to solving the transition

problem, i.e. using view morphing to obtain realistic virtual views without explicit 3D



Introduction 3

reconstruction. In addition, an essential requirement of our virtual navigation application

was to come up with a fast view interpolation process such that views can be interpolated

at frame rate. Users will then be able to realistically transit from one panorama to any

adjacent one. 360◦ panoramas are used in this application in order to give to the user a

higher quality immersive experience.

The scene is assumed to be static (i.e. does not contain moving objects) and the

pre-captured panoramas are taken at a relatively short distance from each other. No 3D

information about the scene or the motion is available.

1.1 Thesis Objective

This thesis addresses the problem of generating smooth transition between panoramas

in the context of image-based virtual navigation in a remote environment. The ultimate

goal is to allow the user to navigate in the environment freely and smoothly, without him

being able to notice a difference between captured frames and generated frames. Our

methods improves on the currently available methods by providing real-time navigation

along a path, and provides a design that will allow the quality of the interpolation to

follow the enhancements provided by advances in the research in the field of optical flow

calculation.

1.2 Thesis Contribution

Our thesis brings the following contributions to the fields of optical flow, viewpoint

generation and scene navigation:

• Most importantly the calculation of new viewpoints in real-time using a view mor-

phing algorithm

• The ability to navigate an environment in real-time through the use of GPU pro-

gramming

• Enhancing the optical flow to reduce the number of noticeable artifacts by applying

few heuristic corrections

Our thesis work has spawned a couple of papers published in renowned conferences:

• ”Real-Time Virtual Viewpoint Generation on the GPU for Scene Navigation”, CRV

2010 [22]



Introduction 4

• ”Interactive Scene Navigation Using the GPU”, CGI 2010 [21]

1.3 Thesis Outline

In Chapter 2 we presents the previous works relevant to our method. We will first

present the most important works in image interpolation and virtual navigation. Second

there has been a extensive work done in the field of optical flow calculation between

two planar images, and we will present the important works that has been done in this

domain. Finally we will present the previous work that has been done regarding the

epipolar geometry estimation between pairs of planar images and between panoramas.

In Chapter 3 we explain how the optical flow calculation algorithm that we have

selected to use for our software works. We also describe in greater details its matching

function and its goodness function, which allows it to retain the important features for

which it has been selected: contrast-invariance matching and slanted surface handling.

In Chapter 4 we describe the extension of the optical flow algorithm to cubic panora-

mas. First we will describe our extended cube representation for panoramas, which al-

low us to solve most boundary problems that were present in the usual cubic panoramas.

Next we describe our smoothing correction step, which aims at removing the irregularities

within a dense optical flow field. The next section is aimed at describing our improve-

ments to the dense optical flow, which uses the epipolar geometry between panoramas.

In Chapter 5 we describe the view interpolation algorithm. We will first describe

the algorithm on which our method was based. This algorithm was created to allow the

user to mix multiple textures of different types to create new ones. We will describe

the important features of this algorithm, namely the warp computation which is used to

calculate the dense displacement field between two given textures, and the morphable

interpolation which create the interpolated images by taking into account both the color

information and the displacement information. Finally we will describe our own view

interpolation algorithm which was developped for pairs of real panoramic images.

In Chapter 6 we provide the implementation details required to achieve real-time

navigation and calculation of the transitions. There are four important implementation

requirements to accomplishing the navigation in real-time which are the precalculation of

the optical flow, which can take up to an hour to compute for each pair of panoramas, the

buffering of the data that will be accessed in the next few moves, the multi-threading of

the application which allows us to access the hard-drive and load the necessary textures

at the same time as the interpolation, graphics and input handling calls are made; and



Introduction 5

finally the implementation on the GPU of the morphing algorithm, which allows us to use

the power of the graphics card, which outshines even the most powerfull multi-processor

CPUs.

Our study ends with the presentation of some of our results (Chapter 7) and by con-

cluding on the ramification of our method and some possible improvements to make our

navigation software more immersive and the increase the quality of our results (Chapter

8).



Chapter 2

Related Work

The solution we propose for view interpolation has its roots in the view morphing and

optical flow research fields. This chapter reviews the previously published works in these

two areas. Our thesis work also bring forth improvements to the currently available

applications in the field of virtual navigation, and we will also discuss the relevant work

of this field as well. Finally we will introduce a couple of optical flow field correction

steps based on the epipolar geometry between a pair of images, and a summary of the

previous advances in this field will also be necessary.

2.1 View Morphing and View Interpolation

There are a few different approaches to texture morphing that have been developed over

the last few years amongst which are [58] and [32]. The first paper depends heavily on

user input, and only works for textures that are composed of repeated similar patterns

(for example cells of the interior of a bee hive). The second paper represents, to the

authors’ knowledge, the state of the art in the field of texture morphing, and combines

linear color interpolation and motion compensation to generate the composite texture.

This paper is at the basis of our interpolation algorithm. It has the advantages of not

depending much on user input and of working with a wide variety of textures while still

producing high quality results. However, this method needs to have features of similar

sizes in both origin and target textures. Also, this method cannot morph smoothly

between highly different textures. These disadvantages are not relevant to our approach

since we use real life images, which are highly structured, and our images are highly

correlated since they are taken along the path followed by our camera.

6



Related Work 7

2.1.1 Virtual View Generation

Virtual View Generation can be considered as a type of texture morphing, where we use

real-life images to generate new viewpoints. We will describe some important previous

works in this section.

One of the base paper in the field of view interpolation is [42]. This paper focuses on

creating the transition views to move between pairs of images, which are not necessarily

parallel. To create the transition images, the method prewarps two input images to fit

them on parallel planes. It then applies a morphing procedure to obtain an intermediate

image and postwarps that intermediate image to obtain the resulting transition image.

Both prewarping and postwarping transformations are done using projective transfor-

mations. A downpoint of this approach is that it cannot handle complex scenes. It was

designed to handle pairs of images of single objects taken in different poses. This makes

this approach difficult to generalize to arbitrary viewpoints. Other papers regarding

view morphing also attack the subject of view interpolation, such as [23], [50]. Both

approaches triangulate the images using a certain set of points in the images, which can

be chosen manually or automatically using for example [46]. Once the triangulation is

done, the triangles of the images are warped and the colors are interpolated to generate

a new virtual image.

A more recent work related to virtual navigation, was done, like this thesis work,

as part of the NAVIRE project [8]. Their approach uses ray-tracing to synthesize new

views from an input pair of cubic panoramas. One of the input panoramas is selected as

the reference panorama and the the position of the other input panorama is evaluated

relatively to it using methods presented in the Section 2.4. As well the position of the

virtual viewpoint is defined relatively the reference cubic panorama. Finally, for each

pixel in the virtual view panorama texture, a ray is cast and its intersection with both

input panoramas is calculated. The resulting color for the pixel is the interpolated value

of the two intersected pixel. This approach is time consuming because of the high number

of rays that need to be cast for each virtual view texture. The resulting interpolated

images also presents many artifacts because, as we explain in later, the evaluation of the

relative position of the panoramas using the color information only is error prone, and

because the colors of the resulting images are interpolated multiple times. (once within

the image since it is highly unlikely that the ray will intersect with exactly one pixel,

and then between the intersected pixels within the two images: thus 8 interpolations

maximum)



Related Work 8

The work presented in [45] was also done as part of the NAVIRE project. Their

work in virtual navigation focussed on the creation of very short translation movements

in cubic environment maps. The transition cubes between two viewpoints are created

by warping the different faces of one of our input cubic environment map depending

on the movement direction. For the first half of the transition between image I1 and

I2, they warp the faces of cube I1 onto the transition cube, and for the second half

of the transition, they warp using only cube I2. To calculate the warping coefficient,

the method uses optical flow. It calculated the optical flow for every possible pixel

displacement between 1 and the maximum allowed displacement between the images

(80 pixels) and select as a global displacement the one setting the average norm of the

optical flow as minimum. This method does not provide high quality results, or real-

time navigation, and by only warping one of the two input cubes at a time, looses the

information available in the other one.

In our approach, fluid view transitions are generated on the fly for the whole panorama

which allows the user to continuously look around the scene while moving. The addition

of new panoramas requires only the computation of the corresponding optical flow fields.

The transition panoramas at intermediate viewpoints are then automatically generated.

2.2 Virtual Navigation

One of the most important paper of this field was developped by Apple Computer [7].

This paper laid the foundation of most navigation software by defining the necessary

operation required for a user to navigate a virtual environment: rotating the camera,

rotating around an object, moving the camera in the environment and finally camera

zooming. Rotating the camera allows the user to look around the environment while

staying at the same viewpoint. This is done by rotating the environment map which is

used to display our panorama. Rotating around an object can be done in two ways, first

using videos of the object or more interestingly through view interpolation techniques,

which in their case is done using [44]. Looking at an object can also be done using

the methods described in the previous section, principally [42]. Moving the camera in

the environment can be done through rotating the camera, which was described earlier,

and through translating it. The camera translation is done in one of two ways: through

environment map movies, which are 360◦ movies that are taken in a certain path and

allow the user to change the orientation of the scene. This approach requires a lot of disk

space, and required the acquisition of every possible transition between panoramas and



Related Work 9

thus is not very flexible. The second way to achieve camera translation is through the

interpolation of panoramic images. In this case, the method is to interpolate new views

from the nearby panoramas in order to generate a smooth path. Finally, the camera

zooming feature is generally achieved by having multiple environment maps of different

resolution for the same scene. When the user zooms on a certain part of the scene, the

program interactively selects the environment map resolution that gives the best quality,

and provide interactive speeds while zooming. This can also be used to give the user

a feel of moving forward or backwards inside the environment. In Apple Computer’s

paper, the camera translation was done through a series of jumps from one cylindrical

environment map to the other.

Another interesting previous work is presented in [48]. This work is more of an

image indexing method, since the method aims at grouping together images of the same

place and at allowing the user to navigate through them. To do so, it identifies points of

interests and assembles images that are similar. It then estimates the relative viewpoint

of these images by generating a 3D point cloud from the point of interests in the image.

Then it places these different viewpoints in a virtual map to allow for navigation and to

track the user position easily. Finally, the user is allowed to navigate through the images

by selecting images on a virtual map, by selecting a region of interest in the currently seen

image or by selecting images with the same viewpoints. Once the navigation is initialized,

the method transitions between the images by using a simple plane based morphing

algorithm. This method works with standard planar images, and the transitions between

the different photographs present some artifacts but the image indexing is impressive.

A good example of 3D reconstruction can be seen in [41]. Their approach aims at

reconstructing the scene in 3D using a high number of images. The approach however

works only on simple scenes. A good advantage of this approach is that it allows the

user to freely navigate the scene by allowing 3D movement instead of being limited to

a unique path as in the other approaches. A more recent work in reconstructing the

environment is presented in [56], and is aimed at reconstructing indoor environments.

The method presented in this paper reconstruct the environment automatically from

an input set of images of the environment by using structure from motion [47] and

multi-view stereo [9] to calibrate the cameras and retrieve a set of 3D points which

represent an initial reconstruction of the environment. Once this is raw reconstruction

is available, a depth map is generated using the ”Manhattan-world”’ assumption [55],

which states that the world is highly structured, with the planes aligned with the X,

Y and Z axis. Finally the depth maps and the multi-view stereo points are combined



Related Work 10

together to generate the final 3D model of the scene, at which point 3D navigation is

possible. One of the biggest challenges with this work is that most of the environment

is composed of planar, textureless scenes. However, it gives very impressive results and

the reconstruction of the environment is completely automatic and seems quite accurate.

Some of the downpoints of this approach are that this method only supports axis aligned

surfaces, fairly small environments and presents some artefacts during the navigation.

In recent years, publicly available application have been developped to achieve virtual

navigation over the internet. Both of the approaches that we mentioned previously are

represented by such software. Google Street View and Everyscape, use panoramas to

represent the environment and linear interpolation between pairs of images as transitions.

The Google Street View method is the most similar to our own system: a panoramic

camera such as our own Ladybug is mounted on a series of vehicules (car, bike, van) and

driven around the city taking panoramic pictures as set intervals. The images are then

threated to remove private elements such as faces or vehicules licence plates and then

uploaded to a server. To create the transitions, Google Street View applies zooming on

the face of the portion of the panoramas currently being viewed to simulate movement

as well as linear interpolation to transition between the images.

Bing, VillesEn3D and Google Earth model the different buildings in 3D and place

them on a world map and allow the user to see the environment from the sky. VillesEn3D

is of higher visual quality than Bing and Google Earth but is only available for thirteen

cities in France and three in Spain whereas Bing and Google Earth model cities from

around the world. In all these applications the buildings are modeled using 3D modeling

programs (such as 3DS Max, Maya or proprietary tools) and placed on a world map. In

the case of Bing and Google Earth, the buildings are not textured whereas in the case

of VillesEn3D textures are present on all buildings and were most probably created by

artists. Creating the buildings in 3D is time consuming, and using artists to create the

textures for each building increases even more the time necessary to accomplish such a

software. These sotwares either use artists to model the building or ask for the help of

the users, but no automatic method is currently available, unlike the Google Street View

type of applications.

2.3 Optical Flow

The optical flow is calculated on pairs of images taken from different points of views of

the same scene. The optical flow is calculated per pixel and represent the movement



Related Work 11

that this pixel takes when moving from the first image into the second image of the pair.

In most images, some occlusions occur, and in such cases the optical flow for that pixel

cannot be calculated accurately. The optical flow can be calculated for selected pixels

that are more easily identified in a scene, or for every pixel in the scene, in which case it

is called the dense optical flow of the pair of images.

Many approaches to calculate the optical flow between pairs of planar images have

been proposed. One of the biggest problem when creating an optical flow algorithm is

that there is no easy way to compare the optical flow produced, because the ground truth

between pairs of real images is difficult to produce. Scharstein and Szeliski [40] studied

some of the most important algorithms developped before 2002 and introduced a way to

compare different optical flow algorithms. Their website http://vision.middlebury.edu/stereo/

makes the evaluation routines and datasets freely available, and allows the user to post

their results and compare them to other methods. These results are freely available to

anyone and allows a uniform method of comparing optical flow results. The number of

datasets however is restricted, due to the facts that we mentionned earlier.

Amongst the wide variety of algorithm available, some of the best performing ones

are [3, 53, 54, 37]. A few very interesting ones because of the fact that they calculate

the optical flow in real-time, but which perform less good according to the middlebury

test framework are [10, 43, 18]. Some of the more classic methods are [14], [28], [6].

These methods are based on matching the pixel neighborhoods of the origin image with

different candidate neighborhoods of the target image in order to determine the best

possible match. Another more recent approach to calculating the optical flow is [36].

This is the algorithm we will use in this thesis work and it is presented in details in

Chapter 3. It focuses on calculating a goodness measure for each of the pixels, which

relies on how similar the displaced origin pixels are to the ones of the target image.

This algorithm requires the user to define an interval, and all possible displacements

will be tested to find the best solution. No optical flow methods gives perfect results,

partly due to the fact that there are no infallible way to compare neighborhoods in a

truly viewpoint invariant way. The neighborhood of a same pixel changes depending

on how far it is from the view point, and this makes predicting the deformation of the

neighborhood very difficult.



Related Work 12

2.4 Epipolar Geometry Estimation

The epipolar geometry of a pair of images represents the projective relation between

both images of the pair. It allows us to know the position of the two images with respect

to each other. The epipolar geometry can only be estimated because the algorithms

currently available are not entirely accurate due to possible mistakes when matching

images together. As well, the actual length of the optical flow vectors depends on the

distance from our viewpoint to the pixel of the panorama, and thus it is not possible to

get such information when only the color information of the scene is available. Thus the

epipolar geometry information is, given the current methods, a useful tool to constrain

the displacement vectors in rigid motion when allowing a certain margin of error.

Estimating the epipolar geometry between pairs of panoramas has also been a area of

research that has received a lot of attention over the years. A lot of different algorithm

are available to the user such as the ones presented in [11], [24] and [13, 34]. The latter

is considered by many to be the state of the art in the field. A breath of other methods are

available, and reviews of these technics can be found in [52, 15]. However most of these

methods are specifically designed for limited field of view planar images. Other methods

present solution to the calculation of the optical flow on omnidirectional camera such

as our Ladybug by representing the environment as a sphere [51, 25]. The paper [26]

also tackles the problem of estimating the epipolar geometry for omnidirectional cameras

by using as input a calculated optical flow at antipodal points of the image sphere. To

achieve this, the authors present two algorithms, one using the RANSAC framework

[31, 38] and the other performs the Hough-reminiscent voting [16]. This is the inverse

process that we used in our epipolar constraining of the optical flow algorithm, where we

use the epipolar geometry of the scene to try to enhance the result of our optical flow.

On top of estimating epipolar geometry of the scene through the previously mentioned

methods, an epipolar rectification scheme can be applied to the results to enhance them.

Such schemes have been developped for 2 views using uncalibrated cameras [12, 27] or

on 3 views with calibrated cameras [30] or uncalibrated ones [49, 57]

Work has been done previously in the VIVA lab to estimate the epipolar geometry

between 2 panoramas [20] and we will be using the software developped in their thesis

to estimate the epipolar geometry of our scene. This approach works on 3 view cameras

and is, as said by the authors of the method, based on the method [17] and applies a

distortion reduction scheme. This technic also uses the previously mentioned RANSAC

framework.



Related Work 13

2.5 Conclusion

Our thesis work touches different fields of computer vision and computer graphics. In this

chapter we have presented the related works that are relevant to our work. In the next

chapters we will go in more details on the view morphing and optical flow calculation

algorithms that our method was based on or uses, as well as the different improvements

that we brought to the different methods to increase the results in the case of real life

panoramas.



Chapter 3

Optical Flow Estimation

As we mentioned before, our virtual view point generation system uses the optical flow

field between reference images as an input to the interpolation process. In this Chapter

we will describe the optical flow algorithm that we use in our approach.

3.1 Basic Algorithm Description

Our view interpolation approach is based on the computation of the optical flow field

between the reference images. We use the method presented in [36] and for which an

implementation is publicly available1. The user needs to input an interval for the possible

values of the displacement vector in x and y axis, and all possible combinations of these

values will be tested by the algorithm in order to find the best displacement vector for each

pixel. For each of these shifts, the algorithm computes a goodness function for each pixel

of the image. The goodness function is calculated as the sum of two one-dimensional

functions: one that is calculated on the line parallel to the displacement vector, and

the other on the line orthogonal to it. The goodness value for a pixel p = (x, y) can

be interpreted as the number of pixels connected to p′ = (x + dx, y + dy) that have

an intensity similar to the ones in the target image, with (dx, dy) being the candidate

displacement. Once the goodness function has been calculated, the best match is selected

to decide which displacement applies best to p.

We selected this algorithm because it generally gives good results. Some of these

results are shown in Table 3.1 and were retrieved at the time of the writting of the

paper [35]. We only show the highest, second highest and lowest results in this table

1http://www.cs.umd.edu/ ogale/download/code.html

14



Optical Flow Estimation 15

Rank Algorithm Tsukuba Sawtooth Venus Map

1 Layered 1.58 1.06 8.82 0.34 0.00 3.35 1.52 2.96 2.62 0.37 5.24

2 Belief prop 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27

6 Ogale 1.77 0.95 9.48 0.61 0.17 5.05 3.00 5.22 7.63 0.21 3.01

28 Max surf 11.10 10.70 41.99 5.51 5.56 27.39 4.36 4.78 41.13 4.17 27.88

Table 3.1: This tables shows a comparison of the optical flow algorithm that we used

(Ogale) with other already existing optical flows. These results were retrieved using the

middlebury test set provided in [35]. All the algorithms were ran on a set of four pairs

of images. Each pair of images had its associated ground truth displacement which was

manually defined. The result values in each cell of the table was obtained by comparing

this ground truth to the result obtained by running each optical flow algorithm on every

pair of images.

as a measure of comparison. The algorithm ranked 6 out of 28, with error percentages

ranked from 2 to 20. But the most interesting aspect of this algorithm are the features

that it provides and that we will describe now: it handles well occlusions, and it uses a

matching measure that is contrast-invariant. This is an important feature for outdoors

scenes where the lighting conditions of the scene changes between the different views.

Another point that influenced our decision is the fact that this algorithm can identify

slanted surfaces and consistently compute the corresponding optical flow. This is a

particularly interesting feature in the case of urban scenes where planar building facades

are frequently observed. The last interesting point of this method is that it is able to

identify slanted surfaces.

3.2 Theory discussion

In this section we will describe the theoretical aspects of this algorithms: the general

idea of the paper and the slanted surface identification.

The general idea of the paper is straightforward: it is given a series of possible shifts for

the image, and it tries to identify all the connected components between pairs of images.

Each pair of image is created by using the origin image shifted by a certain vector and

the unshifted destination image. There are usually multiple connected components in a

pair of images, and they are the biggest number of pixels that are similar in both images

given a certain matching function. An important point to the identification of connected



Optical Flow Estimation 16

components is that if it is traversed by a horizontal edge, it is considered to be in fact

two different connected components. The matching function is defined by the user, and

we will describe the one used in the algorithm in the next section.

3.2.1 Slanted Surface Handling

This method was developped for stereo vision primarily and it recognizes two types of

slanted surfaces (or slants): horizontal and vertical. This methods makes a distinction

between vertical and horizontal slants because vertical slants can also cause horizontal

disparity during the comparison but the horizontal slants can’t because of the fact that

it is considering stereo vision. The important observation to be made about slanted

surfaces, is that a same slant always has different size in different images if the position

of the viewpoint changes. This means that the uniqueness constraint which many optical

flow obey (a pixel in an image corresponds to exactly one pixel in the other image) does

not hold and need to be modified accordingly. In this section, we will first describe how

horizontal slants are identified and then we will do the same for vertical slants.

Horizontal Slants Identification

To identify hozitontal slants, both images are stretched in turn to cover the space of all

possible slants (an interval of horizontal pixels). To establish a correspondence between

the two images all the stretched versions of each images are used, and the line segments

are compared to each other, instead of pixels. When the line segments cannot be match

in this step, the method assumes that it detected an occlusion.

The way to match the pixel intensity when considering slanted surfaces has been

changed from the usual algorithm pixel matching algorithm presented in [5]. Each

scanline is resampled by stretching one of them to match the horizontal slant that we

are considering. Once it is done, this stretched scanline is matched against the another

unstretched scanline in the other image using the usual method. This comparison method

works as follows (using the notation in the author’s paper): Given two pixels xL and xR

to be compared to each other, in the scanlines IL(x) and IR(x) respectively. In the case

of slanted surfaces, pixel xR is defined as: xR = mxL + d. and the following are set:



Optical Flow Estimation 17

IminL = minIL(xL −
1

2
), IL(xL), IL(xL +

1

2
) (3.1)

ImaxL = maxIL(xL −
1

2
), IL(xL), IL(xL +

1

2
) (3.2)

IminR = minIR(xR −
1

2
), IR(xR), IR(xR +

1

2
) (3.3)

ImaxR = maxIR(xR −
1

2
), IR(xR), IR(xR +

1

2
) (3.4)

and subsequently:

dL = max0, IL(xL)− ImaxR , IminR − IL(xL) (3.5)

dR = max0, IR(xR)− ImaxL , IminL − IR(xR) (3.6)

d = mindL, dR (3.7)

The uniqueness constrain on a pixel basis is replaced by a uniqueness contraint be-

tween the different intervals of the the left and right scanlines, which means that each line

interval LIleft in the left image can only correspond to one line interval in the right image

LIright. If a line interval LIleft is matched to multiple line intervals in the right image,

the different interval matchings are corrected and the best match is selecting depending

on the previous matching correspondence.

Vertical Slants Identification

There are multiple observations to use when differencing vertical slants from horizontal

ones:

1. Vertical neighbors separated by a horizontal edge or no edge at all should not be

connected.

2. Disparity can change even when there is no change in color or intensity, thus it

cannot be assumed that disparity is vertically constant but that it is continuous.

3. Vertical neighbors lying on non-horizontal edges should be connected.

To identify vertical slants, the method first detects intensity edges using a standard

Canny edge detector as well as their directions by computing the gradient direction. It

is also assumed that every pixel is connected by links to the pixels above and below him.



Optical Flow Estimation 18

Using the previous statements, the only pixels that end up being connected are the pixels

that lie on a non-horizontal line. Finally when labeling the connected components, if two

vertical neighbors are linked, then they are assumed to be part of the same connected

component.

3.3 Implementation discussion

In this section we will describe the algorithm specific part of the method such as the

algorithm architecture, the contrast-invariant matching function as well as the goodness

function used in this method.

3.3.1 Algorithm Architecture

The algorithm works as follows: The user inputs two images I1 and I2, as well as the

search intervals along both x and y axis: [minX, maxX] and [minY, maxY].

The algorithm exhaustively checks every possible combination of the values defined

by the user for x and y (pair of shift vectors). For each of these pairs, it does the following:

for Shiftx = minX to maxX do

for Shifty = minY to maxY do
- Compute the matching between the two input images using Shiftxy to

shift the target image. 3.8

- Compute the Horizontal Goodness (HGoodness) function for the whole

image 3.12

- Compute the Vertical Goodness (VGoodness) function for the whole

image 3.12

- The total goodness of image I1 is the product of the horizontal and

vertical goodness that we just calculated:

TotalGoodness = HGoodness ∗ V Goodness
- For each pixel in the image, if the goodness calculated for the current

shift is better than any other that was calculated this far for both left and

right images, we use its corresponding shift vector as the best possible

displacement for this pixel.

end

end



Optical Flow Estimation 19

3.3.2 The Matching Function

The matching function Mx,y between 2 images is calculated as follows:

Mx,y = e−(α/255) ∗mean(|Match(Shiftx,y)|) (3.8)

Shiftx,y is the candidate shift vector, and mean is a function that works as follows:

for every pixel in the image pi,j, its value is the average of all the values of its neighbors

in a certain neighborhood size:

pk,j =
1

n ∗m
×

n∑
i=1

m∑
j=1

pi,j (3.9)

Where pk,l is the pixel at the center of the neighborhood of size (n,m) and pi,j represents

the pixel of this neighborhood. In the algorithm that we used, α is set to 20.0, and n =

m = 3.

For each pixel the following values are retrieved: m1, M1 which are the minimum

(resp. maximum) of the values of the pixels in the neighborhood of the current pixel in

image I1. Identically, the values m2 and M2 are retrieved, and are taken using image I2.

The Match function for a given pixel pi,j in image I1 and its shifted equivalent p′k,l in

image I2 is calculated as follows:

Match =
match1 +match2

2
(3.10)

match1 =


m2− pi,j if m2− pi,j >= 0

pi,j −M2 if pi,j −M2 >= 0

0 in other cases

(3.11)

We calculate match2 similarly, and we have k = i+ Shiftx and l = j + Shifty.

This function is applied to the whole image, excluding a few border pixels depending

on the shift that is considered.

3.3.3 The Goodness Functions

The goodness function relies on the matching function function. The goodness function

G(x, y) for pixel (x, y) is set as:

G(x, y) = (1 +G(r, s)) ∗M(x, y); (3.12)



Optical Flow Estimation 20

When calculating the horizontal goodness function, going from left to right, we have

r = x − 1 and s = y. And when going from right to left, we have r = x + 1 and s = y.

And as well, when calculating the vertical goodness function, top to bottom: r = x and

s = y + 1. And finally in the same way when going from bottom to top: r = x and

s = y−1 As mentioned previously, two goodness functions are calculated for each pixel a

horizontal goodness function and a vertical goodness functions. Each of these goodness

function is the sum of two smaller function: a left and right goodness function for the

horizontal one, and a top and down goodness function for the vertical function.

Once the left goodness function has been calculated for all pixels, we do the same for

the right pixels, by looking at the image from right to left instead of left to right. And

both left and right goodness for a certain pixel are summed together to give the total

horizontal goodness value for this pixel.

The vertical goodness function is calculated in an identical way, except that we look

at the pixel from top to bottom and then bottom to top.

3.4 Results

In Figure 3.1, an example of the flow field is displayed. The top image is the origin

image and the bottom is the destination image, and the arrows represent the flow vectors

for selected pixels. The arrows’size has been increased to be more readable. The flow

vectors of the target panorama are the opposite values of the origin image’s flow vector,

this is due to the assumptions taken by this optical flow algorithm.

We assume in the following discussion that the image had n pixels. Calculating

the Mean, m1, m2, M2 and M2 is calculated on each pixel and depends on a certain

neighborhood size. Assuming that all the neighborhood sizes are the same and are square,

and setting the size as s then each of the image calculation takes O(ns2) time. Given

that all the information necessary to calculate the matching function has been retrieve

through the previous step, the matching function is of constant time O(c). To calculate

the Horizontal Goodness function, the method goes through the image twice (left to

right and right to left) and applies some matching function with constant time thus this

step takes O(2n). Similarly, calculating the Vertical Goodness function also takes O(2n).

The calculation of the Total Goodness for each pixel is the product of HGoodness and

VGoodness and is calculated for each pixel, and thus is an O(n) operation. To conclude,

this algorithm takes O((5 + s2 + c) ∗ n) to compute, where (5 + s2 + c) is a constant.

According to our results, to compute a 320x320x6 image with a [-40;40] interval for



Optical Flow Estimation 21

both the x and y interval values of the shift, the calculation takes 1 hour. To compute

on a 1280x1280x6 image with a neighborhod of [-160; 160] it can take up to 26 hours.

3.5 Conclusion

In this Chapter we have described the optical flow algorithm that we use in our image

and we will be used as is, without any modification for our results. In the next Chapter

we will introduce a few ways to improve the quality of the retrieved optical flow.



Optical Flow Estimation 22

Figure 3.1: Example of an optical flow on a pair of panoramas. The top image is the

origin image and the bottom is the destination image, and the arrows represent the flow

vectors for selected pixels. The arrows’size has been increased to be more readable.



Chapter 4

Estimating the optical flow on

panoramic images

Most current optical flow algorithms work with single planar textures, and our different

correction steps were designed to work with such textures. However, to enhance the

sense of immersion of the user and the realism of the scene rendering, we have chosen

to use 360◦ panoramas. In this Chapter we will describe how to extend the currently

available optical flow algorithms to work on cubic panoramas as well as a certain number

of corrections steps that we experimented with to enhance the quality of the results.

Different representations are available to manipulate the panoramas: cubic, spherical

or cylindrical panoramas (Figure 4.1). There are two downpoints to using spherical

panoramas. The first one is that there is no way to represent a sphere with patches

of same sizes. Depending on where you are on the sphere, you will have patches of

different sizes, shapes and orientations, and this is especially obvious when you compare

the patches of the equator with the patches of the poles. The second problem is that

the spherical representation, partly due to what we previously mentionned, brings some

noticeable deformations when looking around an image. When panning around, the

image becomes distorted, and the object on the boundary of our view appear to be

stretched. Such artifacts are very noticeable and reduce the immersion of a user and

can even sicken some users. An example of this phenomenon can be seen in Figure 4.2,

which is a picture of the Ta Prohm Temple in Angkor, Cambodia, and was taken from

the website [2]. Both images in the picture were taken from the same position in the

panorama, but the view direction is different in each of the image. When looking at

the different elements of this scene, such as the man in white shirt, we can see huge

23



Estimating the optical flow on panoramic images 24

Figure 4.1: Representation of the different types of panorama representation: cylindrical

(left), spherical (middle), cubic (right).

deformations of the object. One way to solve this issue, would be to zoom in the image,

at which point the artefacts would be less noticeable, but this would severely reduce

the field of view. This is not a valid solution as it would diminish the user’s experience.

Another possibility would be to increase the size of the different texture patches but would

bring other kinds of problems such at the fact that we would be using an unconventinal

geometric form for this type of application (such as an octahedron), and converting our

scene to fit this shape would be fastidious.

The cubic and cylindrical panoramas, allow us to have patches of similar sizes on our

front and side view, which reduces considerably the distortion effect that we see in the

spherical panoramas.

Using cylindrical panoramas requires to create a special case for the top and bottom

faces of the cylinder. Also when unfolded, cylindrical and spherical representations tend

to introduce non-linear deformations that complicate the comparison of panoramas which

is not the case with the planar geometry of the cubic representation: lines of a certain

direction in a certain panorama can have a different direction in another panorama, even

if the panoramas were captured very close to each other. This problem would require

us to find an optical flow algorithm that would deal with such deformation. Using the

cylindrical or spherical represensations would not allow us to use the breath of already

available and very powerful optical flow algorithms

In cubic panoramas (see Figure 4.3), all 6 faces are identical; each face of the cubic

panorama is a regular limited field of view image. Therefore, standard optical flow

algorithm designed to work with such images will be directly applicable to each face of



Estimating the optical flow on panoramic images 25

the cube panoramas, and the only necessary extension to these algorithms is a way to

deal with face transitions. As well, since the faces of the cube are identical and have the

same size, there will be less optical deformation in the scene than with using another

kind of panorama.

4.1 Extended cubic representation

Classical optical flow field estimation methods have been designed to work on regular

planar limited field-of-view images. The main advantage of the cubic representation is

that it allows to decompose the global 360◦ panorama into 6 regular limited field-of-view

cameras. However the independent computation of the optical flow on the 6 cube faces

would cause annoying artifacts at the boundary of each face. We have solved this problem

by simply extending each face such that it becomes possible to correctly estimate the

displacement of a visual point moving from one face to another. One such extended cube

is shown in Figure 4.4 where it can be seen that some elements on one face are repeated

on adjacent faces, and in Figure 4.5 we can see 2 example extended cubic panoramas

displayed in 3D. Faces are extended such that image points close to the cube edges that

would change face in a normal cubic representation, will end up inside the replicated

area of the extended cube. This allows us to ensure that flow calculation can be done

on each face independently, and still correctly estimate the motion of the pixels at each

face boundaries. Thus, when calculating the optical flow on each face of the extended

cube, the moving objects that are changing face in a normal cube and dissapear of our

face, are actually still present in the extended cube’s face.

Assuming that the maximum pixel displacement in the image is (dx, dy), then the

minimum extended cube face size should be sizex + dx, sizey + dy, where (sizex, sizey)

is the size of a normal cube’s face.

Note that, when proceeding this way, it happens that some displacement vectors are

computed twice, because they appear on each extended portion of two adjacent faces

(see Figure 4.6). To ensure consistency of the results across the faces, we need to check

which of these two solutions gives the best result by comparing the color neighborhood

in both images according to the L2-norm. The one with the greatest distance is then

replaced by the other one.



Estimating the optical flow on panoramic images 26

Figure 4.2: Example of the deformations happening when using a spherical representation

for 360◦ panoramas. Even though the viewing position is the same and only the viewing

direction varies, the size of the different objects is radically different. [2]



Estimating the optical flow on panoramic images 27

Figure 4.3: Example of a cubic panoramas, displayed in an unfolded form

Figure 4.4: Example of our extended cubic panoramas, displayed in an unfolded form.



Estimating the optical flow on panoramic images 28

Figure 4.5: Example of our extended cubic panoramas, displayed in 3D, showing 3 faces.

Figure 4.6: This figure illustrates the geometry of the extended cubic representation

drawn in 2D. A’ is the projection of A on a different face, and the vectors AB and A’B’

are their respective flow vectors on each face. In this case, only the best displacement

vector is kept. The vector CD is one that does not have a corresponding displacement

vector on the other face and does not require additional processing.



Estimating the optical flow on panoramic images 29

Figure 4.7: This figure shows an interpolated frame computed from a normal cubic

panorama (top) and from an extended cubic panorama (bottom) at the same view posi-

tion. Both are unfolded view of 256x256 face images. Some mistakes can be seen in the

interpolation from normal cubes that are not present in the extended cubic representation

(e.g. the fluorescent on the ceilling).



Estimating the optical flow on panoramic images 30

Figure 4.8: This figure demonstrates how we retrieve the replacement smoothing flow for

pixel pA.

4.2 Smoothing the flow vectors

Since our objective is to obtain realistic viewpoint transition, we observed that it is

generally beneficial to smooth the optical flow field before using it for view interpolation.

This additional step removes potential outliers that could introduce annoying visual

artefact in the interpolated viewpoints.

As said earlier, we assume that no scene objects are moving in the scene and that

there is only few abrupt depth discontinuities. It follows then that for each flow vector

in the image, its neighbors should have a similar direction and orientation. Based on

this observation, the smoothing step works as follows: for each pixel o = (ox, oy) in the

image I1, we get its n × n color neighborhood N and its m × m displacement vectors

neighborhood F . For each of these possible displacement value d in F , we calculate the

displaced coordinate o′ = (ox+dx, oy+dy). We then get the n×n color neighborhood N ′



Estimating the optical flow on panoramic images 31

of o′ in I2. We then compare N and N ′ using the L2 norm. If N ′ gives us the best possible

match for pixel o in I2, we select its corresponding displacement vector d as the actual

displacement vector for o. To take into account a possible different displacement for o

compared to p, we check the candidate displacement d with a certain offset. So instead of

having o′ = (ox + dx, oy + dy) we actually use o′ = (ox + dx + offsetx, oy + dy + offsety),

where offsetx ranges from [i, j] and offsety ranges from [k, l], where i ≤ j, k ≤ l,

i, k ≤ 0, j, l ≥ 0. In Figure 4.8, we illustrate how to choose the possible replacement

candidate for a certain pixel pA of image IA. For this pixel we retrieve its flow value

and the one of its neighbors from image FA. We get the possible replacement candidates

from image IB by applying the previously explained method, and we will compare the

neighborhood of pA in image IA with the neighborhoods of all the black pixels of images

IB.

We summarized this step with the following pseudocode, using the same notations as

previously:

Get N, the nxn color neighborhood of o in I1

forall the p in N do
Find corresponding displacement d of p

for offsetx = i to j do

for offsety = k to l do
Get displaced pixel p’ in I2, p’ = (ox + dx + offsetx, oy + dy + offsety)

Get N’, nxn color neighborhood of p’ in I2

comp = Compare N and N’ using the L2 norm

if comp is a better match than current value then
use the current displacement value as the displacement for the

current pixel

end

end

end

end

The goal of this step is to smooth the flow field, in order to remove ”rogue” vectors

that have been mismatched or/and are oriented in a completely different direction than

their neighbors. Chapter 5 will show the interpolation artefacts that result from these

vectors and how this smoothing algorithm improve the results. These sparse outliers

in the displacement field can cause very annoying effects. Figure 4.9 presents the un-



Estimating the optical flow on panoramic images 32

corrected flow and the smoothed flow of the same pair of panoramas, where the flow

is represented as red arrows (which size has been enhanced to make the image more

readable). When comparing these images, we observe that some rogue vectors have been

removed from the flow field.



Estimating the optical flow on panoramic images 33

Figure 4.9: This figure illustrates the uncorrected flow that we retrieve from the optical

flow algorithm (top) and the optical flow after smoothing it using our scheme (bottom).

We draw the arrows for certain neighborhoods so the improvements of the optical flow

can be seen more clearly.



Estimating the optical flow on panoramic images 34

Figure 4.10: Illustration of the epipolar geometry on a cubic panorama.

4.3 Epipolar Geometry Correction

We tried two different ways of using the epipolar geometry of the scene to correct the

optical flow. The first one was to reproject every displacement vector of our dense optical

flow onto the epipolar lines obtained by calculating the epipolar geometry between the

panoramas. The second was to constraint the optical flow algorithm so that for every

pixel in the image, it would only search for flow vectors that were colinear that same

estimation of the flow field. First we will explain how to estimate the epipole position

from a pair of cubic panoamas. Next we will explain how we estimate the flow vectors

for each face of our cubic panorama, and finally we will describe in details both methods

that we mentioned previously.

4.3.1 Epipolar Geometry Estimation



Estimating the optical flow on panoramic images 35

Given that we are using 360◦ panoramic images of a static scene (i.e. not containing

moving elements), the epipolar geometry can then be used to constraint the flow field

computation between each pair of reference images. The epipolar geometry of a cubic

panorama is illustrated in Figure 4.10, where E is the epipole, and the lines represent

selected epipolar lines to which the flow vector of each pixel on that line should, in the

case of static scenes, be colinear to.

When several panoramas are analyzed, they are linked by the usual projective rela-

tions. By definition the essential matrix is :

E = [t]×R (4.1)

Up to a scale, E characterizes completely the geometry between two panoramas, just

as in the case of conventional stereo images. It follows the following constraints for two

matching points p and p′:

p′TEp = 0 (4.2)

Since we know the calibration information of our camera, p and p′ are expressed as

3D coordinates of the image points on the 3D projection surface (a cube in our case).

Estimating E then becomes a matter of solving the classical problem of the epipolar

geometry estimation using for example the 8-point algorithm [11]. Indeed, standard

projective geometry applies to spherical pin-hole cameras in which the 3D coordinates

of the image points on the reprojection surface are used in the homogenous equations.

Camera geometry estimation, as explained above, requires the matching of interest

points across panoramas. We used SURF scale-invariant features and descriptors [4] to

search for matching pixels among pairs of images. In order to reject outliers, a RANSAC

scheme is applied to eliminate matches that are located too far from the epipolar plane

defined by the currently estimated E matrix. Additional multi-view criteria, similar to

[48], are then used to prune out the surviving false matches from the global match set.

4.3.2 Estimation of the flow fields on a cubic panorama

The epipolar geometry estimation gives us the 3D coordinates of the epipole. We know

that every displacement vector in an image points toward its epipole. First we need to

project this point on the panorama structure that we are using, either cubic, cylindrical

or spherical to retrieve its coordinate on in texture. In our case, we are using a cubic

image, with 6 images for each face, which means that we will have to project the epipole

on each of the faces in order to be able to estimate correctly the vector field for each



Estimating the optical flow on panoramic images 36

Figure 4.11: Illustration of the reprojection of the 3D epipole point onto a cubic

panorama. (Illustration is seen from a top view). E is the 3D epipole point, O is

the center of our cubic panorama, and A, B, C and D are the projections of E on the

different faces of the cube.

face (see Figure 4.11). Once we have these reprojection coordinates, estimating the flow

is done on each face independently. This is a straightforward operation, and only needs

the application of the following formula:

EF (x, y) = p(x, y)− e(x, y) (4.3)

Where EF(x,y) is the estimated flow vector for pixel (x, y) and p(x, y) and e(x, y)

are the coordinates of the current pixel and the coordinates of the epipole on the face

respectively. An example result for a single can be seen in Figure 4.12, where E is the

epipole and the arrows are the estimated flow vector for a selection of pixels.

4.3.3 Reprojecting the Optical Flow

Now that we have an estimation of the dense flow field, there are a few ways that we can

use it to enhance the quality of the resulting displacement field. In this section, we will

describe the first improvement we tried which consists in reprojecting each calculated

optical flow field vector onto its corresponding flow field estimate to give it the desired

direction. We have decided to study this possibility because it would allow us to continue



Estimating the optical flow on panoramic images 37

Figure 4.12: Illustration of the flow vectors for a single face of the cube.

being able to use any optical flow calculation algorithm transparently and providing a

correction scheme to the optical flow that could be applied to any optical flow calculation

algorithm.

Since we are estimating the position of the epipole by matching 2 panoramas, the

accuracy of the placement of the epipole might not be perfect, and thus the results might

not be accurate at first. That is why we have decided to run this correction step with the

smoothing pass of Section 4.2, instead of having to choose one or the other. In our tests,

we tried running the correction step followed by a smoothing step, and a smoothing step

followed by a correction step and finally a smoothing step followed by a correction step

and another smoothing step. We found that the results in test case 2 and 3 were very

similar and of better quality thant he results in test case 1. The need for an accurate

placement of the epipole is especially important when the epipole projection on the plane

is inside or close to the face we consider. In this case a variation of the epipole coordinates

might lead to big changes in the displacement field estimation. This applies to the face

towards which we are moving, and to the face from which we are moving away. If the

epipole projection coordinates place the point far outside of the face, then small changes

in the position of the epipole will hardly affect the displacement field estimation. This

is the case for the side, top and down faces.

A problem with this approach, for which we will see the interpolation result in the



Estimating the optical flow on panoramic images 38

Figure 4.13: Illustration of the problems that can happen when reprojecting the calcu-

lated flow field onto the estimated flow field. The reprojection might be too long or too

short and will loose the information obtained while calculating the optical flow which

leads to different artefacts in the result image, such as blurring.

next Chapter, is that in all the cases that were tested, the few improvements in quality

that might have been obtained through its use did not outweight the reduction of quality

of the scene. The best explanation for such result is that when we reproject the flow onto

the epipolar estimation, we change the length of the vector, which changes the matching

that occured during the optical flow estimation (See Figure 4.13 for an example). In

Figure 4.14 we display the reprojected flow field of one of our pair of panoramas.

Thus we have devised a second scheme, which consists of constraining the optical flow

algorithm to only search for a possible shift which is colinear to the expected flow field.

We will describe our approach in the following section.



Estimating the optical flow on panoramic images 39

Figure 4.14: This figure illustrates the reprojection correction step applied to the flow.



Estimating the optical flow on panoramic images 40

Figure 4.15: For a given estimated flow vector (arrow), the flow vectors that are accepted

by our constraining scheme are the one that have the same starting pixel as the estimated

flow vector and one of the colors pixel as their endpoint.

4.3.4 Constraining the Optical Flow Algorithm

The second idea that we experimented with consisted in constraining the optical flow

algorithm to only consider the candidate shifts that were colinear to the estimated epipo-

lar lines. The idea of constraining the possible optical flow vectors to those determined

by the epipolar geometry estimation is a fairly straighforward modification. For each

pixel in the image, we will not consider a shift vector that is not similar to the estimated

epipolar vector. As we mentioned with the previous method, the epipole might not be

entirely accurate, and thus we allow the candidate displacement pixel to be a few pixels

offseted from the estimated flow vector. In Figure 4.15, the arrow shows the estimated

flow vector at its maximum length for a certain pixel, and the black pixels show all

possible candidates that we consider. The maximum length for the vector is determined

by the user selected [minX, maxX] and [minY, maxY] as required by the optical flow

algorithm.

Instead, we first set our estimated epipolar flow vector to have the same length as

the shift vector. Then we say that the distance between the endpoints of both vectors



Estimating the optical flow on panoramic images 41

Figure 4.16: This figure illustrates the constraining of the flow followed by a smoothing

correction as described in this section.

applied to the same pixel, should be less than a user defined number of pixels (in our

case 2). This is similar to saying that the shift should reach at least a pixel close to 2

pixel to the estimated epipolar vector. If this distance is less than a predefined number

of pixel, we accept it, if not we ignore it and continue to the next possible shift until the

last one is reached and a best candidate has been found. Figure 5.6 shows a result of

this constraining scheme on one of our pair of panoramas.

4.4 Conclusion

In this Chapter we have presented a way to extended the current optical flow algorithm to

work with cubic panoramas, and we have experimented with various correction schemes

that can be applied to any optical flow in order to make the interpolation results more

immersive. The smoothing flow increases the result in most cases. We also experimented

with using an estimation of the epipolar geometry in order to constrain the optical flow

calculations, and even though the results are not better at this state, in certain parts



Estimating the optical flow on panoramic images 42

of the image it improves the quality of the results and shows good promises for future

research. In the next Chapter we will describe the interpolation process using the cal-

culated optical flows between pairs of panoramas and we will present some interpolation

results of the different correction steps that we presented in this Chapter and a few

discussions on the different results that we obtained.



Chapter 5

View Interpolation

Our view interpolation is based on the algorithm developed in [32]. This algorithm

was designed to work on planar textures in order to create new textures by combining

already existing ones taken from a given database. Using this approach, textures can be

morphed by moving along a defined visual path.

In the first section we will describe the parts of the algorithm that are relevant to our

approach. In the second section, we will present our approach to view interpolation on

real-life images.

5.1 Basic algorithm description

Th method in [32] was designed to create realistic transition textures between multiple

input textures. A wide variety of input textures can be used, from grass to brick wall

textures. There are multiple important components to this method, but the ones of

interest to us and the ones that we will describe in the following subsections are the

feature extraction, the warp computation and the morphable interpolation.

5.1.1 Feature Extraction and Warp Computation

The first thing the algorithm does is to extract features in each of the input textures.

To do so, the authors have selected the compass operator introduced in [39], which

extracts oriented edge features from the texture samples. This operator returns the

orientation and strength of the maximum reponse at each pixel inside of a gray scale

feature map texture, for 2 textures Fi and Fj. Once the feature map of every texture has

been calculated, they are used to compute the warping between textures. This warping

43



View Interpolation 44

function Wij defines, for all pixels p(x, y) in Fi a corresponding pixel q(x, y) in Fj such

that q(x, y) = p(x, y)+Wij(x, y). Their algorithm uses a pyramidal approach to compute

a dense displacement map. The pyramid goes from fine to coarse or from the lowest to

highest level of the pyramid respectively.

• The lowest level of the pyramid is set to be of the size 16x16. Feature maps are

overlaid onto the texture using with a regular 8x8 triangulation (each vertex is

connected to 6 of its neighbors).

• Next the triangulation of Fi is kept fixed while the vertices Fj are modified to

find an optimal match for each of these vertices in the triangulation by trying to

warp them into the triangulation of Fi. This step effectively calculates the warping

function Wij for every pixel in the image.

5.1.2 Morphable Interpolation

The most important feature of this method is the one regarding the calculation of the

morphing between textures. The method is based on [33] where the warp functions are

calculated with respect to a global reference texture which is invariant for every texture

in the database. In contrast this method calculates the warp between pairs of images.

Each input texture is assigned a weight, with the constraint that
∑

j wj = 1, and a

barycentric morphing between n textures Ii with 0 ≤ i < n is applied to create a new

interpolated texture. There are 2 steps to this algorithm: the linear morphing of color

and the linear morphing of the geometry of the texture. This is done using the following

equation:

Î(x, y) =
n−1∑
i=0

ciIi((x, y) +
∑
j 6=i

wjWij(x, y)−1) (5.1)

Where Î is the morphed texture, and ci and wj are the weights of the color and shape

interpolation respectively. The constraint
∑

j wj = 1 is also used to ensure that the

textures are properly aligned. When setting wj = 0 for all possible j this corresponds to

linear blending.



View Interpolation 45

5.2 Interpolation on Pairs of Real Images

Our algorithm is designed to work on cubic panoramas, on a per face basis. We are using

real-life images, that are taken close to each other, in a given city/environment. The

first step of our algorithm is to compute the dense flow field between both images using

the method described in the previous chapters. Once this dense correspondence between

all pixels in both panoramas has been established, we can proceed to interpolation at

intermediate viewpoints. The straightforward approach would be to use linear blending.

The problems with this type of blending is that it is unrealistic and does not take into

account the geometry of the scene and the motion between the views. Our main objective

is to make the transition between views as realistic as possible. This way the virtual view

navigation will become a continuous walkthrough inside the scene. We alleviate these

shortcomings by including the dense displacement maps into our morphing algorithm.

Instead of only interpolating the colors of the scenes, we also use the displacement vectors

in the interpolation. Equation ( 5.1) can be written for pairs of images (n = 2) as follows:

Î(x, y) = (1− c)I0(wW01(x, y)−1) + cI1((1− w)W10(x, y)−1) (5.2)

with the following definitions:

• Î is the transition image

• I0 and I1 are the origin and destination images respectively

• Wij is the dense displacement field from image Ii to Ij. The optical flow algorithm

that we use makes the assumption that W01(x, y) = −W10(x, y)

• c and w are the weights applied to the color and displacement respectively, and

depend on our position between both images. In our experiments, we set w = c,

because we want the color and the geometry of the scene to be interpolated jointly.

In Figures 5.2 and 5.3 we show in each of them the same transition image interpolated

with two different schemes, one taken from an indoors sequence, the other from an

outdoors sequence. In each of the figures, the top one was obtained through linear

interpolation and the bottom one was obtained using the method we just described.

There are still a few artifacts in the interpolated image mainly in the capturer’s head

and the fluorescent on the ceiling. However, the image still looks sharp and clear whereas

the linearly interpolated version looks blurry and has many artefacts. There is, in the

authors’ opinion, clear improvements in the quality of the image and immersion of the

user when using our version of the transition images.



View Interpolation 46

Figure 5.1: This Figure shows the origin and target pairs used to do the interpolation of

the images shown in Figure 5.2



View Interpolation 47

Figure 5.2: This shows 2 different interpolation: the top one using a linear interpolation

scheme and the bottom one the interpolation method presented in Section 5.2. Both

are interpolated from the same origin and target images that are shown in Figure 5.1,

and using the weigths c = w = 0.5



View Interpolation 48

Figure 5.3: This shows 2 different interpolation: the top one using a linear interpolation

scheme and the bottom one the interpolation method presented in Section 5.2. Both

are interpolated from the same origin and target images that are shown in Figure 5.1,

and using the weigths c = w = 0.5



View Interpolation 49

5.3 Results using the various flow correction schemes

To finish we will show a couple of interpolation results with the different kind of corrected

flow that we introduced in the previous chapter. In Figure 5.4, we show the same part of

different panoramas to illustrate the improvement brought forth by using the smoothing

correction. The improvements are obvious in the interpolated image using the smooth

flow compared the image obtained when using the uncorrected flow: the image is sharper,

the plant kept his shape. The improvements are also noticeable around the posters on

the wall. The static image already shows some noticeable improvements, but using the

smoothing correction becomes even more worth it when moving in the environment.

In Figure 5.5 we show an example of such a result. To obtain the top image, we used

our scheme with only the smoothing correction step, and to obtain the bottom image

we used our scheme using the epipolar reprojection followed by a pass of the smoothing

correction. The quality of the results are much lower when using the epipolar reprojection

correction and thus, as we said previously, this is not a usable correction.

Figure 5.6 shows a result of this constraining scheme on one of our pair of panoramas.

We see from this result that even though the result of this constraining step is overall

less good that the one obtained by only applying the smoothing step, some part of the

image are better and it will be an area of interest for future work.

5.4 Conclusion

In this Chapter, we have shown how to interpolate between pairs of panoramas. In the

next Chapters we will explain how to achieve real-time navigation using all the elements

presented in the previous Chapters and present some results of our method on different

captured sequences.



View Interpolation 50

Figure 5.4: The top images are a part of 2 captured panoramas. On the left the origin

image and on the right the target image. The bottom images are interpolated images

with interpolation coefficient 0.5. On the left the interpolation with a smoothed flow

and on the right we applied without smoothing. We can see that without smoothing

the plant looks blurry and has many artefacts, whereas it keeps its sharpness and shape

when using the smoothing step.



View Interpolation 51

Figure 5.5: This Figure shows a middle transition image using the smoothing correction

flow only (top) and the epipolar reprojection and smoothing correction (bottom).



View Interpolation 52

Figure 5.6: On the top is an interpolated image (with w=c=0.5) using the smooth-

ing correction, and on the bottom is the corresponding image when using the epipolar

constraining of the optical flow and the smoothing step.



Chapter 6

Real-Time Implementation

Real-time intermediate view generation requires the preprocessing of the optical flow,

data buffering, multi-threading and the implementation of the interpolation algorithm

on the GPU. We show in this section how these are implemented to achieve our goal.

The computation of the optical flow is the most time consuming step but as it can

be precalculated, its estimation time does not affect the rendering performance. During

navigation, the reference images and the corresponding computed optical flow field are

loaded into memory. Its implementation does not require any specific treatment and

thus we will only focus on describing the buffering of the data, the multi-threading of

the application and GPU implementation in this chapter.

6.1 Buffering

Since we have many viewpoints for each scene, we will need to access the hard drive

hundreds of times when navigating the scene in order to retrieve the different panoramas

and displacement fields. These operations will greatly slow down the application because

accessing the hard drive is one of the most time consuming operation to be undertaken

on a computer. Therefore, we need to define an efficient strategy to retrieve that data in

order to minimize this loss of time. To do so, we have decided to buffer the required data

that will be the most likely to be accessed within the next few steps of our navigation. If

we are currently viewing panorama Ci, then we are going to load the n closest panoramas

to Ci using a breath first search: that is we will first get the neighbors that would require

one hop to get to from Ci, and if our buffer size permits, we load the ones requiring

two then three steps and so on until our buffer is full. As soon as the panorama viewed

53



Real-Time Implementation 54

Figure 6.1: This graph is an example of a possible panorama setting. Let us suppose

that our buffer size is 7. If the user is currently at the viewpoint P1, then the buffer is

filled with the panoramas and displacement fields of the following viewpoints: P1, P0,

P2, P5, P8, P3, P6. If the user is currently at P1, then the buffer is filled with the data

of the viewpoints: P2, P1, P3, P8, P6, P5, P4

changes to Cj, we will need to check which panoramas are now too far from Cj, and

which ones are now closer and need to be loaded, so that we release them and load them

to memory respectively. The same process applies to the displacement fields. (See Figure

6.1 for an example)

6.2 Multi-Threading

For the buffering of the necessary data to be efficient and useful, we need the application

to be multi-threaded. We use one thread to handle the graphics calls (in our architecture,

the OpenGL calls), and another one to load the data from the hard drive, and finally the



Real-Time Implementation 55

last thread, which is actually run on the GPU, to calculate the interpolated images. If we

had not used multi-threading, and simply used a single CPU thread, we would have to

load the images and the displacement field each time we change images. This would slow

down our application tremendously, since we would need to wait for both access to the

hard drive (to get the target image and the displacement field) to be finished before being

able to calculate and display the intermediate images. Using a multi-threaded approach

allows us to constantly have a thread in the background checking for the necessary

data and loading it, without the user noticing any downtime. One drawback to using

OpenGL is that it does not support multi-threading, thus we need to load the textures

in one thread and bind them in another, which makes the code more complicated.

6.3 GPU Implementation

In this section we will first briefly describe the evolution of the different Graphic Pro-

gramming Units (more commonly refered to as GPUs) and next we will describe the

GPU implementation of our view morphing algorithm.

6.3.1 A Brief Explanation of GPU Programming

GPUs were introduced to handle graphic intensive calculations such as texturing and

lighting of pixels. In the early years, only a fixed set of functions were allowed to function

on the graphics card which only allowed the developpers to use the features implemented

by the graphics card manufacturer. As of February 2001, programmable vertex shaders

and later pixel shaders were introduced to the GPU and allowed the developpers to

implement their own way of handling the previously hardwired functions. Each shader

could now be developped specifically for a certain software and the developper was in

control of what the graphics card was doing. The last improvement to GPUs are the

introduction of General Programming GPUs (GPGPUs) which allow the developper

to not only program the GPU to handle graphics calculations, but also more general

operations such as physics calculations and artificial intelligence calculations amongst

other through the use of new languages: CUDA or OpenCL. GPUs have long been able

to carry out a much higher number of operations than the CPU, and the difference is still

steadily growing. According to [1], the Peak in GFLOP/s and the Bandwidth in GB/s

for the latest GPU as of 2008 was 10 times higher than the latest CPU. This very high

difference in performance is partly due to the fact that GPUs are aimed to handle only



Real-Time Implementation 56

graphics calculations whereas CPUs are aimed to handle a wider variety of tasks, but

it is also due to the fact that GPUs are aimed to handle parallel computations in their

architectures. To handle these graphics, parallel calculations, the GPU devotes more

transistors to Data Processing, and has a much higher number of Arithmetic Logic Unit

(ALU) than the CPU and much less cache and control transistors for storing information.

The downpoint of this approach is that GPUs are not able to cache much data, but this

is more than balanced by the fact that the calculations are much faster, and as such

the caching of the data is replaced by the calculation of said data when necessary. The

programs ran by the GPUs (shaders) are ran on each pixel of an image and should be

calculated independently between one another, because it is impossible to know in which

order the pixels will be treated. This makes it a strength of the GPU and a challenge

to the developper. To learn more about the history of GPUs and their architecture, the

reader is encouraged to read [29].

6.3.2 View Interpolation Implementation

The GPU implementation is the last part of our processing chain. Since we have already

precalculated the flow, the interpolation of each pixel value is independent from the rest

of the image which makes it a perfect candidate for parallel implementation on the GPU.

The GPUs on the other hand are much faster than CPUs and are designed to handle

intensive graphics calculations, and allows us to do these calculations while the CPU is

handling other kinds of operations (graphics calls and hard drive calls in our case). In

addition to the panoramas and the displacement fields needed by the interpolation, we

also need to pass the optical flow window boundaries that we used in the optical flow

calculation algorithm as well as the texture sizes in order to be able to calculate the

origin and target pixel coordinates of each of the interpolated image pixels directly on

the GPU accurately. We describe the GPU code in the following pseudo-code, inspired

from GLSL code:



Real-Time Implementation 57

uniform sampler2D: OriTex, TarTex, FFX, FFY;

uniform floats: fDispIC, fColorIC, fDispLgthX, fDispLgthY, fTexSz;

TEXCOORD: pixCoord

vec2 iP ixCoord = pixCoord ∗ fTextureSize;
vec2 offset = vec2(0.0f, 0.0f);

offsetx =(texture2D(FFX, pixCoord)-0.5);

offsetx *= fDispLgthX;

offsety =(texture2D(FFY, pixCoord)-0.5);

offsety *= fDispLgthY;

vec2 texcoordOrigin = (iP ixCoord− fDispIC ∗ offset)/fTexSz;

vec2 texcoordTarget = (iP ixCoord+ (1.0f − fDispIC) ∗ offset)/fTexSz;

//Interpolate the colors

glF ragColor = (1.0f − fColorIC) ∗ texture2D(OriTex, texcoordOrigin) +

fColorIC ∗ texture2D(TarTex, texcoordTarget);

First a few variables are declared. The first ones are uniform sampler2D are 2D

textures which contain the origin (OriTex) and target (TarTex) textures color values,

and the flow field information in both X (FFX) and Y (FFY) direction. The next

set of variables are floating point values which indicate the displacement(fDispIC) and

color(fColorIC) weighting factor which indicate where the user currently is between both

images (0 meaning that the user is seeing the origin image, and 1 the target image).

The next two variables (fDispLgthX, fDispLgthY) are the variables used by the optical

flow algorithm. To make the algorithm easier to summarize here, we assume that the

optical flow used a window of [-fDispLgthX/2; fDispLgthX/2] for x and [-fDispLgthY/2;

fDispLgthY/2] for y. Finally fTexSz is the size of the texture, which we assume is square

and pixCoord is the coordinate of the current pixel. The variable pixCoord is calculated

on the GPU and is contained within the range [0, 1], where 0 is the leftmost side of the

texture and 1 the rightmost side. For our method to work properly, we need to convert

these values to it’s integer coordinates which will be in the range [0, fTexSz], and this

is what is done in Line 4. In Lines 6 and 7 (resp. 8 and 9) we retrieve the X (resp. Y)

flow value, which is constrained within the range [0, 1] and convert it back to its original

[-fDispLgthX/2, fDispLgthX/2] (resp. [-fDispLgthY/2, fDispLgthY/2]) range of values.

In Lines 10 and 11 we calculate the original and destination coordinates of the current

pixel using the displacement interpolation and convert it to be in the range [0, 1] so that

we can use them to do the color interpolation in Line 12.



Real-Time Implementation 58

6.4 Conclusion

In this Chapter, we have presented the different elements to achieve interactive navigation

of any environment captured through a series of panoramas. In the next Chapter we will

present different results of our method and of the different algorithms presented in this

thesis work.



Chapter 7

Results

In this chapter we will present the different results that we obtained during our experi-

ences.

7.1 On the Data Acquision Times

We captured our scenes using a Ladybug camera, which uses 6 cameras of resolution

1024x768 to create panoramic images in a single shot (5 on the sides, and 1 at the top).

We mounted the Ladybug camera on an electric scooter equipped with a computer and a

GPS device. The images captured from the Ladybug are saved and converted to a cubic

texture format. We are using extended cube faces of size 320x320 pixels each, while the

normal cubes have faces of size 256x256.

The optical flow calculation and correction took up to an hour on a 320x320 image

on an Athlon 64 X2 6000+/3GHz. We ran the optical flow calculation with an interval

for both x and y of [-40; 40] and we set the size of all the neighborhoods in the correction

pass to 11. The time needed to do these calculations is not constraining because these

are done during a preprocessing stage.

To evaluate the computational load of the interpolation process, we ran another 2

rounds of calculations on the same set of panoramas of resolution 320x320, one using only

the CPU and the other using our GPU implementation. To achieve a smooth transition

between images, we need to calculate at least 20 interpolated frames between each pair of

images. On the CPU, we created 20 transition images in 3 seconds. With our GPU based

interpolation scheme, we could generate up to 1000 images in 3 seconds, with identical

quality. Our GPU implementation only requires a graphics card supporting the shader

59



Results 60

model 1.0 and higher. Since the arrival of Windows Vista, most computers now come

with an on-board graphics chipset that supports shader programming which makes this

approach is accessible to a wide range of computers. We ran our tests on a Pentium M

1.7Ghz with a Radeon Mobility X700; more recent computer will perform even better.

7.2 On the Interpolation Evaluation

It is difficult from only the origin and target image to assess the accuracy of the generated

intermediate, especially regarding the position of the objects. In order to evaluate the

quality of the interpolated images, we ran the following test: we captured a sequence of

panoramas and then we calculated the flow between the odd panoramas only, ignoring

the even panoramas, these ones being used for comparison purposes. We then evaluated

the displacement field and interpolated between each one of them using our scheme. To

compare our interpolated panoramas with the stored panoramas, we assumed that all our

panoramas are at equal distance from each other (our scooter was moving at constant

speed). Using this assumption, we tested a few of the interpolation weights around

c = 0.5 and w = 0.5 and kept the value giving the best result to interpolate between In

and In+2. Comparing the two gives a good estimate of the quality of the interpolation

scheme. The results for one of our sequence are shown in Figure 7.2. It can be seen that

the quality of the interpolated image’s geometry is very similar to the corresponding

reference panorama with few artifacts visible. One important point is that since this

interpolation is built for real-time navigation and the user will not be stopping at an

interpolation image, so the smallest of artifacts will go unnoticed. Obviously, improved

optical flow algorithms would enhance the quality of these results.

In Figure 7.2, we show the interpolated images with the interpolation coefficient that

best correspond to the real (ground truth) panorama captured at interpolation location.

In Figure 7.3, we compare the interpolated extended cube panoramas with the ground

truth image from the same sequence as Figure 7.2. We compare the images pixel by pixel

to a reference panorama and display the resulting image in gray scale: the clearer the

pixels in the image are, the more different the pixels are. For each of the images, we get

a root mean square as a measure of comparison between the ground truth image with:

the origin image; the target image; the linearly interpolated image; the interpolated

image using uncorrected flow; and finally the interpolated image using the smoothed

flow. These results are indexed in Table 7.1. These results show that our interpolated

images are much similar to the actual image that the linearly interpolated image. The



Results 61

RMS Values when comparing the ground truth with the mentioned image

Origin Destination Linear Uncorrected Smoothed

18.4965 18.709 14.7515 9.67674 9.14825

25.5349 25.6267 20.6691 13.9703 13.6975

29.5894 31.5904 25.2227 15.8723 14.6142

27.7342 27.4573 22.0606 12.2229 11.2739

22.61 21.49 17.55 14.02 14.05

Table 7.1: Table showing some of our RMS results comparing a ground truth image with:

the origin image; the target image; the linearly interpolated image; the interpolated image

using uncorrected flow; and finally the interpolated image using the smoothed flow

interpolated images using the uncorrected flow and the smoothed flow get RMS values

that are usually lower, which shows that usually the image quality of the smoothed flow

version is higher than the uncorrected one. The last result in the table gives us results

for the images that are close to each other but visually, the artifacts in the smoothed

version are much less noticeable than the ones we have in the uncorrected version. Such

a situation can be seen in 7.1, where even though the smoothed version (bottom image)

also has artifacts, the overall image feels much cleaner and realistic than the uncorrected

version (top image). Finally the gain of the images obtained with the smoothed field

becomes much more obvious in dynamic cases than on static images, which is what we

aimed for.

In Figure 7.4 we show a transition sequence of our results on an exterior sequence.

The top and bottom images are the origin and destination images, and the other images

are transition frames, with coefficients w = c = 0.2, 0.4, 0.5, 0.6 and 0.8 from the top

to bottom image respectively. We see from this figure that even though there are a few

artifacts, the quality of the interpolated frames is very good and the geometry of the

scene is well preserved during the interpolation.



Results 62

Figure 7.1: This image shows an example of the visual improvements that are attained

by using the smoothed optical flow (bottom image) compared to the uncorrected version

(top image).



Results 63

Figure 7.2: Going from the top to bottom image, we have: the origin image; the linearly

interpolated image; the uncorrected flow interpolated image; the interpolated image using

a smoothed flow; the real image captured at the interpolated location (ground truth);

and the destination image. All interpolation uses the best matching parameter c = 0.45.



Results 64

Figure 7.3: Going from top to bottom image (and left to right), we have the comparison

images of the real panorama captured at interpolation location with: the origin image; the

target image; the linearly interpolated image; the interpolated image using uncorrected

flow; and finally with the interpolated image using the smoothed flow. All interpolated

images use the best matching parameter c = 0.45. This is the same sequence as the one

in Figure 7.2



Results 65

Figure 7.4: An outside sequence. Top and bottom images are the captured origin and

destination. The other images are (from top to bottom) interpolated images using the

smoothed optical flow field with c=0.2, 0.4, 0.5, 0.6 and 0.8.



Results 66

7.3 On The Use of Epipolar Constraint

In the previous chapter we showed that only reprojecting the calculated optical flow on

the epipolar lines was not sufficient and could even decrease the quality of the results.

However our second approach was more successful: we constrained the search of the

optical flow to those candidate shift that were close to the estimated epipolar lines. This

didn’t increase the overall quality of our images, but on certain parts of the images such

as the one shown in 7.5 the improvements are very noticeable and encouraging. This

figure shows on the left the transition images of a certain pair of images, interpolated

using a flow with epipolar constraining and smoothing, and on the right the interpolated

sequence using a flow with only the smoothing correcting. We can see that even though

there are artifacts in our epipolar constraining, the geometry of the scene is preserved

much better. Even though this is not usable yet, it shows great promise for future work

and should be an area to focus on to improve the results of our interpolation.



Results 67

Figure 7.5: A Zoom on a part of our transition sequence. On the left the transition

images of a certain pair of images, interpolated using a flow with epipolar constraining

and smoothing, and on the right the interpolated sequence using a flow with only the

smoothing correcting.



Results 68

7.4 On The Importance of Small Distances between

panoramas

All along this thesis we have used the assumption that our panoramas have to be cap-

tured at short distances from one another to ensure that the best interpolation quality

possible is attained. To illustrate this, we have ran another set of experiments. We use 4

panoramas: I0, I1, I2 and I3 from a sequence of panoramas where all the panoramas were

captured close to each other. From these panoramas, we interpolate 3 transition images,

to illustrate the degradation of the interpolation quality with the increase of the distance

between viewpoints. These images will be It0 , It1 and It2 which will be interpolated from

I1 and I2, I0 and I2 and finally I0, I3 respectively. To ensure that the comparison is

possible, we tried that all the interpolated images represented the same physical posi-

tion, to achieve this, we used the following weights w = c = 0.5, 0.75 and 0.5 for It0 ,

It1 and It2 respectively. Figure 7.6 illustrates our test set: we represent each sequence

with a different step value (1, to and 3 from top to bottom), where the panoramas drawn

in full represent the panoramas used for the interpolation and the dashed are the other

panoramas of the sequence but are not used. The red crosses represents the estimated

position of the interpolated panorama. It is also important to note that the increase

of the distance between viewpoints doesn’t only have an impact on the quality of the

interpolation, it also decreases the speed at which we can calculate the flow because the

maximum displacements intervals in the texture are bigger. In our experiments, for both

x and y we used an interval of [-40, 40] for the flow field calculation of It0 , [-80, 80] for It1
and finally [-120, 120] for It2 . We didn’t apply any smoothing to the flow field to further

illustrate the degradation of the results. In Figure 7.7 we show the interpolation image

that we retrived from an indoors sequence were the panormas were captured very close

to each other. The degradation in this image is noticeable but not major. In Figure

7.8 we ran the same test on different sequence of outdoors panoramas, that were taken

further away from each other. In this case the degradation of the image if much more

noticeable.



Results 69

Figure 7.6: This image shows the position of the different interpolated images that we

used to demonstrate the degradation of the interpolation quality with the increase of the

distance between viewpoints.



Results 70

Figure 7.7: This image illustrates the degradation in the flow calculation algorithm with

the increase of the distance between viewpoints from an indoors capture sequence.



Results 71

Figure 7.8: This image illustrates the degradation in the flow calculation algorithm with

the increase of the distance between viewpoints from an outdoors capture sequence.



Results 72

7.5 On the importance of Static Scenes

The second assumption that we use in our method is the fact that the scene has to be

static. In this section we will give an example that illustrates the importance of this

assumption. In this example, we have a car that drives by our viewpoint while we are

capturing the environment. Figure 7.9 shows the interpolation resulting from this image,

using uncorrected flow. From top to bottom, we show the origin image, the interpolated

images with coefficient w = c = 0.2, 0.5 and 0.7 respectively and the destination image.

We can see that the car disappears and suddenly reappears in the scene, and this is due

to the fact that the displacement of the object is too big and was not captured by our

optical flow interval. If the movement of the object had been smaller such as the one

seen in Figure 7.10 the movement would have been captured and the object wouldn’t

have had such artifacts. This problem is not present only with moving objects. It is

actually related to parts of the scene where the displacement is too big to be captured by

the interval chosen in the optical flow algorithm: such a case can be seen in Figure 7.9,

where the grass close to the viewpoints suffers from the same kind of ghosting artifacts as

the moving car. One possible solution would be increasing the interval used in the optical

flow algorithm, but this wouldn’t work for the car in this case because the car is changing

face, and the extended cube representation used does not capture enough of the scene

to see the destination of every of the pixels of the car. Also, even if we could increase

the size of the cube, we are limited to capturing at most half of the adjacent face, at the

cost of huge images and processing times, and this would still not be enough to be able

to follow any moving object at any moving speed. Thus a more general solution needs

to be found to deal with these cases. Such a solution would also allow us to dramatically

increase the distance between two consecutive viewpoints.

7.6 Conclusion

In this Chapter, we presented some of the results of our method. In the next Chapter

we will conclude on our work and we will present a few possible orientation for future

research.



Results 73

Figure 7.9: This image illustrates the artefacts that occur when a moving object is

present in our scene, such as the car in this example.



Results 74

Figure 7.10: This image illustrates the artefacts that occur when a moving object is

present in our scene, such as the car in this example.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have presented a new way of interpolating between pairs of panoramas

in real-time using the GPU, which allows us to navigate inside a scene and achieve a

high degree of realism. Our main contribution concerns the interpolation of intermediate

viewpoints of a scene in real-time using a computed optical flow field. Except for a

few artifacts, our results are of good quality, as long as the panoramas were taken at

reasonable distances from each other.

We first presented an algorithm to calculate the optical flow on planar surfaces,

and then we experimented with various methods designed to enhance the dense optical

flow field between pairs of cubic panoramas. Some of these methods show undeniable

improvements while other were less successful, but overall the quality of our optical

flow was improved. Our next improvements consisted in allowing real-time navigations

between a sequence of panoramas. This was successfully achieved by synthesizing new

panoramas on the GPU at a rate of at least 300 panoramas per second on slow GPUs

(at least 5 years old). But the unique implementation on the GPU was not enough to

achieve real-time navigation, and it wouldn’t have been possible to navigate through a

series of possibly an infinity of viewpoints without these 3 additional steps: buffering of

the data, multi-threading of the application and preprocessing of the optical flow and its

corrections.

Our interpolation algorithm can synthesize any number of new viewpoints given a pair

of panoramas, and the different panoramas can have any resolution desired by the user,

the only restriction being that a dense optical flow be made available for each of the pairs

75



Conclusions and Future Work 76

of panoramas. The transition sequences we synthesize are of high quality, but still present

some artifacts. By keeping in mind that the user cannot pause between panoramas, most

of the artifacts that occur during the synthesis of individual transition panoramas are

not noticeable during the navigation, but others are and these need to be corrected. It

is the authors’ belief that this problem would be completely corrected if a completely

accurate optical flow algorithm was devised. This is one of the advantages of our method:

the quality of the navigation will increase with the quality of more recent optical flow

without any additional effort being necessary to change our navigation software.

8.2 Future Work

There are many improvements that can be added to our approach to enhance the immer-

sion of the user and the quality of the immersion in any image-based virtual navigation

software. Some possible future work include but are not limited to the following:

1. Improve the quality of the flow field and make it faster to compute. Improving

the quality of the flow field would remove most/all of the artifacts present in our

generated transition images, which would in turn greatly increase the immersion

of the users.

2. Achieve real-time navigation not only on a selected path, but in the whole space

where the views have been taken. If this was achieved, the sense of immersion of

the user would be improved and this one would be able to freely move inside the

scene.

3. Since this architecture was designed to run on fairly old GPU, it would be very

interesting and fairly straightforward to develop a browser based framework to give

access to our navigation software to a wide audience.

4. Reduce the amount of data that is required at the moment. This is not such a

problem at the moment, but with the extension to online use, we would need to

transfer as little data as possible to be able to keep a high frame rate.

5. Find a way to acquire the data where the black hole is present in each of our

panoramas. This black hole is caused by the fact that we only use a single Ladybug

camera that is mounted on another device to move it around, and this device is in

the area where the black hole appears. First this creates a setback in the immersion



Conclusions and Future Work 77

side of our software and most importantly, in certain cases, can make our capture

loose important parts of the scene, as it would be the case if we were capturing the

Marble Court in the Palace of Versailles in France, to only name one example.



Appendix A

Environment Representation

As we explained before, we capture our environment through a series of panoramic im-

ages. These images are taken in sequence on a path followed by the camera. Thus we can

represent our environment as a 2 way graph, where the nodes are the different viewpoints

captured and the edges are the paths that can be taken by the user of our viewer (See

Figure A.1 for an example).

Within the architecture of our method, we are not limited to any number of paths

or any number of panoramas. Also some panoramas can be captured and added later to

our virtual environment, and their connection to the already existing panoramas can be

added easily.

78



Environment Representation 79

Figure A.1: An example graph representing the environment captured during one of our

capture sessions.



Appendix B

The NAVIRE Viewer

To demonstrate our real-time navigation method, we have developped the NAVIRE

viewer, which allows us to navigate in any environment that was previously captured. In

this appendix, we will describe the viewer’s user interface and the different features that

were made available to enhance the experience of the user.

The first important feature that is present in our viewer is the navigation window

(Figure B.1), which allows us to see a cubic panorama, and look around our view to

different parts of the scene. It also allows us to navigate between different cubes. The

next feature is the option to enable/disable ’smooth’ navigation, which allows us to

advance through multiple cubes in sequence. The smooth navigation will stop when we

come to an intersection. At this point a decision needs to be made by the user as to

which direction to take next. To increase the user ease to navigate in the environment, a

map of the environement is provided which rotates depending on the direction in which

the user is looking. The position of every cube in our sequence is also represented on

the map, every cube is drawn in white except for the cube that the user is currently

viewing, which is drawn in a different color (red in our case). Since the map is small, it

is sometimes difficult to identify which cube we are currently looking at on the map. To

alleviate this problem we provided 2 enhancements: the user can zoom in and out of the

map with the focus around the current panorama; the user can display the map in full

screen on top of the navigation window (Figure B.2).

Another feature that is present in our viewer architecture is an interface to position

on the map the sequence of cube that we are viewing (Figure B.3). This allows the user

to select a interval of cubes, and position them onto the map in a straight line (if the

path taken is square, we need to do this 4 times) and save it. Once the map has been

80



The NAVIRE Viewer 81

Figure B.1: In this figure we can see the navigation window and GUI of the NAVIRE

viewer.

created and we return to the navigation window, the map is automatically updated, and

the new position in the list of cubes is visible and used.



The NAVIRE Viewer 82

Figure B.2: In this figure we can see the one of our map feature, which allows us to see

the map full screen for a more detailed view.

Figure B.3: This figure shows the map creation interface of our application.



Bibliography

[1] Nvidia cuda, programming guide.

[2] Ptgui. http://www.ptgui.com/gallery/, 2010.

[3] Mario Sormann Andreas Klaus and Konrad Karner. Segment-based stereo matching

using belief propagation and a self-adapting dissimilarity measure. In Proceedings

of the 18th International Conference on Pattern Recognition, 2006.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up

robust features. Computer Vision and Image Understanding (CVIU), 110:346–359,

2008.

[5] S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to image

sampling. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(4):401–

406, 1998.

[6] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker.

Description of the algorithm, 2002.

[7] Shenchang Eric Chen. Quicktime vr: an image-based approach to virtual environ-

ment navigation, 1995.

[8] Eric Dubois Feng Shi, Robert Laganiere and Frederic Labrosse. On the use of ray-

tracing for viewpoint interpolation in panoramic imagery. In Proceedings of the 2009

Canadian Conference on Computer and Robot Vision, pages 200–207, 2009.

[9] Y. Furukawa and J. Ponce. Pmvs. http://www.cs.washington.edu/homes/furukawa/research/pmvs.

[10] R. Gupta and S.-Y. Cho. Real-time stereo matching using adaptive binary window.

In 3DPVT, 2010.

83



The NAVIRE Viewer 84

[11] R. Hartley. In defence of the 8-point algorithm. In Proceedings of the Fifth Inter-

national Conference on Computer Vision, pages 1064–1070, 1995.

[12] Richard I. Hartley. Theory and practice of projective rectification. International

Journal of Computer Vision, 35:115–127, 1999.

[13] Richard Hartley Hongdong Li. Five-point motion estimation made easy. Proceedings

of the 18th International Conference on Pattern Recognition, 1:630–633, 2006.

[14] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial

Intelligence, 17:185–203, 1981.

[15] T.S. Huang and A.N. Netravali. Motion and structure from feature correspondences:

A review. Proceedings of the IEEE, 82:252–268, 1994.

[16] J. Illingworth and J. Kittler. A survey of the hough transform. Computer Vision,

Graphics, and Image Processing, 44:87–116, 1988.

[17] Paul F. Whelan John Mallon. Projective rectification from the fundamental matrix.

Image and Vision Computing, 23:643–650, 2005.

[18] G. Lafruit R. Lauwereins K. Zhang, J. Lu and L. Van Gool. Real-time accurate

stereo with bitwise fast voting on cuda. In ICCVW, 2009.

[19] Sing Bing Kang and Heung-Yeung Shum. A review of image-based rendering tech-

niques. In Visual Communications and Image Processing. Institute of Electrical and

Electronics Engineers, Inc., 2000.

[20] Florian Kangni and Robert Laganiere. Rectification and pose recovery for spherical

images. Master’s thesis, University of Ottawa (SITE), 2007.

[21] S. Kolhatkar and R. Laganiere. Real-time virtual viewpoint generation on the gpu

for scene navigation. CGI 2010.

[22] S. Kolhatkar and R. Laganiere. Real-time virtual viewpoint generation on the gpu

for scene navigation. Computer and Robot Vision (CRV), 2010 Canadian Conference

on, pages 55 – 62, May 31 2010-June 2 2010.

[23] Maxime Lhuillier and Long Quan. Image interpolation by joint view triangulation.

In IN PROCEEDINGS OF THE CONFERENCE ON COMPUTER VISION AND

PATTERN RECOGNITION, FORT COLLINS, pages 139–145, 1999.



The NAVIRE Viewer 85

[24] Hongdong Li. A simple solution to the six-point two-view focallength problem. In

In European Conference on Computer Vision, pages 200–213, 2006.

[25] John Lim and Nick Barnes. Directions of egomotion from antipodal points. In

Computer Vision and Pattern Recognition (CVPR), 2008.

[26] John Lim and Nick Barnes. Estimation of the epipole using optical flow at antipodal

points. Computer Vision and Image Understanding (CVIU), 114:245–253, 2010.

[27] Charles Loop and Zhengyou Zhang. Computing rectifying homographies for stereo

vision, 1999.

[28] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an

application to stereo vision. In Proceedings of the 7th international joint conference

on Artificial intelligence, pages 674–679, 1981.

[29] David Luebke and Greg Humphreys. How gpus work, 2007.

[30] Jing Wang Xiaoxun Zhang Luping An, Yunde Jia and Mingxiang Li. An efficient

rectification method for trinocular stereovision. Proceedings of the Pattern Recogni-

tion, 17th International Conference on (ICPR’04), 4:56–59, 2004.

[31] Robert C. Bolles Martin A. Fischler. Readings in computer vision: issues, problems,

principles, and paradigms, chapter Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography, pages 726–

740. Morgan Kaufmann Publishers Inc., 1981.

[32] Wojciech Matusik, Matthias Zwicker, and Frdo Durant. Texture design using a

simplicial complex of morphable textures. In SIGGRAPH, 2005.

[33] Tomaso Poggio Michael J. Jones. Multidimensional morphable models: A framework

for representing and matching object classes. International Journal of Computer

Vision, 29:107–131, 1998.

[34] David Nistr. An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26:756–777, 2004.

[35] A. S. Ogale and Y. Aloimonos. Shape and the stereo correspondence problem.

International Journal of Computer Vision, 65:147 – 162, 2005.



The NAVIRE Viewer 86

[36] Abhijit S. Ogale and Yiannis Aloimonos. A roadmap to the integration of early

visual modules. International Journal of Computer Vision, 72:9 – 25, 2007.

[37] Ruigang Yang Henrik Stewnius David Nistr Qingxiong Yang, Liang Wang. Stereo

matching with color-weighted correlation, hierarchical belief propagation, and oc-

clusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31:492–504, 2009.

[38] Jan-Michael Frahm Rahul Raguram and Marc Pollefeys. A comparative analysis of

ransac techniques leading to adaptive real-time random sample consensus. Proceed-

ings of the 10th European Conference on Computer Vision: Part II, 5303:500–513,

2008.

[39] Mark A. Ruzon and Carlo Tomasi. Edge, junction, and corner detection using

color distributions. IEEE Transactions on Pattern Analysis & Machine Intelligence,

23:1281–1295, 2001.

[40] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence. International Journal of Computer Vision, 47:7 – 42,

2002.

[41] Steven M. Seitz. Toward interactive scene walkthroughs from images. In Proceed-

ings of the 1998 Workshop on Computer Vision for Virtual Reality Based Human

Communications (CVVRHC ’98), 1998.

[42] Steven M. Seitz and Charles R. Dyer. View morphing. In SIGGRAPH, 1996.

[43] Hans-Peter Seidel Sergey Kosov, Thorsten Thormhlen. Accurate real-time disparity

estimation with variational methods. Proceedings of the 5th International Sympo-

sium on Advances in Visual Computing: Part I, 5875:796–807, 2009.

[44] Lance Williams Shenchang Eric Chen. View interpolation for image synthesis. In

Proceedings of the 20th annual conference on Computer graphics and interactive

techniques, 1993.

[45] Feng Shi. Panorama interpolation for image-based navigation. Master’s thesis,

University of Ottawa (SITE), 2007.

[46] J. Shi and C. Tomasi. Good features to track. Technical report, Cornell University,

1993.



The NAVIRE Viewer 87

[47] N. Snavely. Bundler: Sfm for unordered image collections.

http://phototour.cs.washington.edu/bundler/.

[48] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring

photo collections in 3d. ACM Transactions on Graphics (SIGGRAPH Proceedings),

25:835–846, 2006.

[49] Changming Sun. Uncalibrated three-view image rectification. Image and Vision

Computing, 21:259–269, 2003.

[50] Xiaoyong Sun and Eric Dubois. View morphing and interpolation through triangu-

lation. Image and video communications and processing, 5685:513–521, 2005.

[51] Inigo Thomas, Inigo Thomas, Eero Simoncelli, and Eero Simoncelli. Linear structure

from motion. Technical report, University of Pennsylvania, 1994.

[52] Tina Y. Tian, Carlo Tomasi, and David J. Heeger. Comparison of approaches to

egomotion computation. In Proceedings of the 1996 Conference on Computer Vision

and Pattern Recognition, pages 315–320, 1996.

[53] Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative

optimization. In IEEE Conference on Computer Vision and Pattern Recognition,

2008.

[54] L. Xu and J.Y. Jia. Stereo matching: An outlier confidence approach. In ECCV08,

pages IV: 775–787, 2008.

[55] S. M. Seitz Y. Furukawa, B. Curless and R. Szeliski. Manhattan-world stereo.

CVPR, 2009.

[56] Steven M. Seitz Yasutaka Furukawa, Brian Curless and Richard Szeliski. Recon-

structing building interiors from images. In Twelfth IEEE International Conference

on Computer Vision (ICCV 2009), 2009.

[57] Huaifeng Zhang, Jan Cech, Fuchao Wu, and Zhanyi Hu. A linear trinocular recti-

fication method for accurate stereoscopic matching. In in British Machine Vision

Conf, pages 281–290, 2003.

[58] Heung-Yeung Shum Ziqiang Liu, Ce Liu and Yizhou Yu. Pattern-based texture

metamorphosis. In PG’02: Proceedings of the 10th Pacific Conference on Computer

Graphics and Applications, pages 184–191, 2002.


	Introduction
	Thesis Objective
	Thesis Contribution
	Thesis Outline

	Related Work
	View Morphing and View Interpolation
	Virtual View Generation

	Virtual Navigation
	Optical Flow
	Epipolar Geometry Estimation
	Conclusion

	Optical Flow Estimation
	Basic Algorithm Description
	Theory discussion
	Slanted Surface Handling

	Implementation discussion
	Algorithm Architecture
	The Matching Function
	The Goodness Functions

	Results
	Conclusion

	Estimating the optical flow on panoramic images
	Extended cubic representation
	Smoothing the flow vectors
	Epipolar Geometry Correction
	Epipolar Geometry Estimation
	Estimation of the flow fields on a cubic panorama
	Reprojecting the Optical Flow
	Constraining the Optical Flow Algorithm

	Conclusion

	View Interpolation
	Basic algorithm description
	Feature Extraction and Warp Computation
	Morphable Interpolation

	Interpolation on Pairs of Real Images
	Results using the various flow correction schemes
	Conclusion

	Real-Time Implementation
	Buffering
	Multi-Threading
	GPU Implementation
	A Brief Explanation of GPU Programming
	View Interpolation Implementation

	Conclusion

	Results
	On the Data Acquision Times
	On the Interpolation Evaluation
	On The Use of Epipolar Constraint
	On The Importance of Small Distances between panoramas
	On the importance of Static Scenes
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Environment Representation
	The NAVIRE Viewer

