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Abstract

This thesis presents a novel algorithm to iteratively compute camera paths of long im-

age sequences. Scale Invariant Features are first extracted from the ordered set of images.

These images are then matched pair-wise sequentially and correspondences are computed.

An initial geometric path is found after by applying a bundle adjustment algorithm on

these correspondences. Distances between cameras are computed from this initial estima-

tion. The iteration process starts by grouping nearby cameras and then bundle adjusting

the groups, and ends by merging the groups. This process is repeated until the reprojection

errors fall into the preset tolerance. The key point in this algorithm is to take advantage

of loopbacks in the image sequences. We have obtained excellent results for two camera

paths, namely the spiral path and the snake like path. Our algorithm achieves both precise

and stable results.

ii



Acknowledgments

Firstly, I would like to express my sincere gratitude to Dr. Robert Laganière for being a

great supervisor and mentor during my graduate studies. This thesis is completed under

his invaluable guidance, support and patience.

Secondly, I would like to thank my co-supervisor, Dr. Gerhard Roth, who offered help

and discussion whenever I was stuck with a research problem. His previous experiences

helped me a lot to avoid many unnecessary work. Several major problems were solved

after following his suggestions. This work would not have been possible without his help

and suggestions.

I would also like to thank the many VIVA lab members who gave me various assistant.

Finally, I am grateful to my parents and my family for their precious support.

iii



Contents

Abstract ii

Acknowledgements iv

Contents iv

List of Figures vii

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Cameras in Computer Vision 7

2.1 Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Camera Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Camera Parameters and Camera Matrices . . . . . . . . . . . . . . 13

2.2.2 Rotation and Translation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Reference Coordinate Systems . . . . . . . . . . . . . . . . . . . . . 19

2.3 Direct Viewing of Camera Pose . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Camera Center and Orientation . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Axis Angle Representation of Camera Pose . . . . . . . . . . . . . . 24

iv



3 Bundle Adjustment 26

3.1 Bundle Adjustment Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Bundle Adjustment Implementation . . . . . . . . . . . . . . . . . . 28

3.2 Bundle Adjustment Applications . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Hierarchical Bundle Adjustment . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Incremental Bundle Adjustment . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Constrained Bundle Adjustment . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Degenerate Bundle Adjustment . . . . . . . . . . . . . . . . . . . . 37

3.2.5 Ray-Point Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . 38

3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Path Reconstruction of Long Image Sequences 41

4.1 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Camera Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Ordered Multi-view Correspondence . . . . . . . . . . . . . . . . . 45

4.2.3 Camera Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.4 Unordered Multi-view Correspondence . . . . . . . . . . . . . . . . 56

4.2.5 Reliable Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Identifying the 3-D Rigid Body Transformation between Point Sets 59

4.3.2 Registration of Camera Groups with 3-D Points . . . . . . . . . . . 61

4.3.3 Coplanar Cameras Registration . . . . . . . . . . . . . . . . . . . . 63

5 Experimental Results 65

5.1 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Initial Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Segments Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 68

v



5.2.2 Segment Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Refined Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Groups Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Groups Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion 80

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 85

vi



List of Figures

1.1 Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Pinhole camera model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Principal point offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Rotation and Translation between world coordinate system and camera

coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The relationship among P, K and Q. . . . . . . . . . . . . . . . . . . . . . 15

2.5 Rotation of a point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Rotation of a coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Sections associated with the system Flow Chart. . . . . . . . . . . . . . . . 43

4.2 Segmentation illustration. The original N-image sequence is divided into

L-image segments with t% overlappings. . . . . . . . . . . . . . . . . . . . 45

4.3 Detected correspondences from the first three images. . . . . . . . . . . . . 46

4.4 Support set correspondences of the first fundamental matrix. . . . . . . . . 47

4.5 Support set correspondences of the second fundamental matrix. . . . . . . 47

4.6 Correspondences in the support set for the trilinear tensor of the first 3

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



4.7 The reconstruction of the sample 10-image segment. The box like ob-

jectes represent the camera locations where the corresponding images where

taken, the small white dots are the reconstructed 3-D matches correspond-

ing to the 2-D image matches in Figure 4.6. . . . . . . . . . . . . . . . . . 49

4.8 Distances comparison. The point with the shortest maximal distance is

added to the group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Grouping illustration. G1, G2 and G3 are the three groups, G2 is overlapped

with G1 and G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 The unordered church image sequence. . . . . . . . . . . . . . . . . . . . . 57

4.11 Reconstructed group. The church images are unordered, there is no IDs

assigned to the reconstructed camera positions. . . . . . . . . . . . . . . . 58

4.12 Registration of two overlapping groups. . . . . . . . . . . . . . . . . . . . . 60

5.1 Spiral path and snake like path. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 The first 20 images from the spiral path. . . . . . . . . . . . . . . . . . . . 67

5.3 Reprojection error of different length of segments. . . . . . . . . . . . . . . 69

5.4 The matching features in the first a few images. . . . . . . . . . . . . . . . 70

5.5 The reconstruction of the first segment. . . . . . . . . . . . . . . . . . . . . 71

5.6 The reconstruction of the second segment. . . . . . . . . . . . . . . . . . . 72

5.7 Registration of the first two segments. . . . . . . . . . . . . . . . . . . . . 72

5.8 Top view and side view of the initial reconstruction. Camera 1, 96 and 191

have been enlarged; these ones should be aligned according to views shown

in figure 5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Loop back images: from left to right are image 1, 96 and 191. . . . . . . . . 74

5.10 The lower figure is the reconstructed group, the upper figure is the corre-

sponding group camera positions in the initial estimation. . . . . . . . . . . 75

5.11 Top view and side view of the final reconstructed camera paths. . . . . . . 76

5.12 Side view and top view of the snake like path. . . . . . . . . . . . . . . . . 77

viii



5.13 The reconstruction of the snake like path. . . . . . . . . . . . . . . . . . . 78

5.14 The convergency comparison of the spiral path and the snake like path. The

thin line represents the spiral path error trend, the thick line represents the

snake path error trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



Chapter 1

Introduction

In this chapter, we first describe the problem that will be solved in this thesis. After a

brief introduction to bundle adjustment, we analyze both its merits and demerits. Several

indirect bundle adjustment approaches are also introduced. The objectives of the thesis

is to compute the camera path from a set of images and it is described next. Finally, the

organization of this thesis is presented.

1.1 Problem Description

Camera pose estimation has been explored for the past few decades and it still remains an

active topic. The object is to find both the camera positions and the camera orientations

from a sequence of images taken by a camera. Although this problem seems to be straight-

forward, there is no direct solution that can solve it in a simple way. The applications of

camera pose estimation are in the field of Image Based Rendering (IBR) [1], Robotics [2],

Photogrammetry [3] and Virtual Navigation(VI) [4]. Several successful pose estimation

methods have been proposed for specific short image sequences, such as in [5, 6, 3, 7].

We see from these works that bundle adjustment produces good results since it provides

a true maximum likelihood estimation even when some of the input data is missing [8].
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CHAPTER 1. INTRODUCTION 2

Bundle adjustment is an iterative method that provides an optimized solution to mini-

mize the overall error between the measured 2-D feature points and the projected 2-D

feature points. It does this by simultaneously adjusting the camera parameters and the

3-D scene structure as a bundle. It is a general method that can be used to solve many

reconstruction and optimization problems. Unfortunately, bundle adjustment has intrinsic

drawbacks [9, 8]: i) it requires a good initialization; ii) it is an extremely time consuming

process; and iii) it does not always converge. These problems become severe when dealing

with long image sequences that contain hundreds of images.

The nonlinear nature of the bundle adjustment process makes the convergence sensitive

to the initial estimate. For this reason, bundle adjustment is always used as the last step

in a optimization problem to increase the overall precision. Poor initialization will result

in an incorrect solution or even divergence. The bundle adjustment process takes a large

amount of input data and tries to minimize the overall error by altering all the input

data at the same time and then re-computes a solution. This could be very complex and

time consuming. In general, bundle adjustment is rarely used directly to solve large scale

camera path problems.

Two methods that try to deal these issues are the hierarchical merging of sub-sequences

and the incremental bundle adjustment [8]. In the hierarchical scheme, a long sequence is

divided into smaller, possibly overlapping, sequences that are then merged together. i.e.

the long sequence is subdivided over and over again until the bundle adjustment converges

at each sub-sequence, and then the sub-sequences are combined to generate the original

sequence. A global bundle adjustment is then applied on the sequence to find the complete

reconstruction. However, it is not efficient to run the global bundle adjustment on long

image sequences because of the very large number of frames involved. Moreover, the

hierarchical methods suffer from the accumulated error built during the merging process.

It results an initial reconstruction that has drifted away from the real location and the

final bundle adjustment may not converge due to the poor initial reconstruction.
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The incremental bundle adjustment starts by processing only a small portion of the

original input data since the sub-sampled data are more likely to converge and an ini-

tial estimate can be found more easily. When either new frames or new feature points

added, the bundle adjustment is executed again to refine the initial reconstruction. Al-

though better results are theoretically expected using the incremental bundle adjustment,

it is obvious that the computation costs are significant and this is not appropriate when

processing large number of frames.

In this thesis, we propose to fuse these two possible strategies into an integrated

framework that will make scalable 3-D reconstruction possible, e.g. where hundreds of

viewpoints have to be simultaneously processed.

1.2 Thesis Objectives

The goal of this thesis is to relate the different camera views to each other in order to obtain

the camera pose information, and to extract some depth cues concerning the observed

scene. This information will be used for both data compression and view synthesis. We

will investigate different bundle adjustment formulations and adapt them to the particular

configuration of each defined problem. Feature matching is also a key element in this work.

Stable features must be detected and reliably matched. Different invariant descriptors

must therefore be identified and validated. In particular, invariants based on SIFT (Scale

Invariant Feature Transform) features are explored since they appear to constitute a

promising tool to achieve both rotational and scale invariance.

In this thesis, we present an iterative algorithm that computes the camera path of

long image sequences. It consists in applying successive bundle adjustment phases on

different segments of the image sequence. The local camera path models thus obtained

are merged together into a common reference frame. The procedure is then repeated

on a new grouping of the cameras, until the reconstruction error is below a given error

tolerance.
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Figure 1.1 depicts the flow chart of our system. A long image sequence is first separated

into overlapping segments through segmentation and feature points are detected in each

frame. These points are then matched across the images of each segment [7]. We obtain

the reconstruction of the segments using bundle adjustment on the matches. Registration

of the segments is possible because the segments are overlapping. We then reconstruct the

camera path of the entire image sequence after registering all the segments. This is the

initial reconstruction and it is unlikely to pass the error tolerance test. Next we partition

the initial reconstruction into overlapping groups based on the relative positions among

the reconstructed cameras. Matches are extracted from the images in a group and are

sent to the bundle adjuster. Then the reconstructed groups will be registered and a better

reconstruction can be found. The refined reconstruction will also go through the error

tolerance test. We output the reconstructed path if the error limit is reached, otherwise

we process the path again.

The main objective of the proposed approach is to ensure the scalability of the re-

construction and the good convergence of the bundle adjustment process by imposing a

limit on the number of views for which the structure and motion parameters have to be

simultaneously optimized. Indeed, we never run a global bundle adjustment on the full set

of images. Error accumulation is also prevented by exploiting the presence of loopbacks

in the camera path.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 1 introduces the problem that this work will be targeting. The objectives of

the thesis and the organization of the thesis are also described in this chapter.

We explain in detail the camera models and camera representations in computer vision

in Chapter 2. A simplified camera model is described first. A three dimensional (3-D) scene

point is projected to a two dimensional (2-D) point on a plane. The relationship between
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Figure 1.1: Flow Chart.



CHAPTER 1. INTRODUCTION 6

the 3-D point and the 2-D point can be described by a projection matrix. Then, we clarify

several specific matrices used to represent camera poses, and also define the rotations and

translations with respect to reference coordinate systems. Correct camera poses can not be

computed without precisely defined rotations and translations with a specified coordinate

system. In the last section, we describe a way to view 3-D camera poses from normalized

camera matrices.

Bundle adjustment is the core throughout this work. Chapter 3 explains how the

bundle adjustment works in details, including the algorithm analysis and a possible im-

plementation. We also review some bundle adjustment applications in Chapter 3.

Chapter 4 describes how to reconstruct the camera paths from long image sequences

in great detail. The original long image sequence is separated into overlapping segments

based on the sequential information. An initial camera path is found after bundle adjusting

and registering the segments. We then use a robust grouping algorithm to partition the

initial cameras into overlapping groups with desired group size and overlapping scale by

assigning the closest neighbors to the same group. We bundle adjust and register the

groups to create a better path reconstruction. The grouping-bundle adjusting-registering

iteration will go on until an acceptable result is found.

In Chapter 5 we demonstrate how to reconstruct the long camera paths step by step.

We focus on the spiral path since it contains simultaneous rotation and translation. Images

were taken with an ordinary digital camera and they are processed according to the

algorithms described in Chapter 4.

In Chapter 6, we conclude the thesis and describe the contributions. We also suggest

some work to be done in the future.



Chapter 2

Cameras in Computer Vision

This chapter introduces the camera models that will be used throughout this thesis. We

first introduce a simplified camera model and derive how images are formed. Then, we

demonstrate how cameras are to be represented. Several commonly used camera matrices

are explained and their relationships are discussed. We also explore the rotations and the

translations associated with the cameras. Finally some reference coordinate system that

are used in the camera models are defined.

2.1 Camera Model

Cameras in computer vision are modeled as a projection from a 3-D scene to 2-D images.

The reflected rays from the real world objects pass through the camera lenses, and are

then recorded on a film or on a CCD sensors as images. An image is composed of thou-

sands of pixels. Each pixel reflects the strength of the incoming rays that was reflected

by a object. Figure 2.1 is a simplified camera model. In this model, we only consider one

image pixel and the corresponding ray along with the 3-D point that generates the ray

since other image pixels are generated in the same fashion. Two assumptions are made in

this model:

7



CHAPTER 2. CAMERAS IN COMPUTER VISION 8

Figure 2.1: Pinhole camera model.

1. Assume that the origin of the coordinates in the image plane is at the principal

point.

2. Assume that the world coordinate frame is the same to the camera coordinate frame.

These assumptions will be dropped later on to accommodate general cases.

Consider a scene point X =




X

Y

Z


 in a 3-D space. This particular point will be

mapped to a image point x =


 x

y


 on a 2-D camera plane through projection. If f is

the camera focal length, we have the following equations from similar triangles:

f

Z
=

x

X
=

y

Y
(2.1)

Rewriting and separating Equation (2.1), we obtain the direct perspective projection
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Figure 2.2: Principal point offset.

equations:





x = fX
Z

y = fY
Z

(2.2)

The principal point is not at the origin of the coordinates in the image plane. In fact,

there is always an offset between the image plane coordinate origin and the principal

point. If the coordinate of the principal point in the image plane is p =


 px

py


, as shown

in Figure 2.2, then Equation (2.2) needs to be amended to include the principal point

offset:





x = fX
Z

+ px

y = fY
Z

+ py

(2.3)

The first assumption has been dropped in Equation (2.3) since we have considered the

the principal point offset.
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The mapping we are seeking is a 3-D to 2-D projection:




X

Y

Z


 −→


 x

y


 (2.4)

Replacing the 2-D point in Equation (2.4) by Equation (2.3), we have:




X

Y

Z


 −→




fX
Z

+ px

fY
Z

+ py


 (2.5)

Using the homogeneous form of both the 2-D point x̂ =




x

y

1


 and the 3-D point

X̂ =




X

Y

Z

1




, the right side of Equation (2.5) can be rewritten as:




fX
Z

+ px

fY
Z

+ py

1


 =

1

Z




fX + pxZ

fY + pyZ

Z


 =

1

Z




f 0 px 0

0 f py 0

0 0 1 0







X

Y

Z

1




(2.6)

Define K as the calibration matrix:

K =




f 0 px

0 f py

0 0 1


 (2.7)



CHAPTER 2. CAMERAS IN COMPUTER VISION 11

Figure 2.3: Rotation and Translation between world coordinate system and camera coor-

dinate system.

After we combining Equations (2.4),(2.5),(2.6) and (2.7), and rewriting it in a concise

form, the 3-D to 2-D mapping can be expressed as:

s x̂ = K[I|0]X̂ (2.8)

where s is a scale factor that counteracts Z.

Since the 3-D scene points are always referred in the world coordinate system instead

of in the camera coordinate system, we are now ready to drop the second assumption.

In other words, we need to consider the difference between the world coordinate system

and the camera coordinate system, as shown in Figure 2.3. A 3-D rotation and a 3-

D translation will be applied to one of the coordinate systems so that it is completely

overlaps the other coordinate system.

The difference between a world coordinate system and a camera coordinate system

is symmetrical. The rotation and translation applied on the first coordinate system for

it to be superposed on the second one is the same to the inversed rotation and inversed

translation applied on the second coordinate system for it to be superposed on the first
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one. A reference coordinate system has to be selected first. Although the world coordinate

system will be the reference eventually, it is more convenient and straightforward to find

the rotation and translation if we choose the camera coordinate system as the reference.

Thus the rotation R is defined as the rotation of the world coordinate system in the

camera coordinate system, and the translation T is defined as the coordinates of the world

coordinate system origin in the camera coordinate system. We then can convert the 3-D

point coordinates from the world coordinate system to the camera coordinate system:

Xcam = RXworld + T (2.9)

Using the homogeneous forms of Xcam and Xworld, and substituting Equation (2.9)

into Equation (2.8), (X̂ in Equation (2.8) is actually X̂cam), we have:

s x̂ = K[I|0](RX̂world + T) = K[R|T]X̂world (2.10)

Define the projection matrix:

P = K[R|T] (2.11)

The camera model can finally be described as:

s x̂ = PX̂ (2.12)

2.2 Camera Representations

In order to position a camera in a 3-D space, we need to know both the location and

the orientation of the camera. In this section, we demonstrate how to represent camera

poses as well as the techniques used to obtain camera locations and camera orientations. A

world reference coordinate frame is first defined to include all the cameras. A scaling factor

is also chosen such that all the cameras are in a relatively close area and the distances

between them are moderate. The camera pose is defined in the form of matrices. Each
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camera pose is associated with a matrix from which the camera location and orientation

can be extracted.

2.2.1 Camera Parameters and Camera Matrices

The complete camera information comprises the internal camera parameters and the ex-

ternal camera parameters. The internal camera parameters are those that are attached

to a specific camera and they do not change. These parameters can be found from the

camera specifications given by the manufacturer, or by any camera calibration process. In

computer vision, the internal camera parameters are represented by a calibration matrix

K. The matrix K gives the camera information such as the camera focal length, the prin-

cipal point coordinates, etc. The external camera parameters are those that define the

camera location (or it is called the camera center) and the camera orientation. For each

image that was taken by a camera, there is a specific camera location and a specific cam-

era orientation associated with that image. We will use the term “image” and “camera”

interchangeably in this thesis. A camera location defines where the camera is, and it is

represented by a 3-vector T called translation vector. A camera orientation defines what

direction the camera faces, and it is represented by a 3 by 3 matrix R called a rotation

matrix.

In the computer vision field, the terms ”projection matrix”, ”camera matrix” and

”normalized camera matrix” are used. We will now explore these concepts and derive the

relationships among them.

Camera Internal Parameters.

We know that the internal camera parameters can be represented by a calibration matrix

K. K is a mapping from 3-D points in a camera coordinate system to 2-D points in an

image coordinate system. For a CCD camera that uses the pixel coordinates, it is in the

form of
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K1 =




mx f 0 mx px

0 my f my py

0 0 1


 (2.13)

where f is the camera focal length,


 px

py


 are the coordinates of the principal point, mx

and my are the number of pixels per unit distance in image coordinates in the x and y

directions [8].

The calibration matrix K converts the 3-D Euclidean coordinates Xcam to 2-D Pixel

coordinates ximage.

s x̂image = KXcam (2.14)

Camera External Parameters.

We know that the external camera parameters include the camera location and camera

orientation. A camera location is a 3-vector in a reference coordinate system. In computer

vision, it is represented by the translation T. A camera orientation is the combined rota-

tions of the X, Y and Z axis in a reference coordinate system. In computer vision, it is

represented by the rotation matrix R. A normalized camera matrix Q is a mapping from

3-D points in a world coordinate system to 3-D points in a camera coordinate system. It

is defined [10] as:

Q = [R|T] =




r11 r12 r13

r21 r22 r23

r31 r32 r33

∣∣∣∣∣∣∣∣∣

tx

ty

tz


 (2.15)

1Here the pixel coordinates are used to define the matrix K, while Euclidean coordinates are used to

define the matrix K in Equation (2.7).
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Figure 2.4: The relationship among P, K and Q.

The normalized camera matrix Q converts the 3-D points coordinates in the world

reference frame Xworld to the 3-D points in the camera reference frame Xcam:

Xcam = QX̂world (2.16)

where X̂world is the homogeneous form of Xworld.

Projection Matrix.

The projection matrix, which is denoted by P, is also called the camera matrix. It is

a mapping from 3-D object points to 2-D image points. The 3-D object points are in a

Euclidean coordinate system, while the 2-D image points are in a Pixel coordinate system.

The 3 by 4 projection matrix is defined [8] as:

P = K[R|T] (2.17)

The projection matrix maps Xworld to ximage:

s x̂image = PX̂world (2.18)

where s is a scaling factor and x̂image is the homogeneous 2-D image point of the corre-

sponding homogeneous 3-D object point X̂world.
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Comparing Equation (2.15) and (2.17) we find that the projection matrix is the prod-

uct of the calibration matrix and the normalized camera matrix. Figure 2.4 gives a clear

view of this relationship. The 3-D points in a world reference frame are first converted

to the 3-D points in a camera reference frame by applying a normalized camera matrix,

and the 3-D points in a camera reference frame are then converted to the 2-D pixel image

points in an image reference frame by applying a calibration matrix. Since the calibration

matrix is the internal camera parameters, we do not need it when computing the camera

pose. We will only focus on the normalized camera matrix Q because it contains all the

camera pose information.

2.2.2 Rotation and Translation

Considering rotations and translations without clearly describing the context can lead

to ambiguity. One has to know whether the rotations and translations refer to points or

coordinate systems.

We will explain how the rotation is computed [11]. For simplicity, we only discuss the

process in 2-D but 3-D rotations can be derived similarly.

Rotation of Points.

Let us suppose a point p1 =


 x1

y1


 is rotated counter clockwise with a rotation angle θ

to p2 =


 x2

y2


 in a fixed coordinate system. As can be seen from Figure 2.5, ρ is the

distance from the coordinate origin to the point p1, while α is the angle from the positive

x direction of the coordinate system to the vector
−−→
Op1. The coordinates of p1 and p2 are

defined by the equations below:





x1 = ρ cos α

y1 = ρ sin α
(2.19)
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Figure 2.5: Rotation of a point.





x2 = ρ cos(α + θ) = ρ cos α cos θ − ρ sin α sin θ

y2 = ρ sin(α + θ) = ρ cos α sin θ + ρ sin α cos θ
(2.20)

Substituting Equation (2.19) into Equation (2.20), we obtain:





x2 = x1 cos θ − y1 sin θ

y2 = x1 sin θ + y1 cos θ
(2.21)

Let us rewrite Equation (2.21) in a matrix form, the coordinates of p2 can be computed

as:


 x2

y2


 =


 cos θ − sin θ

sin θ cos θ





 x1

y1


 (2.22)

Defining the rotation matrix as: R =


 cos θ − sin θ

sin θ cos θ


 , we have:

p1 = Rp2 (2.23)
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Figure 2.6: Rotation of a coordinate system.

Rotation of Coordinate Systems.

Let us suppose the coordinates of a fixed point p in the original coordinate frame is


 x

y


,

the coordinates of the same fixed point p in the new coordinate frame that has been

clockwise rotated with a rotation angle θ is


 x′

y′


 . According to Figure 2.6, the new

coordinates of p can be computed as:





x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ
(2.24)

Let us rewrite Equation (2.24) in a matrix form, the coordinates of p in the clockwise

rotated coordinate frame can be computed as:


 x′

y′


 =


 cos θ − sin θ

sin θ cos θ





 x

y


 (2.25)
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Comparing Equation (2.22) with (2.25) we conclude that:

Rotation of a point in a fixed coordinate system is equivalent to

the inverse rotation of a coordinate frame for a fixed point.

(2.26)

Unless specified explicitly, we do not know whether the rotation in the equation is

applied on a point or is applied on a coordinate system. In the next subsection we present

some definitions for the rotations and translations that should be helpful in removing the

possible ambiguities.

2.2.3 Reference Coordinate Systems

In the literatures [8, 12, 9], rotation and translation are often used without explicitly

indicating the object and reference. Consider the equation below:

Xcam = [R|T]X (2.27)

No information is given in this equation as to whether R and T is rotating and trans-

lating a point or a coordinate system. Furthermore, we do not know what the reference

coordinate system is for the rotation and translation.

We propose the following definitions for the different rotations and translations.

Reference Coordinate System for Moving Points:

Rpt→w: Rotation of points in the world coordinate frame.

Tpt→w: Translation of points in the world coordinate frame.

(2.28)

The reference coordinate system is always fixed for moving points. It is convenient to
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define a global reference when dealing with points. In this thesis, point movements are all

defined w.r.t.(with respect to) the world coordinate frame.

Reference Coordinate System for Moving Coordinate Systems:

Rc→w: Rotation of the camera coordinate frame w.r.t. the world coordinate frame.

Tc→w: Translation of the camera coordinate frame w.r.t. the world coordinate frame.

Rw→c : Rotation of the world coordinate frame w.r.t. the camera coordinate frame.

Tw→c: Translation of the world coordinate frame w.r.t. the camera coordinate frame.

(2.29)

When moving a coordinate system, we always need to specify the reference. The above

definitions clearly state which coordinate system is moving and which coordinate system is

the reference. Performing a left multiplication of the point coordinates by a matrix means

moving the point to a new position. Then, as has been presented in Equation (2.23), the

implicit expression

Xcam = [ R | T ]X̂ (2.30)

should be rewritten explicitly as

Xcam = [ Rpt→w | Tpt→w ] X̂world (2.31)

We have concluded that moving a point in a fixed frame is the same to moving the

reference in an opposite direction. For the above example, moving the point in the world

coordinate system is equivalent to the same point seen in the inversely moved camera

coordinate system. In other words, the above equation is equivalent to:

Xcam = [ R−1
c→w | T−1

c→w ] X̂world (2.32)

where R−1 is the inversed rotation and T−1 is the inversed translation.
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This equation computes the coordinates of a fixed point in the camera reference frame

that were inversely moved w.r.t. the world reference frame.

Since the movement between the world frame and the camera frame are relative, one

more equivalent equation can be derived:

Xcam = [ Rw→c | Tw→c ] X̂world (2.33)

Comparing the Equation (2.16) with Equation (2.33), we conclude that:

The normalized camera matrix is actually the movement of the world coordinate

system w.r.t the camera coordinate system:

Q = [ Rw→c | Tw→c] (2.34)

2.3 Direct Viewing of Camera Pose

Camera poses are defined by camera matrices. It is desirable that the matrices be inter-

preted in 3-D space so that we can obtain a good representation of the relative cameras

positions of a real scene. We first extract the camera center and the camera orientation

from a normalized camera matrix, and then convert the camera orientation into an axis

angle representation. At this stage, a camera pose can be defined by its position expressed

as a 3-vector camera center and its orientation expressed as a 4-vector axis angle. The

3-vector camera center along with the 4-vector axis angle can be interpreted by any 3-D

viewer and a direct view of the camera pose is possible.
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2.3.1 Camera Center and Orientation

Rotations and translations have been defined for several different cases, and the camera

matrices have been clearly explained. We are now ready to bring forth the way we obtain

camera center C and camera orientation O from a normalized camera matrix Q.

The camera center is defined as the coordinates of the camera frame origin in the world

coordinate system, and the camera orientation is defined as the camera frame rotation in

the world coordinate system. Considering the definitions we proposed in Box (2.29), we

have the following identical equations:

C ≡ Tc→w (2.35)

O ≡ Rc→w (2.36)

From Equation (2.34) we understand that the normalized camera matrix contains the

world rotation and world translation in a camera reference frame. To display the relative

camera poses in 3-D mode, we need the camera rotation and camera translation in a world

reference frame, which is the inverse of what we have in the normalized matrix. In other

words, the problem becomes to convert Rw→c to Rc→w and to convert Tw→c to Tc→w.

This can be done by computing the inversion of Rw→c and Tw→c.

The rotation matrix is orthogonal; its inversion is just the transpose of itself.

Rc→w = R−1
w→c = RT

w→c =⇒ O = RT
w→c (2.37)

It is a little bit complex to compute the translation. If there is no rotation between the

camera frame and the world frame, the camera coordinate origin in the world reference

frame is just the negated world frame translation (−Tw→c). Unfortunately, there always

exists a rotation between the camera reference frame and the world reference frame. We

must take this relative rotation into consideration. Note that the negative world frame
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translation is still in the camera reference frame, the camera frame rotation Rc→w must

be applied to (−Tw→c) in order to transform it to the world reference frame:

Tc→w = T−1
w→c = Rc→w(−Tw→c) =⇒ C = O(−Tw→c) (2.38)

The above derivations demonstrate how to compute the camera center and camera

orientation separately. We also have an alternative approach that can compute the camera

center and camera orientation simultaneously.

Using the homogeneous forms for both Xcam and Xworld, and also using the augmented

Q so that Q becomes a square matrix and invertible, we can rewrite Equation (2.16) as

the following by left multiplication of both sides with an inverted Q̂:

Q̂−1 X̂cam = X̂world (2.39)

The left side of Equation (2.39) shows that the 3-D point in the camera reference

frame is left multiplied by the inversed normalized camera matrix. This means the 3-D

point in the camera reference frame is moved to a new position, and the coordinates

of this new position in the camera reference frame is exactly the same to its original

coordinates(before it was moved) in the world reference frame. Also, it is equivalent to

inversely move the world coordinate frame w.r.t. the camera coordinate frame. So we

have:

Q−1 =
[

R−1
w→c | T−1

w→c

]
(2.40)

This is equivalent to:

Q−1 =
[

Rc→w | Tc→w

]
=⇒ Q−1 =

[
O | C

]
(2.41)

It can be seen clearly from Equation (2.41) that the reversed normalized camera matrix

contains both camera center and camera orientation in the world reference frame. In other
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words, we can find the camera center and camera orientation in the world reference frame

simultaneously by computing the inversed normalized camera matrix.

2.3.2 Axis Angle Representation of Camera Pose

Now we have the rotation and translation of the camera coordinate frame w.r.t. the world

coordinate frame, we want to view the 3-D camera pose directly. A camera translation

w.r.t. a world coordinate frame Tc→w is in the form of a 3-vector, it can be used without

any modifications. A camera rotation w.r.t. a world coordinate frame Rc→w is in the form

of a matrix, it needs to be converted to the 4-vector axis angle before being sent to a 3-D

viewer.

The axis angle is a 4-vector that can be used to represent rotations which consists of

a unit vector and an angle of revolution about that vector. It is defined as [13]:

A =




x

y

z

θ




(2.42)

where the first 3 elements define the rotation axis, and the 4th element defines the

rotation angle.

Given a rotation matrix:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 (2.43)

The corresponding axis angle is:
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x = r32−r23√
(r32−r23)2+(r13−r31)2+(r21−r12)2

y = r13−r31√
(r32−r23)2+(r13−r31)2+(r21−r12)2

z = r21−r12√
(r32−r23)2+(r13−r31)2+(r21−r12)2

θ = cos−1( r11+r22+r33−1
2

)

(2.44)

For each camera in a sequence, the translation




Tx

Ty

Tz


 defines the camera center, and

the axis angle




x

y

z

θ




defines the camera orientation.

After generating the file that contains the cameras defined by the translations and

axis angles, we can view the corresponding 3-D camera poses directly.



Chapter 3

Bundle Adjustment

Bundle adjustment is widely used because of its remarkable advantages [8] such as: i) it

can provide a true maximum likelihood estimate even when some input data are missing;

ii) it allows assignment of individual covariance to each measurement and can be extended

to include estimates of priors and constraints on camera parameters or 3-D scene point

positions. However, bundle adjustment is not an ideal algorithm since it has inherent

weaknesses that prevent it from being used directly. Thus bundle adjustment should be

used in a way that can maximize its benefits while at the same time suppressing its

drawbacks. This chapter explores the bundle adjustment algorithm and also introduces

some applicable bundle adjustment applications.

3.1 Bundle Adjustment Algorithm

Bundle adjustment is the process by which globally visually consistent solutions are found

for the structure and motion of a scene viewed by multiple cameras. As can be seen from

the camera model described in Section 2.1, the 3-D scene point X is to be reprojected to

the 2-D point x′ in the image plane through the camera matrix. Ideally, this reprojected

point x′ is identical to the measured 2-D point x in the image. However, due to noise and

26
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other errors, x′ fails to be exactly the same as x. If an initial estimate of the structure and

motion is available, bundle adjustment is able to find a solution with minimal errors for

all 2-D, 3-D points and projection matrices. The bundle adjustment procedure has been

described by many authors [8, 14, 15]. The problem is usually formulated as follows:

Given xij, the ith 2-D point of the jth image, find the maximum likelihood camera

projection matrix P′
j and the maximum likelihood 3-D point X′

i simultaneously such that

the reprojected image point x′ij is as close as possible to the given image point xij. In

general, the reprojected image point x′ij is not identical to the measured image point

xij because of the noise. Bundle adjustment tries to minimize the overall error between

the given 2-D points and the reprojected points by adjusting all the camera projection

matrices and the 3-D points. Several equivalent minimization equations of the bundle

adjustment are shown below:

min
∑
i,j

d(x′ij , xij)
2 = min

∑
i,j

d(P′
j ·X′

i , xij)
2 = min

∑
i,j

d(KQ′
j ·X′

i , xij)
2 . (3.1)

where d(a , b) is the geometric image distance between the homogeneous points a and b.

Bundle adjustment is an iterative process. First the reprojected point x′ij is computed

from the given initial estimate of the projection matrices Pj
′ and the 3-D points Xi

′. After

a small adjustment to both Pj
′ and Xi

′, we again compute the reprojected point.

x′′ij = (P′ + ∆P)j × (X′ + ∆X)i (i = 1 · · ·M , j = 1 · · ·N) (3.2)

An iterative process based on the steps above will continue until the final error toler-

ance is reached. In practice, bundle adjustment does not always return a correct answer.

It is a non-linear minimization process and it relies heavily on the initial estimate of the

camera position and the 3-D scene points [9]. A bundle adjustment method either diverges

or return a wrong estimation if the initial values were not close enough to the real values.

Another issue of bundle adjustment is that it is a very time consuming process. It

is believed [9] that the bundle adjustment is computationally expensive due to the large
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number of input frames and features. It therefore requires the solution of a very large

minimization problem because it involve a great number of parameters [8]. We are now

ready to further explore the bundle adjustment algorithm and see how the input data

are manipulated in the bundle adjustment process, especially how the projection matrices

increments ∆P and the 3-D points increments ∆X are found.

3.1.1 Bundle Adjustment Implementation

There are several bundle adjustment implementation strategies that can be found in the

literatures [14, 15], such as the second order Newton style method and the first order

Gauss-Newton method. The second order method takes the advantages of the quadratic

Taylor expansion series:

f(x + ∆) ≈ f(x) +
∂f(x)

∂x
∆ +

1

2

∂2f(x)

∂x2
∆T∆ (3.3)

By setting ∂f(x+∆)
∂x

≈ ∂2f(x)
∂x2 ∆ + ∂f(x)

∂x
to zero, we have the Newton increment:

∆ = −(
∂2f(x)

∂x2
)−1 ∂f(x)

∂x
(3.4)

The iterations based on the Newton increment makes this a second order Newton style

method. The benefit of the second order method is fast convergence and fewer iterations

to complete. However, the problem is that the second derivatives of the projection model

f(x + ∆) are difficult and complex to implement. Furthermore, this process may also

converge to a saddle point instead of a minimum. An alternative is the first order Gauss-

Newton method. If the predicted error is small (which is usually true because bundle

adjustment is always used as the last step to optimize some already obtained results),

we can drop the second derivatives and use only the first order Taylor expansion series.

The tradeoff is that more iterations are required but each iteration is much cheaper.

Faugeras [14] implements the first order method as described below:

Assuming there are N images and M 3-D points, the first order Taylor expansion is:
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f(x + ∆) = f(x) + J∆ + O(‖ ∆ ‖) (3.5)

where J = ∂f(x)
∂x

is the Jacobian matrix.

The target here is to find the step ∆ which is the amount and the direction of the

increment. It seems that building a square matrix JTJ is a good idea to solve the problem.

This N ×N matrix is to be generated through the following steps.

a) Define the symmetric matrices Uj for each of the N images:

Uj =
M∑
i=1

(
∂x′ij
∂Pj

)TCij(
∂x′ij
∂Pj

) j = 1, 2, . . . N (3.6)

And compute: U = diag(U1,U2, . . .UN) (3.7)

b) Define the symmetric matrices Vi for each of the M 3-D points:

Vi =
N∑

j=1

(
∂x′ij
∂Xi

)TCij(
∂x′ij
∂Xi

) i = 1, 2, . . .M (3.8)

And compute: V = diag(V1,V2, . . .VM) (3.9)

c) Define the matrices Wij for the N images and M 3-D points:

Wij = (
∂x′ij
∂Pj

)TCij(
∂x′ij
∂Xi

) i = 1, 2, . . . M, j = 1, 2, . . . N (3.10)

And compute: W[i, j] = Wij (3.11)

Using Cij = (xij−x′ij)(xij−x′ij)
T in the above definitions, we can generate the N×N

matrix JTJ as:

JTJ =


 U W

WT V


 (3.12)
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Let us define two more vectors:

ηj =
M∑
i=1

(
∂x′ij
∂Pj

)T (xij − x′ij) d2(xij,x
′
ij) j = 1, 2, . . . N (3.13)

νi =
N∑

j=1

(
∂x′ij
∂Xi

)T (xij − x′ij) d2(xij,x
′
ij) i = 1, 2, . . .M (3.14)

where d2(a , b) is the squared image distance between a and b.

Then we solve the following matrix equation to find the projection matrices increments

∆P and the 3-D points increments ∆X:


 U W

WT V





 ∆P

∆X


 =


 η(P)

ν(X)


 (3.15)

After obtaining ∆P and ∆X, we plug them in Equation (3.2) to do the iterations.

3.2 Bundle Adjustment Applications

Bundle adjustment was first applied in photogrammetry, and later on was introduced to

computer vision. In this section we introduce how bundle adjustment is utilized in the

computer vision community. We start from the classical incremental bundle adjustment

and hierarchical bundle adjustment, then we discuss the constrained bundle adjustment

that applied to specific motions. We also talk about several degenerate bundle adjustment

situations that expedites the process. As a final point, a novel ray-point bundle adjustment

will be introduced.

3.2.1 Hierarchical Bundle Adjustment

The hierarchical bundle adjustment is somewhat like a recursive algorithm where the

original problem is recursively separated into small pieces until each piece can be easily

solved. The solution will then be propagated back to solve the entire problem.
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Royer et al. [2] presented such a hierarchical bundle adjustment. The original long

image sequence is recursively subdivided into two parts with two overlapping frames until

there are only three frames in each final segment. The initial estimate of the first triplet was

obtained by computing an essential matrix. Making use of the overlappings, they deduce

the first two frames of the second triplet from the previous triplet. The pose estimation

algorithm was used to compute the third camera position. Local estimations are done by

running the bundle adjustment over all the triplet frames. These triplet frames are then

merged and a global bundle adjustment is performed to find the reconstruction.

Another hierarchical method was presented by Shum et al. [9] from which the bun-

dle adjustment was exploited efficiently with virtual key frames. Instead of recursively

subdividing the original image sequence, they only divided the sequence into small seg-

ments once and no further subdivision is performed. Each segment is then processed in

the same way. First a local model is initialized with a two frame structure from motion

algorithm [16]. The first frame and the last frame within a segment are used to solve the

structure from motion problem, and all the in-between frames are interpolated for the

initialization. A few more local models are built between the first frame and some inter-

mediate frames within a segment for better interpolations. The scale ambiguities must

be eliminated before the multiple local models are combined. The scale is a coefficient

applied to the 3-D points of one local model so that the 3-D points as a whole are as close

as possible to the corresponding 3-D points of another local model. The scale is computed

by the following formula:

min

M∑
i=1

(‖ xm
i − s xn

i ‖) (3.16)

where M is the number of 3-D points, xm
i and xn

i are the corresponding 3-D points in

model m and model n.

The bundle adjustment is applied on the segments and partial 3-D reconstructions can

be found. These partial reconstructions are then merged into a complete estimate. The
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initial complete estimate obtained this way is usually not accurate enough. A global bundle

adjustment is required to optimize the results. For long image sequences this is error

prone and is inefficient. As has been described earlier in this chapter (Section 3.1), bundle

adjustment is a complex process and is quite time cosuming. The complexity of the bundle

adjustment for one iteration is O(mn3), where m is the number of correspondences and n

is the number of frames. Obviously, reducing the number of frames will greatly simplify

the bundle adjustment process. Indeed, the global bundle adjustment is only applied on

the two virtual key frames selected from each reconstructed segment. The kth virtual frame

contains the 2-D points x̃ik that were projected from the ith 3-D reconstructed points Xi:

x̃ik =
1

pT
k3 X̂i


 pT

k1 X̂i

pT
k2 X̂i


 ≡ f(Qk,Xi) (3.17)

where pkr is the rth row of the kth projection matrix Pk, and Qk is the kth camera motion.

Its covariance matrix is given by:

Λx̃ik
=

∂f

∂Q
ΛQk

∂fT

∂Q
+

∂f

∂X
ΛXi

∂fT

∂X
(3.18)

Then bundle adjusting the virtual frames is equivalent to minimizing the following

equation:

∑

k

∑
i

(x̃ik − ˜̃xik)
TΛ−1

x̃ik
(x̃ik − ˜̃xik) (3.19)

where ˜̃xik is the projection of the ith estimated 3-D point Xi in the kth image.

Bundle adjusting the virtual key frames from all the segments improved the precision

of the final reconstruction. This method significantly speeds up the bundle adjustment

process for long image sequences. However, the question is that if the reconstructed local

segments are not close enough to the actual values, or the errors accumulated during the

merging process are significant, will the the bundle adjustment still returns optimal results

on virtual frames? Compared to this method, the iterative approach that we propose in
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the next chapter does not require precise local reconstructions and is not sensitive to

accumulated errors.

3.2.2 Incremental Bundle Adjustment

Mouragnon et al. [17] presented an example of the incremental approach for reconstruction

and localization. The idea is to execute the bundle adjustment whenever a new key frame

and 3-D points are detected and added to the system. First the Harris s [18] are detected

and matched through normalized cross correlation. Then camera poses are obtained using

the five-point relative pose algorithm [19], and 3-D points are obtained using the standard

triangulation. This is the sequence initialization process and optimization is achieved

through bundle adjusting the key frames. Key frames are identified such that they are

as far apart as possible and at the same time have enough common correspondences. If

these criterions are met, then a new key frame Ii is added to the system. New points are

identified as those observed only in the last three key frames (Ii−2, Ii−1 and Ii). Finally

when a new key frame Ii is identified, triangulation is used to reconstruct the new 3-

D points. These points are then added to the system and a fresh bundle adjustment is

performed to minimize the overall errors.

Another incremental bundle adjustment approach was proposed by Zhang and Shan [20]

that applies a sliding window on image triplets to accommodate new frames. The first two

camera motions are obtained using two-view structure from motion techniques. The third

camera motion is determined by applying the three-view partial bundle adjustment [20]

to the triplet. They used feature points from both two views and three views within a

triplet. The window slides to the next image triplet when a new frame is added, thus re-

constructing the scene incrementally. This approach is especially suitable for sparse image

sequences where the difference between consecutive images is quite large. The reason is

that feature points from two views are accurately estimated since the baseline between

them is large. Moreover, the three view partial bundle adjustment only determines the
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motion of the third camera in a triplet sliding window, which ensures a consistent camera

motion across the sequence.

Besides the benefit from the incremental bundle adjustment approaches discussed

above, we found that they require that the involved frames be relatively far from each

other(Sparse image sequences). This may not be appropriate for a video sequence since

in this case the images are very close to each other (Dense image sequences with large

overlapping areas between images). Also, the final result may suffer from accumulated

errors arising from the multiple window sliding processes.

3.2.3 Constrained Bundle Adjustment

There are constraints on the bundle adjustment process that can be used to improve the

results. One constraint is dealing with drift by finding a closed loop in the camera path.

The other constraint is the use of special motions, such as an object on a turntable, to

simplify the bundle adjustment process.

Drift Correction A major factor that causes bundle adjustment to diverge is drift,

which is a common phenomena in extended long images due to noise and accumulated

errors. Cornelis et al. proposed a method to detect and remove drift for structure from

motion algorithms[21]. They detect drift based on the two major constraints, namely the

proximity constraint and the similarity constraint.

The proximity constraint requires that for a closed loop sequence whose first image is

identical to the last image, the distance between reprojected feature points from the same

3-D point in the first and last image must be within a certain tolerance.

‖ xij −PkXi ‖≤ proximity distance (3.20)

where xij is the 2-D feature point in the jth image that was reprojected from the ith 3-D

point Xi, and Pk is the projection matrix of the kth image.
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This constraint leads to a drastic decrease in the number of correspondences but

increases the confidence of the correspondences being correct, but only if the drift was

not excessive. Moreover, this constraint is quite helpful when we are processing 3-D scenes

with small areas that have similar textures, such as a chessboard pattern.

The second constraint considers the textured neighborhood similarity that is a syn-

thesis of the the color information extracted from a neighboring small area around the

2-D features. The similarity check is accomplished by comparing the differences of the

textured neighborhood histograms of the corresponding 3-D points. Higher differences

reflect lower similarity and potential drift.

After the drift has been detected, the adaptive bundle adjustment is exploited to

remove the drift. The adaptive bundle adjustment is a weighted general bundle adjustment

which minimizes the following cost function:

ε =
∑
i,j

‖ ωij(P
′
j X′

i − xij) ‖2 (3.21)

where ωij =


 ωxx ωxy

ωxy ωyy




ij

Supposing a non-drifted 3-D point was reprojected to m feature points, and a drifted

3-D point was reprojected to n feature points. The target is to find the camera pose with

similar average reprojection errors for both the non-drifted and drifted features. Thus,

the non-drifted features weights are set to 1, while the drifted feature weights are set to
√

m/n. Since m and n are different in each frame, so are the weights. The imposed weight

will force the non-drifted and drifted feature tracks to be equal for the adaptive bundle

adjustment.

Turntable Image Sequence Another kind of constrained bundle adjustment may be

used if the camera path is known a-priori. The turntable image sequence [22, 5] is a

common example of a constrained bundle adjustment. Images were taken by a stationary
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camera facing the object which rotates around a fixed axis without any translational mo-

tion. Referring to the camera model described in Section 2.1, we rewrite the general image

projection equation representing the ith 3-D point Xi reprojected by the jth projection

matrix Pj to the 2-D feature point xij below:

xij = PjXi = K[Rj
w→c|Tj

w→c]Xi (3.22)

Since the object is fixed to a rotation axis, the translation vector is the same for all

the images in the sequence. So the translation constrain is:

T1
w→c = T2

w→c = · · · = TM
w→c = Tw→c (3.23)

The rotation matrix is a combination of the three separate rotations around x, y and z

axis. Assuming the rotation around these three axis are ψ, ϕ and θ, respectively, we have

the separate rotation matrices shown below:

Rx =




1 0 0

0 cos ψ − sin ψ

0 sin ψ cos ψ


 (3.24)

Ry =




cos ϕ 0 sin ϕ

0 1 0

− sin ϕ 0 cos ϕ


 (3.25)

Rz =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (3.26)

The overall rotation is then the product of these three rotations:

Rw→c = RzRyRx (3.27)
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In a turntable sequence, the only rotation happens to the object itself, and the rotation

is around a fixed axis. Keeping this constraint in mind, we carefully select a coordinate

system to make sure that the y axis is aligned with the object rotation axis. The result

is that there is no rotation around the x or z axis, and both the rotation angle for these

two axis are zero:

ψ = 0

θ = 0
(3.28)

This means that the rotation matrices around these two axis become identity matrices.

Then the overall rotation solely depends on Ry:

Rw→c = RzRyRx = IRyI = Ry (3.29)

If the translation and rotation constraints are imposed, the unknowns in the bundle

adjustment minimization equation are reduced drastically, resulting in a more stable and

efficient bundle adjustment. However, the constrained bundle adjustment only benefits

those image sequences that were taken with a camera that was moving in specific paths.

3.2.4 Degenerate Bundle Adjustment

Several degenerated bundle adjustment approaches can also be found in the literatures,

such as the rotation free bundle adjustment [23, 24] and the intrinsic free bundle adjust-

ment [25]. The rotation free bundle adjustment does not solve for camera orientations.

In fact, the camera rotation parameters were eliminated through algebraic manipulation

based on invariant theory [26]. The idea is to consider the rotational parameters as Lie

group1 parameters acting on the rest parameters of the problem. After removing the cam-

era orientation parameters, Zhang et al. created a new structure from motion equation

without any rotation matrix and then formulated a rotation matrix free cost function for

1Lie group was named after Sophus Lie (A Norwegian mathematician). It has compatible operations

to the smooth structure.



CHAPTER 3. BUNDLE ADJUSTMENT 38

the bundle adjustment. A rotation matrix free bundle adjustment is more robust to errors

arose from the initial estimation and this is especially useful for translational motions [24].

Malis and Bartoli [25] proposed an intrinsic free bundle adjustment. They do not con-

sider the unknown camera internal parameters in the optimization process. Instead, they

proposed a bundle adjustment approach that utilizes the camera external parameters and

the 3-D structure to parameterize the reconstruction problem with no internal camera

parameters being considered, even they are unknowns. The intrinsic free bundle adjust-

ment converges faster than traditional bundle adjustment. If a image sequence was taken

by a same camera, the internal parameters are fixed. The intrinsic free bundle adjustment

uses fewer unknowns which leads to a prompt reconstruction. Also, the solution is more

accurate than the results obtained by traditional bundle adjustment.

Based on the above analysis, we find that before the benefits of the degenerated bundle

adjustment can be obtained, we must convert and remove some unknown parameters that

are difficult to be solved by traditional bundle adjustment. This may be suitable for some

type of image sequences, but converting and removing parameters may introduce new

problems.

3.2.5 Ray-Point Bundle Adjustment

Finally let us consider a novel idea to implement bundle adjustment, that is the so called

ray-point bundle adjustment [27]. Instead of finding a optimized solution to minimize the

overall errors between measured feature points and reprojected feature points, Rama-

lingam et al. minimize the distance between 3-D points and projection rays over camera

motion and 3-D structure.

Assuming the camera is calibrated, the kth projection ray of a camera is defined by

a base point Ak and a unit normal direction Bk. Also, the ith camera pose is defined by

Ri
c→w and Ti

c→w, and the jth 3-D point corresponding to the kth projection ray in the

ith image is Cj = (Xj, Yj, Zj)
T . The 3-D points on the considered projection ray can be
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represented by the following equation with different scalar value λ:

Ak + Ti
c→w + λRi

c→wBk (3.30)

The bundle adjustment minimization equation seeks the optimal solution to minimize

the summation of all distances between the projection rays and 3-D points:

minΣijk ‖ Ak + Ti
c→w + λijkR

i
c→wBk −Cj ‖2 (3.31)

This is again a non-linear equation and it can be solved by the first order Gauss-

Newton method introduced in Section 3.1.1. This novel bundle adjustment works with

projection rays, and it is a generic approach that can be applied to any camera as long as

the camera is calibrated. The limitation is that the ray-point bundle adjustment requires

sufficient data to work. Good results can be obtained only when the images are densely

matched and there are sufficiently large number of rays. Comparing with the traditional

bundle adjustment, we find the ray-point approach has a slower convergence rate. More

iterations are needed for the ray-point bundle adjustment to produce good estimates.

3.2.6 Discussion

We have reviewed many indirect bundle adjustment methods to solve the reconstruction

problems. However, few of the methods deal with loopback efficiently. This valuable infor-

mation is not explicitly used. The hierarchical method speeds up the bundle adjustment

process, but it still needs a good initial estimate, otherwise it can not find a converged

result. The incremental method is not sensitive to the initial estimate, but it requires that

the camera locations corresponding to the images be far away from each other. It is very

weak to handle dense image sequences. Moreover, both the hierarchical method and in-

cremental method may fail if there are signification accumulated errors introduced by the

merging or sliding process. Constrained bundle adjustment only works for specific image

sequences, while the degenerated bundle adjustment is not stable in general cases, either.
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The novel ray-point method seems to be better than the above methods but it is slow to

converge to an optimal solution. We believe it is possible to find the camera positions from

a sequence that contains hundreds of images without a prior camera calibration, and that

the images are close to each other. Furthermore, our proposed method does not require

a good initial estimate, and the accumulated errors are reduced during the iterations. It

also has a fast convergence rate, with the only limitation that loopback or intersection

must exist in the path, as will be demonstrated in the following two chapters.



Chapter 4

Path Reconstruction of Long Image

Sequences

We will now introduce our approach for the 3-D camera pose estimation of long image

sequences. The goal was to devise a method that is scalable. This chapter explains in

detail how we iteratively process a large number of images while at the same time taking

advantage of the loop backs among the images. Our approach is capable of dealing with

different lengths of sequences.

4.1 The Proposed Approach

Our full path reconstruction approach is composed of two major steps: i) camera grouping

and ii) camera registration.

In the grouping step, the images of the sequence are divided into short overlapping

groups. After grouping is accomplished the images in a group correspond to pictures of the

scene taken from nearby locations. Consequently, the disparity between adjacent images

of a group is relatively small, which means correspondences can be easily established.

However, at the same time, a sufficiently large baseline must exist within the group in

41
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order to ensure that the reconstruction process remains sufficiently accurate.

It is also necessary to have a significant amount of overlap between each group. The

connected groups must therefore share a certain number of common images. This redun-

dancy makes it possible to connect the different groups together during the registration

step where the individual reconstruction results are merged into a common reference

frame. Since the accuracy of the resulting representation depends on the level of overlap,

the groups are built to ensure that at least half of the images in a group are shared with

at least one other group.

The complete path of the sequence is reconstructed by iteratively processing each

group, merging the camera together through registration and then re-grouping the cam-

era set based on the new estimated positional information. Section 4.2 will describe the

grouping process, while Section 4.3 will explain how each group is connected to each other

using the registration process. Figure 4.1 shows that different processes interact and how

they are explained in several separate sections.

4.2 Grouping

In the initial grouping process, also called segmentation, the goal is to group together

spatially neighboring cameras; however for the first iteration the pose of the cameras

is unknown. Consequently, the segments are initially built based on the ordering of the

image sequence. The assumption is that the images have been taken in sequence while

moving the camera across the scene. As it will be shown, this is sufficient to obtain an

acceptable initial estimate of the scene and to detect the potential loops in the camera

path.

As explained in the next section, feature points extracted from the images of a seg-

ment are matched together. The resulting match set is sent to the Photomodeler bundle

adjustment library [10] to find camera positions as well as the 3-D reconstruction. The

reconstruction of all the segments of the sequence is obtained in the same way. Registra-
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Figure 4.1: Sections associated with the system Flow Chart.
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tion (see Section 4.3) is then required to merge these segments to obtain an initial 3-D

model.

The grouping process will then have to be repeated on the reconstructed cameras in

order to form new groups. This new grouping aims at taking into consideration the possible

loops in the camera sequence that connects together non-consecutive image sub-sequences

because of their spatial proximity. This grouping is realized by using the available 3-D

camera pose estimates obtained from the previous iteration.

4.2.1 Camera Segmentation

This is the initial grouping process and also is the first step of the process. Segmentation

is required to reduce the complexity of the bundle adjustment. From the discussion in

Chapter 3 we know that bundle adjustment is very weak to handle large number of

input. By reducing the amount of input data, we have a higher confident that the bundle

adjustment returns good resutls. The purpose of segmentation is to divide a large input

into small pieces that bundle adjustment perfers. We may need to apply bundle adjustment

a few more times, but each time the bundle adjustment returns a more reliable result at a

simpler computational cost. During the image acquisition process, images were taken one

by one sequentially and also numbered sequentially. All the images in the long sequence

will have their own IDs after the original long sequence is generated. Suppose there are N

images in the sequence, and we we want segments of L images with at least t% common

images between adjacent segments. This is done from the first image sequentially. The

first L images are assigned to segment 1. Overlapping images will be at the rear part of a

segment, so the last t% images in a segment are the common images of both the current

segment and the next segment. Figure 4.2 shows that the original N images in a sequence

are grouped into segments that contains L images each; the first t% images in a segment

are overlapped with the previous segment and the last t% images are overlapped with the

next segment.
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Figure 4.2: Segmentation illustration. The original N-image sequence is divided into L-

image segments with t% overlappings.

4.2.2 Ordered Multi-view Correspondence

To obtain the initial match set that will be used by the bundle adjuster to reconstruct the

scene, the image sequence is processed following its natural order. First the Scale Invariant

Feature Transform (SIFT) features [28] are extracted. Then a RANdom SAmple Consen-

sus RANSAC [29] strategy based on both fundamental matrix and tensor estimations is

used to find reliable correspondences between images [8]. The resulting triplets of matches

are then chained together across the sequence segment to get multi-view correspondences.

These steps can be performed with the help of the Projective Vision Toolkit(PVT) [7].

We perform the same steps on all the segments using PVT. For any L-image segment,

features will be extracted from each image first. Features are pixels with significant vertical

and horizontal changes in intensity. We use the SIFT approach to obtain features from

the images [28]. In order to stabilize the result, a fixed number of features are returned

using an automatically selected threshold. Next, we match the features between adjacent

images in a segment. Matching is done by computing the correlations of each feature in one

image with nearby features in another image. Potential matches are those features with

correlations greater than a specified threshold and also within a certain disparity. Dealing

with false matches is an important issue in any correspondence process. The original
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Figure 4.3: Detected correspondences from the first three images.

matches must pass a symmetry test and a consistency test in order to reduce some false

matches. Suppose feature B in the second image has the strongest correlation with feature

A in the first image. The symmetry test requires that feature A in the first image also

has the largest correlation with feature B in the second image. In other words, feature A

and feature B must have the largest correlation in either direction. The consistency test is

based upon the observation that if two features are close together in the first image, then

their correspondences should also be close to each other in the second image as well. The

consistency test examines the disparity gradient [30] of the correspondences and keeps

only those correspondences with a disparity gradient less than a certain amount. After

passing the symmetry test and the consistency test, most false matches will be filtered

out from the original matches list.

The model house sequence1 is used as an sample segment to illustrate our ordered

multi-view correspondence approach. There are ten images in this sequence and they are

numbered sequentially to make the sequence an ordered segment. In Figure 4.3 we list

the first three images of the segment along with the detected correspondences denoted

by the cross marks. Observing the figure we can tell that the cross marks are indeed the

features which match and pass the symmetry and consistency test.

The next step is to compute the fundamental matrices from the matches. Random

1Images are from Visual Geometry Group of Oxford University.
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Figure 4.4: Support set correspondences of the first fundamental matrix.

Figure 4.5: Support set correspondences of the second fundamental matrix.

sampling is used here to make the process robust. In general, at least 7 correspondences

are required to define a fundamental matrix. We randomly select 7 correspondences from

the matches list to compute the fundamental matrix. All the matches that satisfy the

fundamental matrix form the support set. Finally, the random sampling keeps the funda-

mental matrix with the largest support set. One fundamental matrix and its associated

largest support set will be generated for any adjacent two images. We show the support

set correspondences of the first fundamental matrix in Figure 4.4 and the support set

correspondences of the second fundamental matrix in Figure 4.5. At this stage, there are

still invalid matches in the support set. To increase the number of valid matches, trilinear

tensors will be computed from three consecutive images.

The trilinear tensor is more stable than the fundamental matrix since it relates cor-

respondences among three images instead of two images [8]. More false matches will be
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Figure 4.6: Correspondences in the support set for the trilinear tensor of the first 3 images.

filtered out after the trilinear tensor computation process. Trilinear tensors are to be com-

puted from the support sets of two consecutive fundamental matrices. Random sampling

is used again to ensure robustness. Consider any two consecutive fundamental matrices

along with their corresponding support sets. A triple is formed by combining these two

support sets if the matches in the sets overlap. Random sampling is performed on the

matches in the triple to find the tensor. The same steps are repeated on all the triples in a

segment. The final results are the tensors and the support triples, which are the 3-image

matches lists. The matches in the trilinear tensor support triples are inherently more sta-

ble and more accurate than the matches in the fundamental matrix support sets. The

reason is that trilinear tensors involve three images while fundamental matrices involve

only two images. False matches that happened to be included in the 2-image matches lists

are often removed from the 3-image matches lists when computing the trilinear tensors.

The tensor computation process takes the two features that were matched in the first two

images and reprojects them into the third image. The triliner tensor rejects the feature

if the reprojected feature fails to be close enough to the corresponding measured feature

in the third image. Figure 4.6 shows the support set features of the first trilinear tensor

among the first 3 images. There are fewer remaining features since many of the original

features are false matches that have been filtered out because they failed to pass those

tests. Consequently, the remaining features are more accurate and more stable.
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Figure 4.7: The reconstruction of the sample 10-image segment. The box like objectes

represent the camera locations where the corresponding images where taken, the small

white dots are the reconstructed 3-D matches corresponding to the 2-D image matches in

Figure 4.6.

When the 3-image matches lists are ready, all the matched features will be tracked and

be given a unique ID sequentially. Also, the image from which a feature comes will also be

recorded and the corresponding image number is assigned to the feature. Finally, a text file

that contains all the features with their 2-D coordinates in each image along with their ID

and image number will be generated. This finalizes the ordered multi-view correspondence

process. The text file will then undergo the bundle adjustment (Chapter 3) to reconstruct

segments. Figure 4.7 is the 3-D reconstruction of the sample 10-image segment. When all

the segments are reconstructed, they will be registered (Section 4.3) and an initial path

can be found.

4.2.3 Camera Grouping

The objective here is to create a new partition of the cameras from their estimated spatial

locations to form equally-sized groups of neighboring cameras so that the full group set
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will be connected and a level of overlap will exist between the groups.

Kanungo et al. presented the K-means clustering algorithms [31, 32]. K-means is a

learning algorithms to solve the clustering problem. The main idea is to classify the given

set of n data points into K clusters. The first step is to define K centroids, one for

each cluster. Then it is required to assign each point to a cluster based on the nearest

distance between a centroid and a point beging considered. When all the points have been

assigned to clusters, the first level clustering is completed. Since the original K centroids

were randomly selected, the first level cluster is not a optimal solution. Thus K new

centroid have to be re-calculated. The same processes will be applied to assign the points

to clusters based on the K new centroids. These continue until the re-calculated centroids

remain the same to the former centroids. For the n points to be separated into K clusters,

the K-means cluster algorithm aims at minimizing the following equation:

K∑
j=1

n∑
i=1

(‖ xj
i − cj ‖)2 (4.1)

where xi is the ith points belongs to the jth cluster, and cj is the jth centroid.

Although the K-means clustering algorithm is simple to implement, it has obvious

weaknesses. First of all, the algorithm is extremely sensitive to the initial randomly se-

lected centroids and it does not necessarily find the most optimized solution. Secondly,

the K-means algorithm undergoes the iterative process to find better centroids and this

could be tedious. Thirdly, this algorithm forms disjoint clusters and does not handle the

overlappings between clusters.

The minimum of the maximum grouping algorithm we proposed here does not have the

K-means algorithm drawbacks. Our grouping algorithm not only patition the set of points

into the most compact groups, but also form the most appropriate overlappings that are

the closest to neighboring groups. The minimum of the maximum grouping algorithm also

starts by randomly selecting a starting point, but it does not rely on this point to find an

optimal solution. Instead of manually select the K centroids in the K-means algorithm,
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our grouping algorithm forms the groups automatically without any intervention. Also,

unlike the K-means algorithm that requires iterations, our algorithm finishes its job in

one step. Furthermore, since overlapping is a major factor in consideration, the grouping

algorithm deals with the overlappings nicely and easily and it always ensures the minimal

diameter between group of points.

Let us see how the minimum of the maximum grouping algorithm works. We have

N cameras C1, · · · , CN , and we want to create a partition made of groups {Gi}, each

containing L cameras. Each camera must belong to at least one group and, to ensure

good overlap, at least t% of the cameras in a group must belong to at least one other

group. To create these groups, we proceed by iteratively adding cameras to the groups.

To ensure that these groups form compact clusters in which all cameras are as close as

possible to all other cameras in the group, we proceed as follows. The distances between an

unassigned camera and all cameras in a group are computed, and the maximum distance

is retained. This procedure is repeated for all the unassigned cameras and the one that

has the minimum maximum-distance is selected. This camera is indeed the one that is the

closest to its farthest group member thus is the one that should produce the most compact

cluster. Figure 4.8 suggests one possible scenario where the current group contains three

points (11, 15 and 16) and point 5 is the potential one that will be added to the current

group.

1. Create two disjoint sets A and U , where A is the assigned camera set and U is the

ungrouped camera set. Initially, set A to empty while U contains all cameras to be

processed.

2. Start with n = 1, randomly selected an image from U as the starting point; the

corresponding camera C is assigned to Gn, added to A and removed from U .

3. For each Ci in U find dmax(Ci, Gn) by computing the distance between Ci and all

cameras in Gn, where dmax(Ci, Gn) = max
Cj∈Gn

d(Ci, Cj).
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Figure 4.8: Distances comparison. The point with the shortest maximal distance is added

to the group.

4. Get Cmin that is the camera with the smallest dmax(Ci, Gn). Cmin is assigned to Gn,

added to A and removed from U .

5. Repeat step 3 and step 4 until the group size is reached or U = ∅; then n = n + 1.

6. For each Ci in U find dM(Ci,A) with M = tL (e.g. with t = 50%, M = L/2).

dM(Ci,A) is defined as the distance between camera Ci and its M th nearest neighbor

in A.

7. Get Cmin which is the camera with the smallest dM(Ci,A). Cmin is assigned to Gn,

added to A and removed from U .

8. Get the M closest cameras to Cmin in A. All these cameras are assigned to Gn.

(They constitute the overlapping cameras in the group Gn). Go to step 3.

Figure 4.9 illustrates how the groups are formed. Camera orientations do not affect the

grouping approach, we use small dots to represent only the camera locations. Assuming
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Figure 4.9: Grouping illustration. G1, G2 and G3 are the three groups, G2 is overlapped

with G1 and G3.

there are N = 20 cameras to be grouped, and we want each group to contain L = 10

cameras with M = 5 overlaps. Starting from a randomly selected camera, say, camera 11,

we assign it to the first group G1. Next, the distance between an unassigned camera and

camera 11 is computed. This is applied to all the unassigned cameras and the camera with

the shortest distance is assigned to G1. In this example, camera 15 is the closest camera

to camera 11 and it is added to the first group. Now the group contains more than one

camera and we must consider the cameras as a whole in a group. Our target is to augment

a group with a camera that is the closest one to the whole group instead of the closest

one to any specific camera in that group. This is accomplished by our 2-step minimum

of maximum approach. The first step is to find the distances between an unassigned

camera and all the cameras in the group and then associate the maximum distance to

the unassigned camera. After we apply this step to all the unassigned cameras, each

unassigned cameras will have a associated maximum distance. Let us consider camera 16
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and camera 5 in this example. We compare the distances between camera 16 and all the

cameras in G1 and find that camera 11 is the one with the maximum distance (d2 > d1).

For camera 5, the camera with the maximum distance is camera 15 (d4 > d3). The second

step is find the minimum distance by comparing all the unassigned cameras with their

associated maximum distances. The corresponding camera is the closest one to the group.

We can see from Figure 4.9 that d2 is the shortest distance , so camera 16 is added to

G1. The first group is formed this way until the group size is reached. Overlap has to be

considered when we are forming the second and the following groups (G2, G3, . . .). First

the distances between an unassigned camera and all the cameras in G1 are computed

and sorted. The distance between the nearest 5th neighbor and the unassigned camera

is associated with that camera since the overlap size is 5. Again, the process will be

applied to all the unassigned cameras. Next, we find the minimum distance by comparing

distances associated to the unassigned cameras. The corresponding unassigned camera

along with its 5 nearest neighboring cameras are assigned to G2. Finally the minimum

of maximum approach is used again to find the remaining cameras to be assigned to the

second group. All the other groups are form in this fashion until there is no camera left.

Figure 4.9 shows that the 20 cameras have been partitioned into 3 groups. Each group

contains 10 cameras with 5 overlaps.

Let us analyze the complexity of the grouping algorithm here. The overall complexity

is the sum of the complexities of the separate steps, as described by the following equation:

O(grouping) = O( step 1) + O(step 2) + O(step 3) + O(step 4) + O(step 5)

+ O(step 6) + O(step 7) + O(step 8)
(4.2)

Steps with similar complexities are to be considered together. We understand that

step 1, step 2 and step 8 contain only basic operations and consume constant time. Thus

they all have the same complexity O(1). For step 4 and step 7, they identify a camera

through comparing. The complexities of these two steps are liner to the number of cameras
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N , and their complexities are both O(N). The complexities of the rest three steps are of

higher orders. We analyze them one by one.

Step 3 searches for the maximum distance between cameras in the unsigned set and

cameras in a group. The unsigned set could contain up to N cameras, and the group size

is L. We have:

O(step 3) = O(LN) (4.3)

Step 5 repeats step 3 and step 4 until the group size L is reached, this is described by:

O(step 5) = L(O(step 3) + O(step 4) = L(O(LN) + O(N))

= O(L2N) + O(LN) = O(L2N)
(4.4)

Step 6 searches for the M th nearest neighbor in the assigned set. First the distances

between an unassigned camera and the cameras in the assigned set are computed, then

we sort these distances by identifying the M th nearest neighbor. In the worst case, the

assigned set contain all the N cameras. The complexity of this stage is O(N + N2). Since

we will process all the unassigned cameras and there are up to N unassigned cameras,

the complexity for Step 6 should be O((N + N2)N):

O(step 6) = O((N + N2)N) = O(N2 + N3) = O(N3) (4.5)

We know that the Big-O notation has the property that:

O(f(n)) + O(g(n)) = O(max{|f(n)|, |g(n)|}) (4.6)

Thus the overall complexity is obtained below:

O(grouping) = O(1) + O(1) + O(LN) + O(N) + O(L2N) + O(N3) + O(N) + O(1)

= O(N3)

(4.7)
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This is so because N ≥ L and O(N3) is the dominant component (O(1) ≤ O(N) ≤
O(LN) ≤ O(L2N) ≤ O(N3)).

Unlike the segmentation process that mainly relies on the continuity of the cameras,

the grouping process does not require any sequential information at all. Instead, it takes

advantage of the initial reconstructed path. It groups nearby cameras based on the spatial

location information that can be obtained from the initial path. Furthermore, it is not

necessary to have loop backs for our general grouping algorithm to be working. That is,

it can be used to partition 3-D feature point cloud, too. The only information required

is the coordinates of the 3-D points and there is no assumption on the form of the 3-D

feature point cloud.

4.2.4 Unordered Multi-view Correspondence

Once the groups formed, valid correspondences within each group must be found. Since

a group is generally made of distinct image sub-sequences, some correspondences have

already been established from the previous step. The sub-sequences are then connected

together using a multi-view correspondence strategy [3]. The Valbonne Church2 image

package is used as a sample unordered group since the images were taken with the camera

being moved randomly.

Again, SIFT features are found and matched. More stable and accurate features are

required in the iterations steps and SIFT features meet this requirement. Matchings were

done on consecutive images when we were searching for ordered multi-view correspon-

dences. For the non-ordered case here, matches will be computed between all possible

image pairs. For a group containing L images each of these L images will be matched

with the other L − 1 images. Obtaining matches between any image pairs are the same

to the steps used in the segmentation process (Section 4.3). Matches must pass the sym-

metry test and consistency test as well. One match file will be created for one image

2Images are from Visual Geometry Group of Oxford University.
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Figure 4.10: The unordered church image sequence.

pair and there are a total of L(L − 1) image pairs and there are this many match files.

Fundamental matrices are computed from the matches between all possible image pairs.

A total of L(L−1) fundamental matrices will be found. Those matches that can generate

valid fundamental matrices are kept and they are the support pair sets. Trilinear tensors

are computed from the support pair sets and we expect a total of L(L−1)(L−2) tensors.

Again, those matches that can generate valid trilinear tensors are kept and they are the

support triple sets. Finally we chain the triple sets and a list of the correspondences from

all the images in the group are obtained.

These correspondences are again sent to the bundle adjustment package to find normal-

ized camera matrices. Unlike the segments that are formed by sequential ordered images,

the computations for finding the correspondences in the groups are more complex. It is

not guaranteed that the bundle adjustment will converge on all the groups. Further pro-

cessing is necessary for those groups that do not converge. We believe that the divergence

is mainly caused by outliers. The difficulty is that there is no simple way to identify and

remove outliers.
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Figure 4.11: Reconstructed group. The church images are unordered, there is no IDs

assigned to the reconstructed camera positions.

4.2.5 Reliable Bundle Adjustment

A bundle adjustment process is now applied to the correspondences in each group in order

to compute the 3-D reconstructions of feature points and camera positions, as shown in

Figure 4.11 4.11. Bundle adjustment is a complex multi-variable optimization process that

is not always guaranteed to converge. It is highly affected by the presence of outliers and

since the automatic correspondence process tend to produce large number of matches,

the presence of such outliers is difficult to avoid. A good initial estimate of the 3-D

camera positions is an important factor in obtaining reliable solutions. In addition, we

also introduced additional strategies that contribute to the improvement of the reliability

of the bundle adjustment process.

The automatic correspondence method produces more matches than the bundle ad-

justment requires. The matches set is therefore subsampled by a factor of 2 and then sent

to the bundle adjuster for testing. If no convergence to a solution with a sufficiently large



CHAPTER 4. PATH RECONSTRUCTION OF LONG IMAGE SEQUENCES 59

support is found, then the match set is further subsanpled by another factor of 2. This

process is repeated until one of the subsampled set converges with good support. As the

original match set is expected to contain very few false matches, two pass of subsampling

are generally sufficient to obtain good convergence. It also has been observed that the

bundle adjuster has a better stability when it starts with a smaller number of matches,

with more matches being added as the solution improves in accuracy.

Feature points that are matched over a large number of images are also preferable

for the estimation of the global 3-D structure of a group. We therefore scan the matches

list and keep only those matches that exist in more than a certain number of images. By

default, matches on 3 or more images are kept as tensors were obtained on 3 images. If

we increase the number of images that a match must exist, more matches will be filtered

out and the left ones are more reliable.

4.3 Registration

Registration is the process by which two adjacent 3-D reconstructions of points and cam-

era positions are merged into a single reference frame. This is possible because the adjacent

groups exhibit a high degree of overlap. The registration process consists in finding the

similarity transform that will bring two corresponding 3-D points and 3-D camera po-

sitions to the same location, as depicted by Figure 4.12. Although registration on the

overlapping 3-D feature points is possible, we found that it was more reliable to register

the groups based on camera positions only.

4.3.1 Identifying the 3-D Rigid Body Transformation between

Point Sets

There are many general 3-D rigid body transformation algorithms that meet our reg-

istration requirement. Eggert et al. [33] compared four popular algorithms, namely the
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Figure 4.12: Registration of two overlapping groups.

singular value decomposition solution by Arun et al. [34], the orthonormal solution by

Horn et al. [35], the unit quaternion solution by Horn [36] and the dual quaternions solu-

tion by Walker et al. [37]. These four solutions were compared with regards to accuracy,

robustness, stability and efficiency. Efficiency here is not a problem since we are deal-

ing with a small number of cameras instead of a dense 3-D point cloud. We are more

concerned about the accuracy and stability of the registration. The singular value decom-

position solution is more suitable than the other solutions for our small data sets(a few

known camera positions without any outlier) and it is briefly summarized below.

The two 3-D point sets {pi} and {qi} are related by qi = Rpt→w pi + Tpt→w + Ni,

where Rpt→w is the rotation matrix applied on 3-D points in the world coordinate system,

Tpt→w is the translation vector applied on 3-D points in the world coordinate system,

Ni is a noise vector, and i = 1, 2, · · · , N . The problem is to find the optimized rotation

R̂pt→w and the optimized translation T̂pt→w to minimized the least squares error:

∑
2 =

N∑
i=1

‖qi − (R̂pt→w pi + T̂pt→w)‖2 (4.8)

The least squares solution to Equation (4.8) assures the same centroid for both {qi}
and {q′i = R̂pt→w pi + T̂pt→w}. Define the distances between each 3-D point and the

centroid of the two sets as p̄i = pi − ṗ and q̄i = qi − q̇, where ṗ and q̇ are the respective
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centroid, Equation (4.8) can be reduced to:

∑
2 =

N∑
i=1

‖q̄i − R̂pt→w p̄i‖2 =
N∑

i=1

(q̄T
i q̄i + p̄T

i p̄i − 2q̄T
i R̂pt→w p̄i) (4.9)

Minimizing this equation is the same as maximizing its last term q̄T
i R̂pt→w p̄i, which

is equivalent to maximizing the sum of the main diagonal elements Trace(R̂pt→w p̄i q̄T
i ).

Define the correlation matrix H =
N∑

i=1

p̄i q̄T
i , and find its singular value decomposition

H = UΛVT, the optimal rotation matrix R̂pt→w that can maximize the trace is:

R̂pt→w = VUT (4.10)

Accordingly, the optimal translation can be found as:

T̂pt→w = q̇ − R̂pt→w ṗ (4.11)

This is so because q̇′ = R̂pt→w pi + T̂pt→w and q̇ = q̇′.

4.3.2 Registration of Camera Groups with 3-D Points

Let us first consider the case where we have to register both the cameras and the 3-

D feature points from two groups. The optimal rotation and translation are computed

using the overlapping camera positions of each group as the sets {pi} and {qi} of the

procedure described in Section 4.3.1. The thus obtained rotation and translation is applied

on the non-overlapping cameras of the second group in order for them to be fused to the

first group. The overlapping cameras of the second group are discarded because they are

duplicated in the first group. We use the same rotation and translation computed from

the overlapping cameras and apply it to the 3D point sets.

It is not uncommon that a group overlaps with more than one groups. In this case the

registration is done incrementally. Suppose group 3 overlaps with both group 1 and group

2 and these two group are themselves overlapped (If not, they can be registered to group
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3 separately). We first register group 1 and group 2 and consider it as one bigger group.

Group 3 is then registered to this bigger group using the procedures described below.

First of all, the relative position of a camera in the nth group Gn are extracted from

the normalized camera matrix Qn
i = [ Rn

i,w→c | Tn
i,w→c ] obtained as a result of the bundle

adjustment step. Referring to Equation (2.37) and Equation (2.38), the ith camera center

as computed in the reference frame of Gn can be obtained through:

Cn
i = (Rn

i,w→c)
T (−Tn

i,w→c) (4.12)

where (Rn
i,w→c)

T is the transpose of the matrix Rn
i,w→c.

Secondly, since each bundle adjustment procedure was applied independently on each

group, the scales in the reconstructed camera sets are different. A consistent scaling factor

must therefore be identified. This is done using the cameras that belong to more than

one group. Let’s consider Ci and Cj that both belong to Gn and Gm. The ratio of the

distance between these two cameras, as computed in each reference is then equal to the

scale factor that exists between the two groups, that is:

Smn =
d(Cm

i ,Cm
j )

d(Cn
i ,Cn

j )
(4.13)

where d(a,b) computes the distance between a and b.

In practice, we use the mean of the scale factors computed from all pairs that are

common to groups Gm and Gn.

Next, we scan the two groups and identify the overlapping cameras. Then the group

will be separated into an overlapping portion and a non-overlapping portion. Based on

the overlapping portion of two groups, a maximum likelihood rotation and translation is

to be computed [34] in order to minimize:

∑
2 =

M∑
i=1

‖Cm
i − [Rmn

pt→w (Smn Cn
i ) + Tmn

pt→w]‖2 (4.14)
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where M is the number of overlapping cameras, Rmn
pt→w is a 3 by 3 rotation matrix repre-

senting the orientation difference between two 3-D sets, Tmn
pt→w is a 3-vector representing

the translation between two 3-D sets.

After we obtained Rmn
pt→w and Tmn

pt→w, the registration is done by applying Rmn
pt→w and

Tmn
pt→w to the non-overlapping cameras of group Gn and fusing this registered portion of

Gn to Gm. The complete registration is then obtained by iteratively connecting the non

overlapping portion of each group to the registered set of cameras in this fashion. A

complete estimate of the camera positions is thus obtained. Initially, this estimate will be

approximate, but sufficient to form new groups, taking into account the potential loop

backs in the sequence as detected by the grouping procedure. The positional estimates

are then refined through a few iterations of the grouping, bundle adjusting and registering

procedure.

4.3.3 Coplanar Cameras Registration

The registration algorithm we used works fine for 3-D cloud in general situations where

coplanar 3-D points rarely occurs. In our case, the registration is based on a small number

of overlapping cameras between the two groups, and it is normal that all the overlapping

cameras are in a same plane. The coplanar cameras could be flipped after registration.

Our registration algorithm must therefore accommodate coplanar cameras and give correct

result.

If the cameras being registered are in a same plane, then one of the singular values of

the correlation matrix H is zero. Observing the singular value decomposition H = UΛVT,

we found that H is the same whether one of the columns(corresponding to the zero singular

value) of U and V is positive or negative. In other words, there are two optimal rotation

matrices that can minimize the least square error (Equation (4.8)). We determine the

correct rotation by checking the determinant of the rotation matrix. If the determinant

of R̂pt→w is 1, then this rotation is the correct one. If the determinant of R̂pt→w is −1,
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then the last column of V is negated and a new rotation matrix is computed. This new

rotation will give the correct result.



Chapter 5

Experimental Results

We have tested the proposed algorithm on two specific camera paths: a spiral path and

a snake like path, as shown in figure 5.1. We choose these two particular paths because

they represent two basic scenarios: the spiral path contains both translational changes and

rotational changes, while the snake like path contains only translational changes. We do

not consider paths with only rotational changes since this situation is rare. Other complex

paths can be built with different combinations of these two scenarios. The spiral path and

the snake like path contain a number of loopbacks, which are critical for the iteration

process to converge. In fact, our algorithm works for paths that contain intersections, too.

The spiral and snake like paths are two examples but our method would work on any path

where there is loopback or intersection in the sequence. The loopback and intersection are

there to pull the drifting path due to accumulated errors back to the actual location. When

the loopback and intersect camera locations are being moved to the correct position, other

camera locations move toward their correct positions accordingly. As a result, the overall

error in the complete path is reduced. Given a general image sequence, we can always

break the path into the portions, one portion of the path contains only translational

moving camera, and the other portion of the path contains translational and rotational

moving camera. The translational and rotational moving camera path can be processed in

65
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Figure 5.1: Spiral path and snake like path.

the same fashion as we did on the spiral path, while the translational only moving camera

path can be processed in the same fashion as we did on the snake like path. The only

limitation is that we require loopback or intersection in the path. Our path can handle

complex general camera paths as long as there is loopback or intersection in the sequence.

5.1 Image Acquisition

Images were taken with the camera moving on the spiral and snake like path to generate

the two image sequences. The spiral sequence was built by moving the camera on several

drifting concentric circle while gradually moving the camera away from the objects. Also,

the camera is always facing to the center of the circle where the objects are located.

Figure 5.2 displays the first 20 images of the spiral sequence. Each camera pose has

a different location and orientation, which means both translation and rotation change

when the camera is moved. The objects used to build the spiral sequence were a few large

boxes with rich textures. These large boxes take at least 80% area of an image and their

rich textures ensure that enough matches can be extracted. Over two hundred images were

taken to generate the spiral path made of about two complete turns. Abundant loopbacks

can be found from the turns.

The snake like sequence was built by moving the camera from left to right and then

back to left, and also moving the camera away from the object when the path changes
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Figure 5.2: The first 20 images from the spiral path.
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direction. We did not rotate the camera when we were taking the images of the snake

like sequence to make sure all the cameras have the same orientation. The camera was

mounted on a tripod facing a row of bookcases. These bookcases take the full image area

and the many books on the bookcases give rich textures. We will describe the spiral path

in more detail since the snake like path is processed similarly.

5.2 Initial Reconstruction

In this section we demonstrate how to obtain the initial reconstruction of the spiral path.

The path we acquired contains 213 images. Each image is given a numbered ID sequen-

tially. The image sequence will go through the segmentation—partial reconstruction—

registration circle as described in Chapter 4.

5.2.1 Segments Reconstruction

The initial segmentation is straightforward based on the sequential image IDs. We just

need to decide the length of the segment and the size of the overlap. There is always a

trade off between the size of the groups and the precision of the result. Larger segments are

preferred because fewer registrations are needed for the same long image sequence. The

difficulty is that the longer the sequence, the less likely it is that the bundle adjustment

will converge. We tried the bundle adjuster on different length of segments to find an

appropriate segment length. We know that bundle adjustment does not behave very well

where there are more than 30 images. This can be seen from Figure 5.3 which clearly shows

that segments with less than 30 images are stable. Accordingly, 20 images in a segment

seems to be a good choice. Next, we need to determine the number of overlapping images in

the segments for registration. Although three images are enough to compute the rotation

and translation, involving more images stabilizes the registration process. The number

of overlapping images has therefore been set to be half of the total number of images in
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Figure 5.3: Reprojection error of different length of segments.

a segment to ensure both stability and efficiency. In our case, there are 10 overlapping

images in each segment.

The projective vision toolkit is then applied on the segments. features between images

are detected and matched and then fundamental matrices are computed. Images are pro-

cessed according to the orders. Fundamental matrices will be found between images 1-2,

2-3, 3-4 and so on. Next, we use the fundamental matrix support sets to compute trilinear

tensors. Tensors will be found among images 1-2-3, 2-3-4, 3-4-5 and so on. Figure 5.4

shows the matching features in the first a few images. After that, we chain the tensor

support sets and create a list of the matches with their pixel coordinates and their own

ID along with the image number to which that particular match belongs.

The final match list is sent to the bundle adjuster so that the normalized camera

matrices can be found. We do not need precise calibration here. A roughly estimated

calibration matrix is enough to obtain good result. Assuming the principal point is at

the center of an image, the corresponding principal point offset coordinates in pixels for

a 640 × 480 image is (320, 240). A typical camera focal length is about 180mm, and a

typical pixel size is about 0.26mm. We then use 180÷0.26 ≈ 692 as the focal length. The

final estimated calibration matrix for the spiral image sequence is:
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Figure 5.4: The matching features in the first a few images.
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Figure 5.5: The reconstruction of the first segment.

K =




692 0 320

0 692 240

0 0 1


 (5.1)

After feeding the match list and the calibration matrix to the bundle adjuster and

running the bundle adjustment, we obtain a normalized camera matrix for each of the

image in a segment. We know that the inverse normalized camera matrix contains the

camera center and camera orientation with respect to the world reference frame. The

normalized camera matrix will first be inverted, and then the camera translation and

camera rotation will be extracted from it. The camera rotation is converted to axis angle

and displayed in VRML along with the camera translation. Then we can reconstruct all

the segments in the same way. The first two reconstructed segments of the spiral sequence

are displayed in figure 5.5 and figure 5.6. The box-like objects in the graphs are the

cameras and the small dots are 3-D feature points.

5.2.2 Segment Registration

After having reconstructed all the segments, we will register these segments so that a

complete reconstruction can be found. The first segment contains camera 1 to camera 20,

and the second segment contains camera 11 to camera 30. Registration is done on the
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Figure 5.6: The reconstruction of the second segment.

Figure 5.7: Registration of the first two segments.

common cameras (11 ∼ 20). We compute the camera centers of the 10 common cameras

from both the first and second segment, and then try to find the best rotation and transla-

tion that can bring the common cameras of the second segment as close as possible to the

corresponding common cameras of the first segment. The computed rotation and trans-

lation will then be applied to the non-overlapping cameras of the second segment. These

registered non-overlapping cameras will be combined with the first segment. Figure 5.7

shows the result of fusing the first two segments.

The reconstructed segments are registered in an incremental way. Segment 2 is regis-

tered to segment 1 to form segment(1+2), and segment 3 is registered to segment(1+2)
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Figure 5.8: Top view and side view of the initial reconstruction. Camera 1, 96 and 191

have been enlarged; these ones should be aligned according to views shown in figure 5.9.

to from segment(1+2+3). These are done until we reach the last segment. The complete

initial 3-D reconstruction of the spiral path is shown in figure 5.8.

5.3 Refined Reconstruction

In this section, we will describe how to refine the initial 3-D reconstruction. In the spiral

path, a complete circle contains 95 images. Starting from camera 1, the first detected

loopback is camera 96, and the second detected loopback is camera 191. We enlarged

these three particular cameras in figure 5.8 for better viewing and comparing purposes.

The corresponding three images are in figure 5.9.

Observing the initially reconstructed spiral path, we see three major problems:

1. Drifting errors. Camera 96 (The enlarged one on the middle circle) is supposed to

be aligned to camera 1 (The enlarged one on the inner circle). The top view graph

shows camera 96 is drifting away and camera 191 (The enlarged one on the outer

circle) is drifting even farther.
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Figure 5.9: Loop back images: from left to right are image 1, 96 and 191.

2. Off path errors. The distance between the inner and outer circles is not constant

while it was constant when the images were taken.

3. Off plane errors. The side view shows that the camera path is not in the same plane

while the actual path is in the same plane.

However, this initial estimate is sufficient to have these cameras included in the same

group at the next iteration. More iterations are performed until the reprojection error

falls below the error tolerance.

5.3.1 Groups Reconstruction

Grouping is done using the algorithm described in Section 4.2.3. Starting from a randomly

selected camera, the closest neighbors along with the starting camera will be collected to

form group 1. Again, an appropriate group size and overlapping size have to be decided

upon best reliability and efficiency. Unlike the ordered images that were processed one by

one sequentially in a segment, it is much more complex to process the unordered images

in a group. Hundreds of fundamental matrices and thousands of trilinear tensors will have

to be computed for each group. After comparing several different combinations, we found

that a group of 15 images with 8 overlapping elements meets our requirements. We apply

the Multi-view Correspondence algorithm on the groups. The final correspondences

list and the roughly estimated calibration matrix (Equation (5.1)) are sent to the bundle
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Figure 5.10: The lower figure is the reconstructed group, the upper figure is the corre-

sponding group camera positions in the initial estimation.

adjuster package where the camera positions are computed. One of the reconstructed

groups is displayed at the lower portion of Figure 5.10, where the upper potation of

Figure 5.10 is the corresponding cameras in the initial 3-D reconstruction.

We form the groups with the closest neighbors based on the initial 3-D reconstruction.

This can easily be identified from the upper graph in Figure 5.10, where each camera is

the closest one to the rest of the group. But the lower graph in Figure 5.10 shows that

shift exists between the partial circles of the path. This has been anticipated since we

know there are drifting errors in the initial 3-D reconstruction and our iteration process

is doing its job to reduce the drifting errors during the group reconstruction.
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Figure 5.11: Top view and side view of the final reconstructed camera paths.

5.3.2 Groups Registration

Unlike the segments that were registered incrementally, group registration can be done

in either direction. That is, for the two groups to be registered, we can keep either group

unchanged but rotate and translate the other group in order for it to be connected to the

unchanged group. The group being moved is called GM and the unchanged base group is

called GB. The optimal rotation and optimal translation are applied to GM and the non-

overlapping cameras of GM will be moved in order to be connected to GB, while all the

cameras in GB remain unchanged. The registration result is slightly different depending on

which group was chosen as the base group. We chose the group with a lower reconstruction

error as GB.
Next, we scan the cameras on both the two groups and identify the overlapping cam-

eras, and then partition the groups into a non-overlapping portion (ĠM, ĠB) and an over-

lapping portion (G̈M, G̈B). The groups registration is done in two steps. The first step

is to compute the rotation RMB and translation TMB as well as the aspect ratio SMB

based on the overlapping portions G̈M and G̈B. The second step is to apply SMB, RMB

and TMB on the non-overlapping portion of the moving group ĠM and add the moved

non-overlapping cameras to the base group GB. We process all the groups in the same
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Figure 5.12: Side view and top view of the snake like path.

way. Figure 5.11 shows the final 3-D reconstruction of the spiral camera path, from which

we can see that the drifting errors, the off path errors and the off plane errors have all

been greatly reduced.

Our algorithm can be applied to the snake like path and other long image sequence

similarly as long as loopbacks exist in the path. We process the snake like path using the

same procedures that were applied on the spiral path. First the original long snake like

path is separated into short overlapping segments. After applying the bundle adjustment

and registration on the segments, we obtain the initial reconstruction of the snake like

path. Figure 5.12 is the side view and the top view of the reconstructed path. From these

two figures we can easily see the off path error and off plane error.

Again, the initial reconstruction will be used to form groups. Then bundle adjust-
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Figure 5.13: The reconstruction of the snake like path.

ment and registration will be applied on the groups and a refined reconstruction can be

found. We display the reconstructed camera positions along with the 3-D feature points

in Figure 5.13. When taking the images of the snake like path, we deliberately move the

camera with unequal paces to demonstrate that our algorithm is also capable of dealing

with unevenly separated paths.

Finally, we compare the reconstruction errors of the spiral path and the snake path.

Typically there are 30 to 50 correspondences in an image. We randomly select 30 cor-

respondences from each image to compute the reprojection errors. The obtained camera

matrices and 3-D points are reprojected through:

x′ij = KQ′
j ·X′

i (5.2)

where K′ is the camera internal calibration matrix, Q′
j is the jth obtained camera matrix,

X′
i is the ith obtained 3-D point, and x′ij is the projected 2-D feature point.

We then compute the square distances between the measured correspondences and the

reprojected correspondences and display the results in Figure 5.14. The thin line shows
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Figure 5.14: The convergency comparison of the spiral path and the snake like path. The

thin line represents the spiral path error trend, the thick line represents the snake path

error trend.

how the overall reprojection error of the spiral path are reduced, and the thick line shows

how the overall reprojection error of the snake path are reduced. The errors in the initial

estimations are very high. It is 0.28 for the spiral path and 0.16 for the snake path. The

errors are all greatly reduced after the first iteration. The reason is that the loopbacks

are being used during the grouping process so that the paths are moved closer to their

actual locations. The following iterations slightly improve the results. Figure 5.14 clearly

demonstrates the error reduction trend.
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Conclusion

6.1 Conclusions

We have presented an iterative algorithm to compute long camera paths. This system

deals with long image sequences by using loopbacks. Loopbacks are camera locations

where the corresponding images were taken and these corresponding images share field

of view. We limit the bundle adjustment to only local reconstructions and this ensures

precise reconstruction of ordered segments and unordered groups. Errors introduced by

the registration are reduced by the iteration process and a precise complete reconstruction

can be expected. Furthermore, our system does not require that the distance and angle

between images to be constant. In fact, it tolerates a large difference of distances and

angles between images. This is critical for videos taken with hand held cameras or vehicle

mounted cameras instead of cameras being controlled by smoothly moving motors. Thus

our algorithm is also appropriate for non-constant moving cameras as long as loopbacks

are contained in the path.

80
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6.2 Contributions

This work contains the following contributions:

1. Developed an algorithm to reconstruct camera paths of a corresponding long image

sequence by an iterative bundle adjustment iteratively process. Due to its limita-

tions, the bundle adjustment fails to converge when given a large number of images.

We therefore divide the sequence into small groups such that good results can be

obtained from local bundle adjustment. Images in a group are close to each other

and at the same time the group has a large enough baseline. These ensure both re-

liable matches preferred by the bundle adjustment and precise 3-D reconstruction.

More iterations can further refine the result.

2. Proposed to used the combination of subsample-and-test approach and long span

matching approach to make the bundle adjustment more reliable. Outliers in the

matching features are generally inevitable and hard to identify. They are one of the

major factors that cause the bundle adjustment unstable. The subsample-and-test

approach removes outliers as well as some good matching features at the same time.

Having fewer matching features is not a problem because far more features are avail-

able than what are required in order to obtain a good result. Long span matching

is another approach that aims at removing outliers. Keeping the matching features

that exist in more than a certain number of images increases the confidence of good

features. If bundle adjustment fails to converge on a given matching features list,

we apply either or both the subsample-and-test approach and long span matching

approach on the features list so that the bundle adjustment returns good results.

3. Our system is appropriate for camera paths that contain invariant spacing between

images. It is not sensitive to the smoothness of the path. Unlike concentric mo-

saics [38] where the cameras are fixed to a horizontal beam supported by the tripod
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and the movement is continuous and uniform, our paths are not on a strictly de-

fined route and are not precisely separated. Our system is robust enough to handle

cameras with unregulated movement easily.

4. Developed a robust grouping algorithm that can partition cameras into overlapping

groups. Since we use the camera centers (3-D vectors) in the grouping, the algorithm

can be used to partition 3-D points cloud as well. The K-means clustering algorithm

is simple to implement but it only separate points into disjoint clusters and this dose

not meet our overlapping requirement. The K centroids have to be manually selected

and the K-means algorithm is sensitive to these randomly selected centroids. On the

contrary, our grouping algorithm accomplish all the job automatically and it is stable

with any randomly selected starting point. Our minimum of the maximum idea

ensures that: i)the closest neighbors are assigned to a group and ii)the overlapping

cameras are the closest to both the two neighboring groups and the diameter between

groups of points is minimal.

5. Proposed the definitions of rotations and translations with specific reference systems.

Rotation between two objects are too ambiguous. Rotation of object A with respect

to object B is different than the rotation of object B with respect to object A.

These two rotations are indeed the reverse of each other and one rotation matrix

is the transpose of the other one. Even worse for the translations, negating one

translation will not give a correct reversed translation if the reference of the two

object are rotated. We defined rotations and translations explicitly with specific

references and do not use the word ”between” when talking about rotations and

translations.

6. One more contribution was in the automatic detection of loop back in the two

sequences. Indeed it has been found that bundle adjustment is more stable when

estimated on sequences that form a complete loop. Work has been done to match
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features between potential loop back images in a sequence, and run the bundle

adjustment again to find the camera path. This procedure is repeated until the

bundle adjustment converges. Once the camera positions is obtained, a graph of all

camera positions could be created from which 2-D navigation inside the environment

would be possible.

6.3 Future Work

This work studies the computation of camera paths that were constrained to the size of

a small room. One possible extension of this work would be 3-D camera path estimation

in large-scale environments.

To achieve this goal, a large number of images have to be captured on the site of

interest. Visual information will be acquired using commercial digital cameras, camcorders

and specialized panoramic cameras, mounted on tripods or on small dollies. In addition,

we plan to attach geo-references to part of the captured visual data. This will be done

through the use of GPS (Global Positioning Systems) and digital compasses that will

provide approximate information concerning absolute camera positions. The acquisition

procedure must permit the complete coverage of the scene such that virtual walkthroughs

will become possible. This is accomplished by moving the camera in the environment and

capturing images from different points of view.

One objective of the research will be to obtain more accurate 3-D pose information

from a large number of views and their approximate positions. Obtaining such 3-D infor-

mation in a general context is very difficult, especially when a large number of views are

used. However, the complexity of the multi-view analysis must be reduced by constrain-

ing the type of camera motion allowed in the shooting of a sequence. More specifically,

the case of planar motions, obtained when a camera is moving on a flat surface, will be

studied. This kind of translational motion is indeed fundamental in the production of

realistic virtual walkthroughs. Different approaches to this problem have been proposed
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in the past, but most often the experimentation is limited to a small number of views. We

would like to derive a constrained bundle adjustment solution that would be applicable

to the proposed image-based rending context.
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