
Monocular Obstacle Detection for Moving Vehicles

by

Jeffrey Ryan Lalonde

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements
For the M.A.Sc. degree in

Electrical and Computer Engineering

School of Information Technology and Engineering
Faculty of Engineering
University of Ottawa

c© Jeffrey Ryan Lalonde, Ottawa, Canada, 2011

Abstract

This thesis presents a 3D reconstruction approach to the detection of static obstacles from a
single rear view parking camera. Corner features are tracked to estimate the vehicle’s motion
and to perform multiview triangulation in order to reconstruct the scene. We model the camera
motion as planar motion and use the knowledge of the camera pose to efficiently solve motion
parameters. Based on the observed motion, we selected snapshots from which the scene is
reconstructed. These snapshots guarantee a sufficient baseline between the images and result
in more robust scene modeling. Multiveiw triangulation of a feature is performed only if the
feature obeys the epipolar constraint. Triangulated features are semantically labelled according
to its 3D location. Obstacle features are spatially clustered to reduce false detections. The
distance to the nearest obstacle cluster is reported to the driver.

ii

Acknowledgements

Thanks to ...

iii

Contents

List of Symbols xii

1 Introduction 1
1.1 Motivation . 1
1.2 A Real World Consumer Product . 3
1.3 Overall OD System Architecture . 3
1.4 Thesis Organization . 4

2 Literature Review 6
2.1 Visual Odometry . 6

2.1.1 Direct Methods for Visual Odometry 7
2.1.2 Visual Odometry from Optical Flow 9
2.1.3 Visual Odometry from 3D Reconstruction 10

2.2 Obstacle Detection . 12
2.2.1 Stereo Methods . 12
2.2.2 Monocular Methods . 13
2.2.3 Structure-based Methods . 16

3 Preliminary Material 18
3.1 Rigid Body Motion . 18

3.1.1 Rotations in R3 . 18
3.1.2 A Formulation of Rigid Motion . 19

3.2 Camera Modeling . 20
3.2.1 Perspective Projection . 20
3.2.2 Lens Modelling . 21
3.2.3 Sensor Modelling . 22
3.2.4 Putting it All Together . 23

vi

4 Motion Estimation 24
4.1 Camera Motion as Planar Motion . 24
4.2 Estimating Motion on a Planar Surface . 27
4.3 The RANSAC Algorithm . 30
4.4 World Plane Projection . 31
4.5 Feature Tracking . 33
4.6 Planar Motion from Images . 35

5 3D Reconstruction 36
5.1 Epipolar Geometry . 36

5.1.1 The Epipolar Identities . 36
5.1.2 The Epipolar Constraint . 40

5.2 Triangulation . 44
5.2.1 Algebraic Formulation . 44
5.2.2 Geometric Interpretation . 45
5.2.3 Theoretical Constraints . 48
5.2.4 Practical Constraints . 50
5.2.5 Optimal Triangulation . 56
5.2.6 Multiview Triangulation . 56

6 Obstacle Detection 58
6.1 Algorithm Overview . 58
6.2 The Tracking Module . 60
6.3 Motion Estimation from Good Ground Features 62

6.3.1 Selecting Good Ground Features . 63
6.3.2 The Motion Estimation Algorithm . 64

6.4 Snapshot Management . 65
6.5 Inter-Snapshot Motion Estimation . 67
6.6 Feature Triangulation . 68
6.7 Feature Labelling . 69
6.8 Feature Clustering . 70
6.9 Feature Location . 72

7 Experimental Results 73
7.1 Parameter Tuning . 74
7.2 Algorithm Performance . 78

vii

7.2.1 Performance on Selected Clips . 78
7.2.2 Overall Performance . 81

8 Conclusion 84
8.1 Future Work . 84

viii

List of Tables

7.1 List of tracking parameters. 74
7.2 List of obstacle detection parameters. 75
7.3 Results of Precision-Recall analysis. 76

ix

List of Figures

3.1 The pinhole camera model. 21
3.2 The thin lens. 21
3.3 The image sensor model. 22

4.1 The relation between two camera coordinate systems. 25
4.2 The vehicle and camera coordinate systems. 26
4.3 Relating camera pose to an image. 32

5.1 Epipolar geometry. 37
5.2 The meaning of epipolar lines. 38
5.3 The meaning of the epipoles. 39
5.4 The vectors x2, Rx1 and T are coplanar. 41
5.5 Triangulation from two image points. 44
5.6 Triangulation in the presence of noise. 45
5.7 Non-intersecting rays in coordinates of the second camera. 46
5.8 Triangulation from two image points in a calibrated stereo rig. 51
5.9 Two image vectors x1 and x2 have a disparity d = ‖x1 × x1‖. 51
5.10 Disparity in the presence of rotation. 52
5.11 The calibrated disparity for two image points. 53
5.12 Minimum distance to the epipole. 55

6.1 Overview of the obstacle detection algorithm. 59
6.2 The feature tracking module. 61
6.3 The regions of interest in the vehicle coordinate system. 63
6.4 Inter-Snapshot motion estimation. 67

7.1 Manual camera orientation estimation from a bird’s eye view. 74
7.2 Precision VS Recall plots for various OD parameters 77

x

7.3 Output of the OD algorithm for three objects 79
7.4 Performance of the OD algorithm for three objects. 80
7.5 Detecting large VS small objects. 81
7.6 Detected features VS obstacle distance . 81
7.7 Detection rate as a function of obstacle distance. 82
7.8 Standard deviation of distance-to-obstacle estimate as a function of distance. . . 83

xi

List of Symbols

X = [X Y Z]T 3D Vector .18
x = [x y 1]T Homogeneous 3D vector .20
p = [u v 1]T Homogeneous pixel coordinate . 22
R Rotation matrix . 19
T 3D translation vector . 19
{R,T} Rigid motion between two cameras . 25
{Rp,Tp} Planar motion . 26
π(·) Perspective projection . 20
h Distance from camera center to the ground 27

xii

Chapter 1

Introduction

This thesis presents a 3D reconstruction approach to the detection of static obstacles from a
single rear view parking camera. The system alerts the driver to the presence and location
of an obstacle as part of a parking assistance application. Camera motion estimation and
scene reconstruction are achieved through feature tracking. We use the knowledge of camera
orientation to simplify our motion model and use the knowledge of camera height to remove the
ambiguity of scale associated with scene reconstruction. We perform multiview triangulation
of the features that obey the epipolar constraint. Obstacle detection is based on the 3D location
of features wrt. to the ground and the vehicle. To increase robustness, we spatially cluster
detected features and reject isolated detections. The output to the user is the distance to the
nearest obstacle.

1.1 Motivation

Today there is a huge demand for computer vision tasks. One one hand, computer vision
has seen tremendous progress in recent years. Many individual disciplines have advanced to
a state where algorithms are becoming applicable for real-world tasks [1]. On the other, the
cost (and size) of high quality cameras and designated image processing hardware has dropped
to a point where smart camera manufacturers are able to make substantial profit margins on
their products. These condition have fostered an unprecedented demand for commercial vision
systems.

In particular, passenger vehicles are increasingly fitted with various sensors to improve
safety and aid in navigation [20]. Most common among these sensors are rear view parking
cameras. Significant value can be added to these cameras by providing vision-based parking

1

Introduction 2

assistance via obstacle detection.
Many obstacle detection methods have been proposed, but none offer a clear advantage over

the others. Moreover, the proposed methods are designed for forward looking cameras with the
detection of vehicles or pedestrians in mind. These scenarios differ significantly from parking
situations in the range of vehicle speed, the types of expected obstacles and the proximity of
these obstacles to the camera. As a result, there is a need for vision-based obstacle detection
methods specific to parking scenarios.

Traditional parking assistance systems use radar or ultrasonic range-finders to detect obsta-
cles. These have proven reliable for detecting large metal objects, even in poor visual condi-
tions. However, these sensors tend to miss small non-metal objects because they lack sufficient
spatial resolution [35]. Parking cameras are an attractive safety feature because they display
the rear visual field to the driver. A vision-based detector adds range-finding capability to a
camera and so removes the need for additional sensors.

Vision-based systems either use a stereo camera rig or a single camera. Well calibrated
stereo systems can achieve impressive results, but at a severe cost. Namely, the baselines for
these systems are usually greater than 1m to enhance depth resolution. They require high
quality CCD cameras with long focal-length lenses for adequate spatial resolution. Also, the
best results have been achieved with three cameras, rather than just two. These requirements
restrict the adoption of stereo systems to market products [31].

Monocular systems operate at a reduced cost and require little maintenance, but lack the
depth perception of stereo systems. Monocular systems can be divided into three categories;
(1) appearance-based methods, (2) motion-based methods, and (3) reconstruction-based meth-
ods.

Appearance-based methods work under the assumption that obstacles appear differently
from the driving surface. Typically, detection is based on colour, texture or shape cues and
motion is ignored. These methods have low computational cost but are easily fooled in every-
day scenarios.

Motion-based methods compare two or more images of the video stream and detect obsta-
cles by virtue of their motion is differing from the ground’s. These methods are more robust
than appearance-based methods since they detect on the basis of 3D structure, rather than ap-
pearance.

Reconstruction-based methods work by explicitly reconstructing the 3D scene from mo-
tion. Obstacles are detected from image features that lie above the ground plane in the 3D
model. Reconstruction-based methods are more complex and computationally expensive than
the previous two categories, but offer a direct estimate of the obstacle’s location in space.

Introduction 3

Therefore, in order to add range-finding capability to a rear parking camera, we have devel-
oped a reconstruction-based approach to obstacle detection.

1.2 A Real World Consumer Product

This work was commissioned by and done in partnership with CogniVue Corporation in Gatineau
Quebec. CogniVue produces programmable System-on-Chip products, delivering industry-
leading programmable video and imaging solutions for smart camera in the automotive and
video monitoring industries. Because our algorithm would be ported to a dedicated image
processing chip, it had to be as simple as possible and could not rely too heavily and com-
plex computer vision libraries. Of course, it had to run in real-time and perform sufficiently
to be released as a consumer product. This work has resulted in a U.S. patent (patent ref.
08918849us).

1.3 Overall OD System Architecture

We assume a calibrated camera and that the camera pose wrt. the vehicle is known and constant.
The front end of our system is feature tracking. We detect corner features and track them as

they move across the image. We have designed our own system for the creation and deletion of
tracked features to enhance OD robustness. Namely, remove erratically moving features and
features that merge due to tracking error.

The vehicle motion is entirely estimated from the tracked features. We use the knowledge
of the camera orientation wrt. the ground to model the motion as planar rigid motion. This
allows us to estimate the motion from only two point correspondences. Outliers to the ground
motion are removed via a RANSAC process. We use the knowledge of camera height to assign
an absolute scale to camera displacement.

Based on the observed motion, we selected keyframes or snapshots from which the scene
is reconstructed. These snapshots are meant to maintain a constant and sufficient baseline
between the images, which increases the accuracy of reconstruction. As a result, the rate at
which snapshots are taken depend on the speed of the vehicle.

We perform multiview triangulation between the current snapshot and all previous ones.
For each snapshot pair, triangulation of a feature is only attempted if the feature has sufficient
disparity in the image and if it moves along its epipolar line. As a result, moving obstacles and
mistracked features are removed from the reconstruction process. In other words, only features

Introduction 4

moving according to the epipolar geometry are triangulated and associated with a 3D location.
After 3D reconstruction, each triangulated feature is given a semantic label based on its

3D location. Features near the ground plane are labelled “ground”. Those directly behind the
vehicle are labelled “obstacle”. These labels, apart from their obvious use as detection flags,
assist in subsequent camera motion estimates.

After reconstructed and labelling, the obstacle features are spatially clustered to reduce
false detections and increase the accuracy of the distance-to-obstacle estimate. Features are
clustered according to their distance from the vehicle in order to cluster large surfaces perpen-
dicular to the ground.

The snapshots are triggered only after a sufficient displacement is observed. As a result,
scene reconstruction does not occur every frame. To achieve a smooth frame by frame update
of the 3D scene, we update the 3D location of features assuming their height is constant.

The distance to the nearest obstacle cluster is reported to the user.

1.4 Thesis Organization

Chapter 2 reviews literature directly related to this thesis. We begin by reviewing methods
of visual odometry, as motion estimation is central to 3D reconstruction techniques. We then
provide an overview of visual obstacle detection, with a focus on monocular methods.

Chapter 3 covers fundamental concepts required for the understanding of subsequent chap-
ters. These topics include rigid body motion, the pinhole camera model, and lens and sensor
modeling.

Chapter 4 describes our motion estimation algorithm. The planar motion model is intro-
duced. Then the estimation of its parameters is discussed.

Chapter 5 discusses 3D reconstruction from multiple views. First, epipolar geometry is
presented; The epipolar identities are introduced and their relation to the epipolar constraint is
discussed. The triangulation of image features is discussed and the necessary conditions for re-
liable triangulation is developed. The chapter concludes with a description of our triangulation
algorithm.

Chapter 6 presents our algorithm in detail, drawing on concepts and sub-algorithms devel-
oped in Chapters ?? and ??. An overview of the algorithm is presented. Then each component
is presented in detail.

Chapter 7 discusses the experimental setup and performance of our algorithm. The sys-
tematic optimization of system parameters is discussed. Then performance on selected videos

Introduction 5

is presented. The chapter concludes with an assessment of global performance for a set of test
videos.

Finally, Chapter 8 summarizes our algorithm and results and describes possible future
work.

Chapter 2

Literature Review

In this chapter we present a review of related work in obstacle detection from video. Since our
own method relies on a robust estimate of vehicle motion from the visual data, we also review
relevant work on visual odometry.

2.1 Visual Odometry

Measuring vehicle motion is crucial for any monocular 3D structure-based obstacle detection
method. Triangulating image features accurately requires not only good feature tracking, but
also good motion estimation. Motion estimation of the ground is particularly challenging
because of the scarcity of strong features on its surface. As a result, many works have been
published on the specific problem of estimating motion from vehicle-mounted cameras; A
topic commonly referred to as visual odometry.

There are two main approaches to visual odometry; (1) those that estimate motion by ob-
serving the ground only and (2) those that estimate motion by observing all objects in the
scene.

These approaches typically combine a motion model of the ground plane with a projective
model to obtain a parametric model of the ground’s optical flow. The optical flow parame-
ters are fit by observing motion on the image, and these are related to the parameters of the
motion model. Such approaches can be further divided by the method used to fit the optical
flow model of the ground. Some track ground features and use outlier-robust methods to es-
timate the ground flow parameters [28]. Others use the optical flow over the ground surface
[31]. Others use whole-image matching in the so-called direct methods [30, 10, 3, 20]. These
ground-observation-only approaches have the advantage of being relatively simple to compute.

6

Literature Review 7

However, they are only suited for scenes in which the roadway is large and unobstructed.
Approaches that use all objects in the scene estimate motion by 3D scene reconstruction

[13, 24]. The advantage to such methods is that they are able to cope low ground texture
with scenes cluttered with static objects. The disadvantage is that these methods require costly
bundle adjustment processes for sufficient robustness.

We describe these methods in greater detail and highlight exemplary works in the following
sections.

2.1.1 Direct Methods for Visual Odometry

The direct method for visual odometry is meant to accommodate the fact that typical driving
surfaces have few feature strong features. In particular, driving surfaces typically consist of
self-similar, speckly texture with a high degree of ambiguity between image features [?]. So,
it is argued, robust motion estimation cannot be achieved by matching individual features.
Instead, whole-image registration is used to estimate ground motion. Robustness is increased
by dividing the image into small patches and evaluating the confidence that each patch adheres
to the motion model. Then a global image registration is performed, with each patch weighted
by its confidence. This way, each pixel contributes a measurement to a global probability
function for the parameters of the motion model. The advantage of the direct method is that it
avoids feature tracking and computing optical flow.

Stein et al. 2000

As an example, Stein et al. [30] employ the direct method to fit a 3-parameter constrained
planar motion model. The confidence in a given image patch is the ratio between the best fit
metric using the previous motion estimate and the best fit using the best local motion estimate.
The best fit is computed as exp(s/σ2), where s is the smallest sum of squared difference (SSD)
value for a window surrounding the image patch, and σ2 is the variance of the image noise.

The basic algorithm is as follows. Given two consecutive images and an initial motion
guess based on the previous motion estimate, for each image patch, do

1. warp patch in image 2 towards image 1 using the previous motion parameters

2. Compute the SSD for a 15×15 region surrounding the patch. Let the smallest SSD value
be s1.

3. For a small space of motions about the initial guess, find the best motion for each patch.

Literature Review 8

4. Warp each patch again, this time according to the best local motion.

5. Again, compute the SSD for a 15 × 15 region surrounding the patch. Let the smallest
SSD value be s2.

6. The confidence in the patch is exp(s1/σ2)
exp(s2/σ2)

7. Search for the global motion that maximizes the weighted sum of all patch fits using
gradient descent.

The result is an efficient whole-image registration technique that makes use of the previous
motion estimate to speed up convergence. Although the authors provide evidence the algo-
rithm provides accurate rotation estimates, they provide no ground-truth comparison for their
distance estimates. Also, they do not discuss the tolerance of their motion estimation in the
presence of significant ground occlusion.

Lovegrove et al. 2011

A more recent application of the direct method was proposed by Lovegrove et al. [20]. This
work is of particular interest to us since it is a visual odometry method for a single rear parking
camera. Instead of evaluating the fit of local patches, as above, they find the best homography
between successive entire image pairs. Doing so, they assume the ground is completely unoc-
cluded. This is a reasonable assumption since the algorithm is designed for when the vehicle is
moving forward and so the area behind the car should be unobstructed. The best homography
from one image to the other is found by minimizing the sum of squared pixel error between
the homography-transform of the image (the synthetic image) and the second image (the true
image). This homography, which ultimately encodes the vehicle’s motion, is found iteratively
using the Efficient Second order Minimization algorithm [23].

This algorithm provides robust and accurate camera motion estimation, given the ground
is unoccluded. However, as obstacles begin to fill the image and occlude the ground, the
minimization process fails to find the proper motion parameters. Of course, in our application
we expect obstacles to occlude the ground as the vehicle approaches, and it is precisely these
situations in which we need the motion estimation to work best. For this reason, we choose
not to employ the method of Lovegrove et al. .

Literature Review 9

Scaramuzza et al. 2009

Scaramuzza et al. [28] exploit the fact that wheeled vehicles possess an instantaneous center
of rotation to compute the epipolar geometry from a single feature correspondence. By using
the knowledge of the vehicle speed they are able to recover the turning angle with a 1-point
RANSAC. This results in an optimal motion estimation scheme in the sense that outlier re-
moval procedures, such as RANSAC, converge with the smallest possible number of iteration.
Of course, this can only be used if the vehicle speed is measured by some external sensor.

Similar to [28], we optimize the motion estimation by constraining the vehicle motion.
However, since our system has no external measurement of the vehicle’s speed, we cannot
employ the 1-point RANSAC method. Instead we use a general planar motion model (Chapter
4) that results in a 2-point RANSAC method.

2.1.2 Visual Odometry from Optical Flow

Suzuki and Kanade 1999

Suzuki and Kanade [31] combine a velocity sensor and yaw rate sensor with a CCD camera
to estimate camera motion from optical flow. Assuming a planar surface, they express the
optical flow of ground pixels in terms of the rigid camera motion and the video frame rate.
They assume a small change in the camera’s pitch angle, roll angle, and camera height wrt.
the ground while the vehicle is moving. This allows for a simplified expression of the optical
flow parameters of the road from which the vehicle motion is more easily solved. They use
an Extended Kalman Filter (EKF) to reduce measurement noise and facilitate solving the non-
linear system. They model the vehicle dynamics as a second-order oscillatory motion.

To calculate the optical flow, they apply a Laplacian Gaussian Filter to the image, to en-
hance image features. Then, they compute the optical flow using a Sum of Absolute Difference
(SAD) template matching. The parameters of the ground flow optical flow model are found
using the Least Mean Square (LMedS) method.

The ground flow parameters, along with the reading from the velocity and yaw rate sensors,
are fed into the Extended Kalman Filter to obtain a minimum variance estimate of the vehicle’s
motion and orientation wrt. the ground.

They show accurate and stable results compared to a ground truth from external sensors.
However, they used a high quality CCD camera mounted high on the vehicle’s roof rack for a
better view of the road, and used external sensors as input. Since none of these aiding factors
are amenable to our application, and their contribution to the success of the above algorithm

Literature Review 10

was not assessed, we have not employed the method of Suzuki and Kanade.

2.1.3 Visual Odometry from 3D Reconstruction

Kitt et al. 2011

Kitt et al. [13] propose an approach to monocular visual odometry that uses knowledge of the
camera mount and assumes a locally planar driving surface to correct drift in scale. They select
Harris corners [8] using the Good Features to Track algorithm [29] and track these features
across consecutive frames. These tracks are used to recover camera pose in two distinct phases;
(1) Pose initialization and (2) pose estimation.

For pose initialization, three keyframes {K1, K2, K3} are selected and their corresponding
feature tracks are used to recover camera pose and triangulate features. First, the 8-point
algorithm [9] is used to estimate the pose between K1 and K3. Second, this pose estimate is
used to triangulate the features, provided they lie near their respective epipolar lines in both
images. Third, the pose between K1 and K2 is estimated using the triangulated feature points
in an optimized PnP algorithm [17]. Finally, a bundle adjustment is performed over the three
keyframes to obtain the best pose and triangulation estimate.

For pose estimation, they use the triangulated feature points, along with their current track
observations, to update the pose of the camera w.r.t. to the first keyframe K1

New keyframes are selected when the number of triangulated points drops below a thresh-
old. When a new keyframe is added, a bundle adjustment is performed over the most recent
10 keyframes, and the most recent 5 pose estimates. Pose estimation then ensues until the next
keyframe is added.

The scale drift in the translation estimate that may occur with such a reconstruction scheme
is compensated for in the following manner. They use the knowledge of the camera height
and orientation w.r.t. the ground to produce a bird’s eye view of the ground for consecutive
frames. By matching large (50 × 50) pixel blocks of this of this view from one image to the
next, they are able to robustly track ground features. This tracking, combined with the camera
motion estimate, allows the ground features to be triangulated and thus the camera height to
be estimated. This camera height estimate is compared with the true camera height to give the
corrective scaling for motion and structure.

Because the speed of a backing vehicle can range from nearly stationary up to 20km/h, we
employ the concept of keyframes in our algorithm (we call them snapshots). Also similar to
[13], we use the known height of the camera to set an absolute scale to the camera motion and
scene reconstruction.

Literature Review 11

Nister 2004

Nister et al. [24] propose a system that estimates motion a single moving camera (as well as
a stereo rig) in real-time based on video input. Their motion estimation scheme is completely
general in that they make no prior assumptions about the camera motion, nor the type of terrain.
Thus, they have been able to successfully apply their method to aircraft-mounted, vehicle-
mounted and hand-held cameras. Their algorithm is as follows.

At each frame, Harris corners [8] are detected using a novel MMX implementation that
optimizes cache performance. Non-max suppression in a 5 × 5 neighbourhood is used to
identify actual feature points. Rather than using absolute thresholds on corner response, they
set a limit on the number of detected features in a given local region. In particular, they break
the image into 10 by 10 buckets and allow 100 features per bucket.

Tracking is achieved by matching detected features from frame to frame, rather than de-
tecting once and tracking a window of pixels surrounding the feature. In order to keep the
matching possibilities to a manageable size, a feature in one image is matched to every feature
within a fixed distance in the other image. This fixed distance is typically 10% of the image
size. Normalized correlation over an 11 × 11 window is used to evaluate potential matches.
Accepted matches must pass the mutual consistency check. That is, feature a in one image is
matched to feature b in the other image only if a is the best match for b and b is the best match
for a.

Camera motion is estimated by a bundle adjustment scheme that iterates over time. The
basic steps are the following.

1. Track features for a certain number of frames. Estimate the relative poses between three
frames using the 5-point algorithm [25].

2. Triangulate the tracked features using the first and last observation on each track [27]. If
this is not the first time through the loop, put the present reconstruction in the coordinate
system of the previous one.

3. Track for an additional number of frames. Compute camera pose w.r.t. the known 3D
points using the 3-point algorithm [7]

4. Re-triangulate the features, again using the first and last observation on each track. Re-
peat step 3 a certain number of times.

5. Repeat step 1.

Literature Review 12

In addition, a maximum track history is set to avoid long-term error propagation. That is,
the track observation at the past frame corresponding to the track history maximum will be
treated as the “first” observation. Also, the model fitting in steps 1, 2 and 3 are made robust
with a modified RANSAC scheme developed by the author, and then iteratively refined.

Although the authors show impressive results, they only show results for the stereo version
of the algorithm and give only the qualitative statement that it outperforms the monocular
version. So the performance of the monocular algorithm is unclear. Further, the generality
of their motion estimate necessitates the rather cumbersome bundle adjustment scheme shown
in steps 1 through 5. This requires the implementation of three separate, highly specialized
reconstruction algorithms [25, 27, 7]. Such an undertaking carries two major risks; (1) There
is too great a risk of burying the novice implementor in technical computing details, and; (2)
Porting such a scheme to the dedicated hardware system is not likely realizable within the
project time frame. For these reasons, we choose not to employ the method of Nister et al. .

2.2 Obstacle Detection

In this section we review visual obstacle detection methods. We outline various methodologies
for detection and focus on methods that use scene structure for detection, since this is how our
algorithm works.

Obstacle detection methods can be largely divided into two categories; Those using stereo-
vision and those using a single camera.

Stereo methods make use of the disparity field to infer the depth of image features. This
allows for detection of the ground plane (if it is unknown) and the detection of obstacles as any
feature off the ground plane.

Monocular methods form two broad classes; Appearance-based methods and Motion-based
methods. Appearance-based methods use colour and shape cues to differentiate image regions
belonging to the ground from regions belonging to obstacles. Motion-based methods, on the
other hand, rely on image motion and use a variety of ways to detect and even locate obstacles.
We new discuss these methods in greater detail.

2.2.1 Stereo Methods

As our method uses as single camera, we provide only a brief review of stereo methods for
obstacle detection.

Literature Review 13

Stereo methods all use scene structure for detection in one way or another, since 3D re-
construction is the primary function of a stereo rig. Stereo-vision systems have the advantage
of instantaneous depth perception. This means that no motion is required between the vehicle
and the scene in order to detect obstacles based on 3D structure. However stereo methods
require two cameras and a proper calibration between them in order to function. As a result,
stereo OD systems are more expensive (both computationally and financially) and require more
maintenance than monocular systems.

Jenkin and Jepson 1994

Jenkin and Jepson [12] proposed an OD method using a calibrated stereo rig. They use expec-
tation maximization to fit a Gaussian mixture model for the disparity field obtained from the
stereo image pair. Then, the probability of each pixel belonging to an obstacle is computed
from the ownership probabilities of the mixture model. In an indoor environment, this system
was shown to detect obstacles (textbooks, in fact) of very low height.

Stereo OD systems are preferred for autonomous navigation on undulated terrain [2] [32]
[5]. Talukder et al. [32] reconstruct the terrain in front of the vehicle using a stereo rig. They
cluster the terrain into locally planar regions and use the relative slopes among the planes to
detect obstacles.

2.2.2 Monocular Methods

Monocular methods vary substantially more in detection mechanisms. At the highest level,
monocular are either appearance based or motion based.

Appearance-based Methods

Appearance-based methods [33, 18, 11] use colour and shape to detect image regions belong-
ing to obstacles and image motion is largely ignored. For example, Ulrich and Nourbakhsh
[33] use only colour information to detect obstacles for the purpose of robot navigation. They
classify each pixel as ground or obstacle based on how similar the pixel’s colour is to the
ground’s. To this end, a hue and intensity histogram is built from a region near the bottom of
the image assumed to be ground. If a given pixel colour is below a threshold in either of these
histograms, it is considered an obstacle. The ground colour histograms are updated over time,
based on odometry information coming from the robot.

Literature Review 14

The strength of appearance-based methods is speed, simplicity and the ability to detect
very small obstacles. However, they suffer from underlying assumptions. First, obstacle de-
tection can only occur if obstacles differ in appearance from the ground. Second, obstacles
cannot occupy the area near the vehicle assumed to be ground, otherwise their appearance gets
incorporated into the ground model. Further, obstacle distance can only be estimated if the
obstacle is detected at its base. In other words, the distance to overhanging obstacles cannot be
estimated.

All of these assumptions are often violated in a parking scenario. First, many obstacles
are of similar colour to the ground (gray or concrete objects). Conversely, patterns painted
on the ground, such as parking lines, would be falsely detected. Second, in parking situations
obstacles will inevitably occupy the majority of the image. Third, at close range, even obstacles
that overhang by a small amount, such as a car bumper, can lead to a false distance estimate
that could cause a collision.

Motion-based Methods

Motion-based methods are complimentary to appearance-based methods in that they largely
ignore colour and shape but rely heavily on the motion of image features and optical flow. Of
the motion-based methods, some rely on external sensors to measure vehicle motion [6, 34]
while others estimate vehicle motion directly from the images [36, 19, 14, 16, 35].

Obstacle detection in motion-based methods generally works in the following way. The
ground, assumed to be planar, is expected to move a certain way on the image. A parametric
model is constructed to capture the essence of this motion. Then, the ground motion is ob-
served, with or without the help of external sensors, and the parameters of the motion model
are estimated. Regions of the image that agree with this model are considered ground, and the
rest are considered obstacles.

Zhang et al. 1997

A simple example of the motion-based method is the work of Zhang et al. [36]. They present
two monocular methods for obstacle detection where the presence of outliers to the motion
model is the detection mechanism. In the first method, the motion of a calibrated camera is
described by a linear model, assuming a small angle of rotation between images. In the second
method, the homography between two views of an uncalibrated camera is computed. In both
cases the presence of outliers are used to detect the presence of an obstacle.

Literature Review 15

Enkelmann 1991

As a variation, Enkelmann [6] uses optical flow to detect stationary and moving obstacles with
a single camera. In this approach, orientation of a single calibrated camera wrt. the ground is
known and assumed to be fixed. The vehicle’s speed, measured externally, is used to generate
an expected optical flow field, assuming planar ground and no obstacles. Thus, when obstacles
are present, the calculated optical flow on those regions of the image differ substantially from
the expected flow. It is this difference that is used to trigger a detection.

Lourakis 1997

Another variant is given by Lourakis and Orphanoudakis [19]. They detect obstacles by dif-
ferencing registered images of a camera moving on a planar surface. By corresponding image
features across two consecutive images, they compute the ground homography using a Least
Median of Squares (LMedS) estimator to remove outliers. The computed homography is used
to map the ground in the previous image to that in the current image. This leaves a difference
between the images wherever an obstacle is present. The difference image is thresholded and
a minimum connected component size criterion is used to remove high frequency noise. Any
remaining connected components indicates the presence of an obstacle.

Willersinn and Enkelmann 1997

Willersinn and Enkelmann [34] detect moving vehicles by spatially clustering similar optical
flows. Specifically, they use the knowledge of the ground plane cluster optical flows along
lines parallel to the ground, a technique developed with vehicle detection in mind. Multiple
cluster hypotheses are developed and the best one is chosen. Each cluster is considered an
object and its position and motion are estimated with a Kalman filter. The object position is
obtained under the assumption that it is detected at its base.

Lefaix et al. 2002

One of the more elaborate motion methods was proposed by Lefaix et al. [16]. They detect both
stationary and moving obstacles by motion consistency check over subregions of the image.
They use 2D quadratic motion to model the projection of the planar motion of the ground on the
image. A multi-resolution technique [26] is used to estimate the parameters of the model and
produce an outlier map for each pixel. The outlier map is thresholded and detected pixels are
grouped based on location and optical flow. To reduce false detections, detected obstacles are

Literature Review 16

tracked over successive frames. They estimate the time to collision of the detected obstacles
by the rate of change of their bounding boxes.

Although the authors present a reasonable looking time-to-collision VS time plot of a de-
tected vehicle, no ground truth is provided, so the accuracy of their system is uncertain. Further,
their grouping of pixels with similar motion would fail to properly segment pedestrians that are
near the camera, as the difference in motion of the various body parts would become apprecia-
ble. In fact, no results for close-range detection/time-to-collision estimation is presented. For
these reasons, we did not pursue this particular method.

The strength of motion-based methods is the ability to detect obstacles based on scene
structure without an explicit 3D recovery of the scene. In other words, these methods provide
the robustness of detection from scene structure without the computational cost and complexity
of 3D reconstruction methods. However, these methods do not provide a direct estimate of the
obstacle distance. For this we must turn to 3D reconstruction methods.

2.2.3 Structure-based Methods

Structure-based methods detect obstacles by an explicit 3D reconstruction of the scene. For
this to be possible with a single camera, the camera must be in motion. The camera motion
creates a sequence of images of the scene taken from different poses. If the scene is static, then
there is no distinction between a set of images taken from a single camera at different times,
and a set of images taken from multiple identical cameras taken simultaneously.

The main tasks in most structure-based methods are (1) motion estimation, (2) 3D scene
reconstruction, (3) establishing the ground plane, and (4) detecting obstacles as features above
the ground plane.

Yamaguchi 2006

Yamaguchi et al. [35] propose a method for detecting moving obstacles on roads using a sin-
gle vehicle-mounted camera. They use the 8-point algorithm [9] to estimate camera motion
and use the detection results of previous frames to select features. At each frame, the motion
between the current and the previous frames is estimated. To improve the robustness of the
motion estimate, they divide the image horizontally into three sections motivated by the fol-
lowing assumptions: (1) The bottom region contains the road, (2) the middle region contains
short objects (e.g. vehicles, pedestrians), (3) the top region contains tall objects (e.g. buildings,
street signs). Features are selected such that the three regions are sufficiently represented. This
scheme is not optimal, since dividing the image into such subregions implies some knowledge

Literature Review 17

of camera pose wrt. the road, yet no motion constraints reflecting this knowledge are used
in the motion estimation. Again, here camera height is used to set an absolute scale to the
motion. Regions of the ground are detected by correlating corresponding patches of the cur-
rent and previous frames, with the patch of the previous frame transformed according to the
estimated ground motion. If the correlation is high, the patch is considered part of the ground.

Moving obstacles are indicated by features that are away from their epipolar lines or that
have a negative triangulated distance. For robustness of detection, spatio-temporal clustering
is performed on detected features.

Chapter 3

Preliminary Material

3.1 Rigid Body Motion

A rigid body is a body whose shape is constant in time. In other words, the relative position of
points comprising the object remains constant. This property of rigid bodies allow us to fully
describe their position in space at any given time by a single coordinate system. Consider a
rigid body initially at position A, then moved to position B. Let g : R3 → R3 be the mapping
of points on the rigid body from A to B. In other words, if a point p has 3D coordinates
XA in position A and XB in position B, then XB = g(XA). Because the body is rigid, the
distance between any two points, as well as their relative orientation, are preserved as they are
displaced from A to B. To put it more formally, g preserves the norm of any vector (distance
preservation) and the cross product of any two vectors (orientation preservation).

Definition 2.1 (Rigid Body Displacement). A map g : R3 → R3 is a rigid body displace-
ment if it preserves the norm and the cross product of any two vectors:

1. norm: ‖g(X)‖ = ‖X‖, ∀X ∈ R3

2. cross product: g(X)× g(Y) = g(X×Y), ∀X,Y ∈ R3

It is shown in [22] that there are two types of transformations in R3, that when composed
together, make up the entire set of rigid body displacements; rotations and translations.

3.1.1 Rotations in R3

A rotation r : R3 → R3 is a distance and orientation preserving transformation for which there
exists a line passing through the origin which remains invariant. This invariant line is called
the axis of rotation. In this section we establish a notation for describing rotations.

18

Preliminary Material 19

Let us define a coordinate system S0 with the orthonormal basis B0 = {X0,Y0,Z0}. The
unit basis vectors X0, Y0 and Z0, define the orientation of the x, y, and z axes of S0. Let us
define a second coordinate system S1 whose origin coincides with that of S0 and that has been
rotated such that its basis vectors are given by B1 = {X01,Y01,Z01}. Here, the subscript ”01”
is used to denote the fact that X01 is the x axis of S1 in the system S0, and likewise for y and
z-axes.

Consider a point p with coordinates P1 = [X1 Y1 Z1]T in S1. Its corresponding coordinates
P0 = [X0 Y0 Z0]T in S0 are given by a linear combination of corresponding coordinates and
basis vectors in S1;

P0 = X1X01 + Y1Y01 + Z1Z01

This expression can be conveniently written as a matrix multiplication;

P0 = RP1

where R01 is the 3× 3 matrix whose columns are the basis vectors of S1, i.e.,

R = [X01 Y01 Z01]

We call R a rotation matrix since it is constructed from the rotated orthonormal basisB1. Here,
the subscript ”01” indicates that R01 transforms coordinates in S1 to coordinates in S0.

Since any rotation matrix R is constructed from an orthonormal basis, as was done above,
it follows that RT = R−1. So the inverse rotation, i.e., the transformation from S0 to S1, is
given by

P1 = R10P0 where R10 ≡ RT
01

3.1.2 A Formulation of Rigid Motion

Let us denote the rigid motion from coordinate system Sa to coordinate system Sb as gba.
The rigid motion gba is a composition of a rotation Rba and a translation Tba. Recall that the
columns of RBA are the basis vectors of SA expressed in coordinates of SB. Also note that tba
is the origin of Sa expressed in coordinates of Sb. Consider a point p with coordinates Xa in
Sa and Xb in Sb. We then have the following relation.

Xb = gba(Xa) = RbaXa + Tba (3.1)

Rearanging the above expression yields the inverse rigid motion

Xa = gab(Xb) = RabXb + Tab (3.2)

where
Rab ≡ RT

ba and Tab ≡ −RT
baTba

Preliminary Material 20

3.2 Camera Modeling

The goal of camera modelling is to understand the projection of a 3D scene onto the camera’s
image sensor. This understanding allows us to make two useful predictions: (1) Given a 3D
point in space, we may predict the location of its image on the sensor, and (2) Given a location
on the sensor, we may predict the 3D line in space passing through the 3D point and the camera
center. These predictions allow us to relate measurements made by the sensor to objects in the
world; a requisite for 3D reconstruction.

The basic camera design is to place a flat image sensor inside a dark compartment, and to
have light enter through a small aperture located in front of the sensor. The aperture is fitted
with a lens to focus light onto the sensor. An image is formed when light enters the aperture,
is deflected by the lens, and strikes the sensor. As it is intuitive to think of image formation as
occuring in these three steps, we divide the overall camera model into three corresponding sub-
models; (1) perspective projection, (2) lens deflection (or distortion), and (3) sensor geometry.
We now describe these models.

3.2.1 Perspective Projection

Perspective projection is the projection of a 3D scene onto a plane in which all light rays pass
through a single point. A cameras exhibist perspective projection the limit that its aperture size
goes to zero. The concept of perspective projection is formalized in the following definition.

Definition 2.3 (Perspective Projection). For a coordinate system S, let us define a point o
called the perspective origin and a 2D plane Π called the projection plane. For any point p, we
call the line formed by o and p the projection line of p. A perspective projection is the mapping
π{S,o,Π} : R3/ {o} → R2 of a point p to the intersection of its projection line and the projection
plane.

Consider an idealized camera with an extremely small aperture at the origin and the image
plane (sensor) is is the z = −d plane, where d is a positive value. This is the so-called pinhole
camera and is shown in Figure 3.1. As can be seen, the image of 3D points are inverted on the
image plane. More precisely, the image of a 3D point X = [X T Z]T is given by

x = − d
Z
X

where x = [x, y, 1]T is the homogeneous image coordinate. To do away with the inverting of
the image, and to set a standard scale, we define the ideal image plane at Z = 1. Let us denote

Preliminary Material 21

Figure 3.1: The pinhole camera model. The image sensor is normal to the z-axis and at a
distance d from the aperture, which is at the origin. All light rays hitting the image sensor must
pass through the origin. A point object X creates the inverted image x.

the projection x of a 3D point X onto the ideal image plane by

x = π(X) =
1

Z
X (3.3)

Although the ideal image plane is not a physical one, it is extremely useful in 3D vision
due to its simple projective relation to the world. In fact, the goal of camera calibration is to
map pixels to the ideal image plane (and back) to take advantage of this simplicity. As we shall
see, the theory of 3D imaging is most conveniently expressed using ideal image coordinates.

3.2.2 Lens Modelling

Figure 3.2: The thin lens is characterized by its focal length; The distance between the lens
and the focus.

The purpose of a lens is to focus a large area of incident light onto a small sensor. It allows
a camera to be compact while admitting large amounts of light. The simplest lens model is the
thin lens, shown in Figure 3.2. In this idealization, the lens has an optical axis perpendicular
to its surface and passing through its center. All incident rays that are parallel to the optical

Preliminary Material 22

axis are deflected to a single point on the optical axis and on the opposite side of the lens. This
point is called the focus. The defining characteristic of the thin lens is the focal length f ; The
distance between the lens and the focus.

Placing a thin lenses at the aperture of a camera bends the incident light and effectively
scales the image. This allows us to build cameras of practical size, with small image sensors
placed near the aperture. Given a thin lens with focal length f , the ideal image point x is scaled
according to

x′ =

f 0 0

0 f 0

0 0 1

x (3.4)

3.2.3 Sensor Modelling

Figure 3.3: The image sensor model. Each pixel has width w and height h. The optical axis
passes through the sensor at pixel c. A point object X traces a ray to pixel p.

The image sensor is typically a rectangular grid of discrete photo-sensitive elements called
pixels. Each pixel on the sensor is labelled according to its discrete horizontal (x) and vertical
(y) position. These coordinates, extended to the continuous domain are called pixel coordi-
nates. We denote homogeneous pixel coordinates as p = [u, v, 1]T.

Consider the image sensor shown in Figure 3.3. The pixel width and height, in meters, are
w and h respectively. The optical axis passes through the point [cx, cy, 1]T in pixel coordinates.
For simplicity, let the sensor be located a distance 1m from the aperture (at the origin). This
way, the sensor lies on the idea image plane and so the pixel coordinates are given by

u =
1

w
x+ cx v =

1

h
y + cy

Preliminary Material 23

where x and y are the ideal image coordinates. In homogeneous form we have

p =


1
w

0 cx

0 1
h

cy

0 0 1

x (3.5)

3.2.4 Putting it All Together

When a thin lens and image sensor are combined, the ray traced from the world point X is
related to the pixel coordinate p by combining (3.4) and (3.5):

p =


1
w

0 cx

0 1
h

cy

0 0 1


f 0 0

0 f 0

0 0 1

x =


f
w

0 cx

0 f
h

cy

0 0 1

x

The terms fx ≡ f
w

and fy ≡ f
h

are horizontal and vertical focal lengths, respectively, and
are in pixel size units.

Finally, the ideal image coordinate x is related to the pixel coordinate p by

p =

fx 0 cx

0 fy cy

0 0 1

x ≡ Cx (3.6)

where C is called the camera matrix.
In addition to the linear mapping presented here, there is typically a non-linear component

of the mapping due to lens distortion. However, lens distortion modelling is beyond the scope
of this thesis and so we refer the reader to [4].

In this chapter we have discussed fundamental concepts required for the discussions in
subsequent chapters. We have described rigid body motion and basic camera modeling.

Chapter 4

Motion Estimation

As we shall see in Chapter 5, recovering the depth of objects taken from two views requires
knowledge of the motion between those two views. In the absence of external sensors, such
as speedometers, accelerometers or GPS, we must estimate the motion from the visual data.
In this section we begin by describing the special type of motion experienced by a vehicle-
mounted camera. Next, we discuss how the specific properties of this motion allow us to
describe and estimate the camera motion more easily than if it were a general rigid motion.
Next, we discuss how to estimate the motion in the presence of noise and mis-measurements.
We then give a brief description of feature tracking, the method with which we establish cor-
respondences between two images. Finally, we combine these basic concepts in an algorithm
for robustly estimating the motion between two images taken from a vehicle-mounted camera.

4.1 Camera Motion as Planar Motion

Any camera is, to any reasonable physical limit, a rigid object. So it is correct and sufficient to
describe its motion as rigid motion (section 3.1.2).

Consider the two camera reference frames shown in Figure 4.1. The first camera C1 is
located at T in world coordinates and it is rotated such that such that the unit vectors along
its x, y and z axes have world coordinates r1, r2 and r3, respectively. For convenience, and
without loss of generality, the second camera C2 is located at the world origin and its axes are
aligned with the world’s. The combined rotation and translation of C1 gives a rigid motion
{R,T} from C1 to C2 where the three columns of R are the coordinates of the rotated axes
r1, r2 and r3. From (3.2) we know the inverse rigid motion (from C2 to C1) is given by{

RT,−RTT]
}

. In other words, in the first camera frame, C2 has coordinates −RTT, and its

24

Motion Estimation 25

Figure 4.1: Two camera coordinate systems related by a rigid motion {R,T]} whereby the
first camera (C1) has coordinates T in the second camera (C2) frame, and its axes (r1, r2, and
r3) are the columns of the rotation matrix R.

axes are the columns of RT.
Let the point P have coordinates X1 and X2 in the respective camera frames. These coor-

dinates are related by the rigid motion between the cameras:

X2 = RX1 + T (4.1)

It is precisely the rotation matrix R and the translation vector T that we need to know in
order to recover depth of objects.

Now, we have considered two cameras giving two distinct views of a 3D scene. However,
taking an image with a camera from C1, then moving it to C2 and taking another image is
equivalent to having two identical cameras at C1 and C2. So the relative position of single,
moving camera at different instants is also described by rigid motion.

For a vehicle-mounted camera, there is a special type of motion we can expect. Consider
a vehicle moving around on flat ground. As long as the ground is flat and the wheels remain
firmly on the ground, we have the following. No matter where the driver directs the vehicle, the
vehicle’s translation is within the ground plane. In other words, the translation is perpendicular
to the ground normal. Also, no matter how the driver turns the wheel, the axis of the vehicle’s
rotation is in the same direction as the ground normal. As such, the vehicle is restricted move
within the ground plane. We call this type of motion planar, and its formal definition is as
follows.

Definition 4.1 (Planar Rigid Motion). A rigid motion {R,T} is planar if there there exists

Motion Estimation 26

a vector N such that
T ·N = 0 and (R− I)N = 0

In that case, we say the motion is within the plane defined by the normal N.

Planar motion is most conveniently expressed in a coordinate system in which the normal
is aligned with one of the axes. By choosing to align the normal with the z axis, we may
represent planar motion as {Rp,Tp}, where

Rp =

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , Tp =

 tx

ty

0

 . (4.2)

Here θ is the angle of rotation and [tx, ty]
T is the translation within the plane.

Now we ask; If we describe the vehicle’s motion by {Rp,Tp}, what is the motion in the
camera reference frame? In other words, what is {R,T}?

Qualitatively, we know the camera experiences planar motion because the pose of the cam-
era relative to the vehicle is fixed, so the motion of the camera and the vehicle wrt. the ground is
the same. For a quantitative answer, we need to define the pose of the camera wrt. the vehicle.

Figure 4.2: The vehicle and camera coordinate systems. The vehicle axes are x, y and z and
the camera axes are xc, yc and zc. The location of the camera center in vehicle coordinates is
Tc.

Figure 4.2 shows our choice for the vehicle and camera coordinate systems. The vehicle
axes are denoted x, y and z while the camera axes are denoted xc, yc and zc.

We locate the origin of the vehicle coordinate system on the ground and centered directly
beneath the rear bumper of the vehicle. The vehicle’s direction of travel, which we’ll simply
call its axis, is aligned with the y-axis. The z axis is normal to the ground.

Motion Estimation 27

The camera pose is defined relative to the vehicle coordinate system. The camera is
mounted at the rear of the vehicle and its optical axis points in the zc direction. We assume
the camera is at the center of the rear bumper at a height h off the ground. So the camera
center is located at Tc = [0 0 h]T in vehicle coordinates. The rotation of the camera wrt. the
vehicle is given by the rotation matrix Rc, where the columns of Rc are the coordinates of the
camera’s x, y and z axes. We assume the camera height and orientation are known via some
prior calibration process.

With Rc and Tc defined as such, the camera coordinates X and vehicle coordinates X′ of a
point are related by

X′ = RcX + Tc (4.3)

Now let us relate the planar vehicle motion to the camera motion. Say a point has coor-
dinates X′1 wrt. the vehicle in the first instant, and X′2 wrt. the vehicle in the second instant.
These are related by

X′2 = RpX
′
1 + Tp

By substituting X′1 and X′2 for their expressions in (4.3), we get

RcX2 + Tc = Rp (RcX1 + Tc) + Tp

X2 = RT
c RpRc X1 + RT

c ((Rp − I)Tc + Tp)
.

Notice that the above expression has the same form as (4.1). So the camera motion {R,T}, in
terms of the vehicle’s planar motion {Rp,Tp} and the relative orientation of the camera w.r.t.
the vehicle {Rc,Tc} is

R = RT
c RpRc and T = RT

c ((Rp − I)Tc + Tp) (4.4)

4.2 Estimating Motion on a Planar Surface

In the absence of external motion sensors, the motion parameters θ, tx, ty are not known and
must be inferred by observing the motion of the image. Our strategy for estimating the mo-
tion of a vehicle-mounted camera is the following. We make three main assumptions; (1) the
ground surface is planar, (2) the wheels of the vehicle remain in contact with the ground so
that the camera exhibits planar motion, and (3) the height and orientation of the camera wrt.
the ground is known and fixed. We estimate the vehicle’s planar motion by we tracking im-
age features. Using the knowledge of camera pose, tracked features are projected onto the
ground in vehicle coordinates. The planar motion parameters in (4.2) are estimated from the

Motion Estimation 28

ground-projected features in a process robust to model outliers. Finally, the vehicle motion is
transformed to camera motion by (4.4).

Say we observe a set of points pi, i = 1...N on a plane with homogeneous coordinates xi1
in the first reference frame and xi2 in the second reference frame. The two sets of coordinates
are related by the planar motion between the reference frames:

xi2 = Rpx
i
1 + Tp i = 1...N (4.5)

Subtracting xi2 from both sides of (4.5) gives an expression equal to the zero vector, which we
call a residual:

0 = Rpx
i
1 + Tp − xi2 i = 1...N

As such, the true motion parameters can be found by minimizing the sum of squared magni-
tudes of all the residuals{

θ̂, t̂x, t̂y

}
= arg min

{θ,tx,ty}

∑
i

∥∥Rpx
i
1 + Tp − xi2

∥∥2 (4.6)

Linear Approximation

The residual in the above expression is non-linear with respect to θ and so the solution must
be arrived at iteratively. However, we may arrive at an approximate solution by substituting α
for cos(θ) and β for sin(θ). This removes the non-linear constraint cos2(θ) + sin2(θ) = 1 and
gives the residual [

rix
riy

]
=

[
αxi1 − βyi1 + tx − xi2
βxi1 + αyi1 + ty − yi2

]
and the linear least squares minimization{

ᾱ, β̄, t̄x, t̄y
}

= arg min
{α,β,tx,ty}

∑
i

[(
rix
)2

+
(
riy
)2
]

(4.7)

The expression R =
∑

i

[
(rix)

2
+
(
riy
)2
]

is minimized when all its the partial derivatives
of are zero:

∂R
∂α

= 2
∑

i (r
i
x)x

i
1 + 2

∑
i

(
riy
)
yi1 = 0 ∂R

∂tx
= 2

∑
i r
i
x = 0

∂R
∂β

= 2
∑

i

(
riy
)
xi1 − 2

∑
i (r

i
x) y

i
1 = 0 ∂R

∂ty
= 2

∑
i r
i
y = 0

Motion Estimation 29

If we express this system in matrix form A[α, β, tx, ty]
T = B, we get

A =


∑(

xi1
2

+ yi1
2
)

0
∑
xi1

∑
yi1

0
∑(

xi1
2

+ yi1
2
)
−
∑
yi1

∑
xi1∑

xi1 −
∑
yi1 N 0∑

yi1
∑
xi1 0 N

 and B =


∑

(xi1x
i
2 + yi1y

i
2)∑

(xi1y
i
2 − yi1xi2)∑
xi2∑
yi2


(4.8)

Then the solution to (4.7) is
[ᾱ, β̄, t̄x, t̄y]

T = A−1B (4.9)

where A and B are given by (4.8).

Newton-Gauss Method

The approximate solution can then be refined by an iterative Newton-Gauss method. For a
sum of squared normed residuals R(p) =

∑N
i ‖ri(p)‖2, where p is the set of parameters, the

Newton-Gauss method says that we can converge to the optimal parameter set p̂ by iterating

pk+1 = pk +
(
JTJ
)−1 (

JTr(pk)
)

where J is the Jacobian of each residual

Jij =
∂ri
∂pj

,

r(p) is the concatenation of all residual vectors

r(p) =
[
r1(p)T r2(p)T ... rN(p)T

]T
,

and the initial guess p0 is close enough to p̂.
We use the results of the linear approximation (4.9) for the initial guess. Specifically,

we use
{

cos−1(ᾱ√
ᾱ2+β̄2

), t̄x, t̄y

}
, where the rescaling of α enforces the non-linear constraint

α2 + β2 = 1.
In practice, convergence is reached when the updated parameters differ from the previous

ones less than some threshold ε, that is, when ‖pk+1 − pk‖ < ε.

Motion Estimation 30

4.3 The RANSAC Algorithm

If some of the observed points xi1 and xi2 are corrupted by noise or are mis-measured, the
estimated motion found by least squares minimization will be incorrect. In fact, such mini-
mizations can be very sensitive to a small minority of model outliers. We therefore require a
method of excluding outliers from the least squares fitting.

One such method is the Random Sample Consensus (RANSAC) algorithm. RANSAC
estimates the parameters {p1, ..., pm} of a mathematical model y = f(x : {p1, ..., pm}) from a
dataset containing outliers. An outlier is a data pair (xi,yi) that does not agree with the model.
We detect outliers as data pairs whose normed residual ‖yi − f(xi)‖ (a.k.a. reprojection error)
exceeds some threshold εr. Conversely, any data pair with a normed residual less than εr is
considered an inlier.

The basic RANSAC algorithm is as follows.

Algorithm 4.1 (RANSAC).
For a given set of data pairs (xi,yi), i = 1...N , a model y = f(x : {p1, ..., pm}) and a
threshold εr, this algorithm finds the set of model parameters {p̂1, ..., p̂m} that maximize the
number of inliers to the model.

1. Randomly sample the minimum number of data pairs required to solve the model pa-
rameters.

2. Solve the model parameters to obtain the candidate parameters {p1, ..., pm}.

3. Build a list of inliers for the candidate parameters. For each data pair, compute the
squared residual ri = ‖yi − f(xi : {p1, ..., pm})‖. If ri < εr, add the ith data pair to the
list of inliers.

4. If the current list of inliers is largest found so far, keep it, otherwise discard it.

5. Repeat steps 1-4 M times

6. Solve the model parameters {p̂1, ..., p̂m} for the largest list of inliers found. Return these
parameters.

The remaining issue is: How do we set the maximum number of iterations M? The idea
is to set M such that we are fairly confident that after M tries, at least one of the samples
(obtained in step 1) has no outliers. In other words, we would like to be confident that we’ve
managed to pick at least one subset of inliers.

Motion Estimation 31

Say the chance of picking an inlier from the data is u. Assuming a large dataset, the chance
of picking k inliers is uk. So the chance of picking at least one outlier among k samples is
1 − uk. Now, the chance of picking at least one outlier, M times in a row, is (1 − uk)M . This
means that the chance of picking no outliers at least once after M tries is

P = 1− (1− uk)M .

The probability P , called the confidence, is a parameter of the RANSAC algorithm. We use
P = 0.95. Solving for M gives

M =
log(1− P)

log (1− uk)
(4.10)

In general, the chance of picking an inlier u is not known, so we begin RANSAC assuming
u is very small (makingM very big). Then at each iteration, if the number of inliers n is largest
we’ve seen so far, we set u = n/N and re-evaluate (4.10), which gives a new M that is smaller
than the previous. The result is an adaptive maximum iteration value.

4.4 World Plane Projection

In the two preceding sections, we have described a method for robustly estimating planar
motion by observing the motion of an ensemble of points on the plane. However, the camera
only captures the images of these points. That is, we only observe the projection of these points
onto the image plane. We must then find a way of projecting images points back to their actual
location on the plane. This task can be simplified by choosing a world coordinate system such
that the plane is given by Z = C where C is some constant. In that case our problem is the
following: Given given the image x of a point with known world z coordinate, what are its
world x and y coordinates?

Consider a camera placed at Tc = [Xc, Yc, Zc]
T in the world and oriented such that its axes

are given by c1, c2 and c3, as shown in Figure 4.3. With this configuration, the transformation
from camera coordinates to world coordinates is given by {Rc,Tc}, where Rc ≡ [c1 c2 c3],
that is, the columns of the rotation matrix are the world coordinates of the camera’s axes. The
transformation from camera coordinates to world coordinates is given by (4.3). We will find it
useful to define the three rows of Rc as rT

1 , rT
2 and rT

3 , respectively. Geometrically, the three
rows of Rc are the world x, y and z axes, respectively, expressed in camera coordinates.

Say a point with world coordinates Xw = [Xw, Yw, Zw]T produces an image xw = [xw, yw, zw]T,
also expressed in world coordinates. Due the projective nature of the camera, there is a straight

Motion Estimation 32

Figure 4.3: The relation between camera pose, a world point Xw, its image xw on the ideal
image plane Π. The camera is rotated such that its x, y and z axes are c1, c2 and c3, respectively,
and it is located at Tc in world coordinates. Due to the projective camera model, a straight line
passes through Tc, xw and X.

line passing through the point, its image, and the camera center. We can express this line
parametrically as

l = t (xw −Tc) + Tc

with t as the free parameter. Since the line passes through X, we have

Xw = t (xw −Tc) + Tc

Xw −Tc = t (xw −Tc) Xw −Xc

Yw − Yc
Zw − Zc

 = t

 xw −Xc

yw − Yc
zw − Zc


Say we know Zw the world z component of the point. Then t can be solved for using the z
component in the above expression,

t =
Zw − Zc
zw − Zc

,

and then used to solve for the unknown x and y components:[
Xw

Yw

]
=
Zw − Zc
zw − Zc

[
xw −Xc

yw − Yc

]
+

[
Xc

Yc

]
(4.11)

Now, in practice we do not obtain the world coordinates of the image directly. Instead, we
observe the image x on the ideal image plane in camera coordinates. Transforming these to

Motion Estimation 33

world coordinates gives

xw = Rcx + Tc =

r1 · x +Xc

r2 · x + Yc

r3 · x + Zc

 ,
which, when substituted into (4.11), gives the following relation.

Definition 4.2 (World plane projection). For a camera whose reference frame with respect
to the world’s is given by the rigid motion

{
[r1 r2 r3]T, [Xc Yc Zc]

T
}

, the projection of the
image x to the world z = Zw plane has world (x, y) coordinates[

Xw

Yw

]
= w(x, Zw) ≡ Zw − Zc

r3 · x

[
r1 · x
r2 · x

]
+

[
Xc

Yc

]
(4.12)

4.5 Feature Tracking

So far we’ve discussed how to estimate planar motion between two images from corresponding
points in both images. What we haven’t discussed is how to correspond, or match, these points.
That is, how do we make sure that two given points, one on each image, are both the projections
of the same point in space? There are two main approaches to this problem, depending on how
far apart the corresponding points are expected to be.

If there are large displacements of the camera between images, we can expect the corre-
sponding image points to be far apart. Not only that, but if the view of the scene is significantly
different, the relative positioning of corresponding points in each image is likely to be differ-
ent. In this case, the approach is to find the best global matching of all image features between
the two images.

However, if there are small displacements of the camera between images, we can expect
the corresponding image points to be close by. Further, if the images are taken within a small
time interval, the appearance of corresponding points are likely similar. This is precisely the
case for our application, so we discuss it in more detail.

Say a feature has an appearance It(x, y), where It is the grayscale intensity function at time
t and (x, y) are image coordinates. If, at the next time, the feature has moved by (u, v), we
would have

It+1(x+ u, y + v) = It(x, y)

Note here that we assume the intensity function of the feature is shifted, but otherwise un-
changed from one instant to the next. This assumption generally holds for slow-moving fea-
tures captured in high frame-rate videos. A Taylor series approximation of the above equation

Motion Estimation 34

gives the fundamental optical flow constraint.

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0

This constraint is exploited by the Lucas-Kanade feature tracking (KLT) algorithm [21].
KLT makes the further assumption that the displacement of all points in the neighbourhood of a
feature is the same. As a result, the optical flow constraint can be imposed on a neighbourhood
of points for a unique unknown displacement (u, v). This gives an overdetermined system
which can be solved in a least-square sense.

For larger displacements, the KLT can be made more robust by iteratively tracking features
over different scales. For example, a r × c image may be subsampled to form a r/2 × c/2

image. A feature can be tracked by KLT on the smaller image, and its new position is used as
an initial guess for the larger one. This process can happen recursively over multiple scaled
images, called pyramids. Typical applications use three pyramids for reliable tracking.

The remaining question is: How are features identified in the first place? Since, when
we track a feature, we are looking for displacements along any direction in the image, our
features ought to be distinguishable (at least locally) in all directions. If the feature has uniform
intensity this is certainly not the case. Even if the feature is on an edge, its exact position along
the edge is indistinguishable from others. However, if the feature is a corner then there is no
ambiguity in its location in the next image, so it can be found. We therefore use corners as
features.

A corner is defined as a point on the image for which the intensity change is high in more
than one direction. We can detect this by computing the spatial gradient of the image around a
point. If the spatial derivative in the direction orthogonal to the gradient is also large, then the
point is a corner. A well known algorithm for detecting corners is the Harris Corner Detector
[8].

When looking for features for tracking, criteria such as the spacing between features, or the
number of desired features are very useful. GoodFeaturesToTrack (GFTT) [29] is an algorithm
that sorts and filters features found by a feature detector based on three user criteria. These
criteria are (1) the maximum number of features to be returned, (2) the minimum allowed
distance between features and (3) the relative quality level. The quality level works as follows.
Each feature has a score s, evaluated by some function particular to the feature detector being
used. If q is the quality level, and the maximum score of all the features is smax, than any
feature with a score ratio s/smax > q is returned.

In our application, we use a Harris Corner Detector wrapped in GoodFeaturesToTrack to
generate features for tracking.

Motion Estimation 35

4.6 Planar Motion from Images

Finally, we bring together the concepts discussed in this chapter to form an algorithm for
robustly estimating camera motion from tracked features. For the first image, N features are
identified using the GFTT algorithm. For each subsequent image, the Lucas-Kanade feature
tracking algorithm updates the features’ positions. Say we want to estimate the motion between
image t1 and image t2. Our image pairs are then (xi1,x

i
2), i = 1...N , the position of each feature

at t1 and t2, respectively. We then use the following algorithm to estimate the camera motion.

Algorithm 4.2 (Planar Motion Estimation from Image Point Correspondences).
For a given set of image point pairs (xi1,x

i
2), i = 1...N > 2 of points with known world

z coordinates Zi, this algorithm finds the planar motion of the camera that best fits the data,
excluding any outliers.

1. Transform image points to the world
For each image pair (xi1,x

i
2) get the 2D world point pair (gi1,g

i
2), where gij = w(xij, Zi)

and w(·) is given by (4.12). Here, either the world z-components are known or they are
assumed to be zero (on the ground).

2. Estimate the planar motion
Run RANSAC (Algorithm 4.1) for the point pairs (gi1,g

i
2), i = 1...N > 2 to get the

motion parameters {θ, tx, ty} of the model (4.5).

3. Construct the planar motion identities
Construct {Rp,Tp} according to (4.2).

4. Transform the motion to camera coordinates
Compute {R,T} according to (4.4).

In this chapter, we have discussed our method for robustly estimating the planar motion
of a vehicle-mounted camera from tracked image features. We use the knowledge of camera
orientation to project the tracked features to world ground coordinates, where the estimation of
the planar motion parameters is simplified. Further, we use the knowledge of the camera height
to resolve scale ambiguity. The above algorithm is central to the motion estimation estimation
module (Section 6.3) of our algorithm.

Chapter 5

3D Reconstruction

The theory of 3D reconstruction (or 3D vision) developped below assumes a calibrated camera.
As mentioned above, a camera is calibrated if the mapping from image sensor to the ideal
image plane (and back) is known. As a result, the theory can be neatly developed without any
reference to image sensors, or lense distortion.

5.1 Epipolar Geometry

Epipolar geometry is the geometrical relation between two camera views. It tells us what we
can and can’t observe when imaging the same object from two locations; a set of rules we
call the epipolar constraint. In this section we begin with a purely geometric and, hopefully,
intuitive presentation of the various identities that make up epipolar geometry. Once these
identities are introduced, we quantify them by adding coordinates and describing the change in
position of the two cameras in terms of a rigid motion. By the end of this section, we will have
both a geometric understanding and an algebraic representation of the epipolar constraint.

5.1.1 The Epipolar Identities

The Epipolar Plane

Consider two cameras and a point object positioned arbitrarily as in Figure 5.1. Consider the
camera centers C1 and C2 and the point-object P . These three points define a plane called
the epipolar plane. If we consider the two camera centers fixed, then every point in space
defines an epipolar plane. As we shall see, the epipolar plane is very useful in establishing an
intuititive relationship between two camera views.

36

3D Reconstruction 37

Figure 5.1: The geometry resulting from two cameras imaging the same scene is called epipo-
lar geometry. The plane passing through the camera centers C1 and C2 and the object P is the
epipolar plane. The intersection of the epipolar plane and the ideal image planes Π1 and Π2

form the epipolar lines l1 and l2, respectively. The projections of P onto each image plane are
the images x1 and x2. The projections of cameras onto the other’s image plane are the epipoles
e1 and e2. Note that the epipolar lines pass through their respective epipoles and images.

The Epipolar Lines

Consider now the ideal image plane of each camera, Π1 and Π2. The intersection of the epipolar
plane with each image plane forms a line l1 and l2 on the respective image plane. We call l1
(resp. l2) the epipolar line of image one (resp. two).

An alternative interpretation of the epipolar lines is the following. Consider the ray traced
from C1 to P , and imagine it is visible. How, then, would the ray look in the second image?
Since the ray lies in the epipolar plane, its projection on the second image would be precisely
the epipolar line l2. Similarly, l1 is the image of the ray joining C2 and P .

What is the significance of the epipolar lines? First, we call the projections of P onto each
image plane, x1 and x2, the images of P , and note that they lie on the epipolar lines. Now,
say we were to move the object arbitrarily within the same epipolar plane. How would the
images change? Figure 5.2 shows the images formed by moving P to P ′ within the same
epipolar plane, resulting in the new images x′1 and x′2. We see that new images also lie on
the epipolar lines. This must be true, since P ′ is on the epipolar plane, and the epipolar lines
are, by definition, the intersection between the epipolar plane and the respective image planes.
So the epipolar lines tell us where on each image we can expect to find the projection of any
3D point within the epipolar plane. A useful consequence of this is the following. Say the
image x1 of an object is observed in the first image. If we wanted to find the same object in

3D Reconstruction 38

Figure 5.2: The image of any point within the same epipolar plane passes through the epipolar
line. Here, the points P and P ′ lie in the same epipolar plane. Their respective images in the
first image plane, x1 and x′1, both lie on the epipolar line l1. The same occurs on the second
image plane.

the second image, we need only to look along the l2 in the second image, rather than scan the
entire image.

The Epipoles

Now, the epipolar lines are not the same for every 3D point in space; For each point defining
a distinct epipolar plane there is a distinct pair of epipolar lines. As we shall see, there is a
simple relationship among the epipolar lines.

Refering back to Figure 5.1, consider the line joining the camera centers. The intersection
of this line with each ideal image plane give the points e1 and e2. We call these points the
epipoles. The epipole e1 is essentially the image of the second camera in the first image.
Likewise, e2 is the image of the first camera in the second image. Note that the epipoles
need not be on the physical image sensor. However, since the ideal plane extends to infinity,
an epipole is guaranteed to exist unless the line joining the camera centers is parallel to the
image plane. In that case, we express the non-existence of the epipole by saying it is located
at infinity. If the epipoles do exist, they, like the images of P , lie on the epipolar line.

To find out why epipoles are worth considering, we now ask what happens when we move
the object arbitrarily off the current epipolar plane. Figure 5.3 shows an object position P ′

which is not on the epipolar plane defined by P . The epipolar plane defined by the camera
centers and P ′ gives distinct epipolar lines l′1 and l′2 and images x′1 and x′2. However, since
the relative position of the cameras has not changed (i.e., the camera centers and image planes

3D Reconstruction 39

Figure 5.3: An object at P is moved to P ′, creating a new epipolar plane with corresponding
epipolar lines l′1 and l′2. Because the relative positioning of the cameras is unchanged, the
epipoles remaine the same. It follows that all epipolar lines pass through the epipoles.

have not moved), the epipoles remain the same. So, for each image, both epipolar lines pass
through the epipoles. In fact, since the choice P ′ is arbitrary, all epipolar lines pass through
the epipoles. So the epipoles are the convergence points for all epipolar lines on the respective
images.

What, then, happens to the epipolar lines when an epipole is at infinity? Consider the
epipole e1 and the pair of epipolar lines l1 and l′1 in Figure 5.3. Imagine we can grab e1 and
slide it to right, towards C2. Picture the l1 and l′1, always anchored to x1 and x′1, stretching to
follow e1 as we slide it to the right. Notice that the further we slide e1, the closer the epipolar
lines become to being parallel. It’s easy to imagine, then, that in the limit that the epipole goes
to infinity, the epipolar lines are exactly parellel.

Summary of the Epipolar Identities

Let us summarize the epipolar identities we’ve discovered.

Definition 5.1 (Epipolar Identities).

1. The epipolar plane is the plane formed by the two camera centers and a given point in
space.

2. The epipolar lines are the intersections of the epipolar plane with the ideal image planes
of each camera. All points in space within the epipolar plane produce images that lie on
the epipolar lines.

3D Reconstruction 40

3. The epipoles are the intersections between the line joining the two camera centers and
the ideal image planes. For any point in space, the epipolar line on each image passes
through the respective epipole.

The rules enfored by the epipolar identities are known as the epipolar constraint. So far
we have presented the qualitative expression of this constraint. Now let’s add an algebraic
foundation to these geometric notions.

5.1.2 The Epipolar Constraint

The epipolar identities, when considered altogether, say something interesting and practical
about how two images of the same object should relate. That is, they make useful predictions
as to how two images are related, in terms of the motion between the two cameras. This insight
is formally known as the epipolar constraint. In this section we present three forms of the
epipolar constraint; First, we present a geometric, qualitative form of the epipolar constraint
that follows directly from the preceding discussion. Second, we present a semi-qualitative
form that uses camera coordinates which we will establish below. The purpose of the semi-
qualitative form is to smooth the transition to the formal, algebraic form, which is the most
concicse and complete of all three forms of the epipolar constraint.

Qualitative Form of the Epipolar Constraint

In the preceding section we’ve defined the epipolar plane, epipolar lines and the epipoles, all of
which are intimately related and defined by relative position of the cameras and the observed
point object. By surveying the properties of these identities, we can extract two basic rules that
must be obeyed when imaging an object from two views.

Proposition 5.1 (Qualitative Epipolar Constraint). For two cameras viewing a point ob-
ject, and considering the identities in Definition 5.1, we have the following

1. The object’s image in camera 1 (x1) defines the epipolar line for camera 2 (l2) on which
we can expect to find the object’s image in camera 2 (x2). (And vice versa.)

2. All epipolar lines pass through the epipoles, provided they exist. If they do not exist, the
epipolar lines are parallel.

This presentation of the epipolar constraint is the most pictoral and so the most intuitive.
However, it is not the whole picture. Indeed, we have not adequately dealt with the case of non-
existant epipoles. Note that qualitative epipolar constraint deals only with projections onto the

3D Reconstruction 41

Figure 5.4: The vectors x2, Rx1 and T are coplanar. This common plane is the epipolar plane.

image planes. In essence, we have cast a 3D problem onto a 2D surface for the intuitive
picture it creates. In the process of doing so, we’ve thrown away some of the details, and
created singularities requiring special attention, such as the epipoles not existing. The solution
to this, of course, is to treat the problem as it really is; A 3D one.

Semi-qualitative Form of the Epipolar Constraint

We now formulate the epipolar constraint semi-qualitatively, as a transition to the formal alge-
braic form. This requires system coordinates and an appropriate model for the motion between
the two cameras.

Referring to Figure 4.1, let the rigid motion between two cameras be {R,T}. Then, a point
P with coordinates X1 in the first camera frame has coordinates X2 = RX1 +T in the second
camera frame. From the projective relation Zx = X, we have

Z2x2 = RZ1x1 + T (5.1)

Let us make two simple, but important observations. The first observation is that, from
(5.1), the vectors x2, Rx1 and T are coplanar. This must be true because any two non-zero
vectors a and b are coplanar, and their sum c = a + b is also within the same plane. The
coplanar vectors x2, Rx1 and T are shown in Figure 5.4. Note that Rx1 is simply x1 (from
Figure 5.1) with its tail placed at C2, and applying R to it expresses it in coordinates of the
second camera. The second observation is that, by definition, the vectors T and x2 are in the
epipolar plane. We combine these two observations in the following proposition.

Proposition 5.2 (Semi-qualitative Epipolar Constraint). For two images x1 and x2 of the
same point P from two cameras with relative rigid motion {R,T]}, the vectors x2, Rx1 and T

all lie within the epipolar plane.

3D Reconstruction 42

This is arguably a simpler statement than the qualitative form, but the mental picture is less
clear. Let us now show that the two statements of Proposition 5.1 can be gotten from the single
statement of Proposition 5.2.

We begin with the first statement. From Proposition 5.1, the normal to the epipolar plane
is

N = [Nx, Ny, Nz]
T = T× Rx1,

as shown in Figure 5.4. Now, the epipolar line on the second image l2 is the set of points
[x, y, 1]T on the image plane that lie within the epipolar plane. In other words, the vectors
[x, y, 1]T are perpendicular to the normal N:

[x, y, 1]T ·N = xNx + yNy +Nz = 0

The above expression gives us the line equation of l2. Since x2 is coplanar to T and Rx1, it
must also be that

x2 ·N = x2Nx + y2Ny +Nz = 0

and so x2 lies on the epipolar line. We have shown that Proposition 5.2 implies that the first
image (x1) defines a line on the second image plane (l2) on which we can expect to find the
second image (x2). That is, Proposition 5.2 implies the first statement of Proposition 5.1.

For the second statement, consider the epipole e2 = 1
Tz
T, where T = [Tx, Ty, Tz]

T , shown
in Figure 5.1. Note that for e2 to exist, we must have Tz 6= 0. Assuming e2 does exist, it is a
scalar multiple of T so regardless of x1, e2 is perpendicular to N:

e2 ·N = e2 · (T× Rx1) = 0

And since x1 determines the epipolar line on the second image, we have that all epipolar lines
pass through the epipole e2, provided it exists. That’s the first part of the second statement of
Proposition 5.1.

Now consider the case where e2 doesn’t exist, that is, Tz = 0. For two images x1 and x′1
resulting in two vectors a ≡ Rx1 and a′ ≡ Rx′1, the normal to the epipolar plane is given by

N = T×a = [Tyaz,−Txaz, Txay−Tyax]T and N′ = T×a′ = [Tya
′
z,−Txa′z, Txa′y−Tya′x]T ,

respectively. The epipolar lines from each are given by

xNx + yNy +Nz = 0 and xN ′x + yN ′y +N ′z = 0

First, note that we cannot have az = 0 since that would mean Nx and Ny are both zero and
the line equation has no meaning. So, if Ny = 0 (i.e., the first line is vertical), then it must

3D Reconstruction 43

be that Tx = 0, which means N ′y = 0 as well. So if one epipolar line is vertical, then they
are all vertical. Conversely, the more general case Ny 6= 0, implies N ′y 6= 0 as well, so the
slope of each line is given by Nx/Ny and N ′x/N

′
y. If these lines are parallel we should find that

Nx/Ny = N ′x/N
′
y. It turns out this is precisely the case:

Nx

Ny

=
Ty
−Tx

=
N ′x
N ′y

.

Thus we have shown that if epipole doesn’t exist, the epipolar lines are parrallel. And so
we have shown that Proposition 5.2 implies the second statement of Proposition 5.1.

In the above analysis, we’ve shown that the coplanarity of the vectors x2, Rx1 and T

(Proposition 5.2) leads the qualitative form of the epipolar constraint (Proposition 5.1). Having
done this, relating the algebraic form of the epipolar constraint to the qualitative form will be
rather straightforward.

Algebraic Form of the Epipolar Constraint

We now derive formal expression of the epipolar constraint. Our tactic is to manipulate equa-
tion (5.1) until we have an expression independent of the unkown depths Z1 and Z2. First, we
cross T with both sides of equation (5.1) to obtain:

Z2(T× x2) = Z1(T× Rx1)

Next, we take the dot product of the above equation with x2:

0 = Z1(x2 · (T× Rx1))

Here x2 · (T × x2) = 0 because x2 is perpendicular to T × x2. Finally, since Z1 must be
positive to physically realize an image we have the following result:

Theorem 5.1 (Epipolar Constraint). Two images x1 and x2 of the same point P from two
cameras with relative rigid motion {R,T} satisfy

x2 · (T× Rx1) = 0 (5.2)

This result states that x2 is perpendicular to T× Rx1, which means that x2 is in the plane
spanned by T and Rx1. In other words, x2, T and Rx1 are coplanar, just as we stated in
Proposition 5.2. So the geometric interpretation of (5.2) is the same as that of Proposition 5.2.
That is, the geometric interpretation of Theorem 5.1 is indeed the qualitative constraints of
Proposition 5.1.

3D Reconstruction 44

In this section we have presented three forms of the epipolar constraint; One purely geomet-
rical and qualitative (Proposition 5.1), one semi-qualitative (Proposition 5.2) and one algebraic
(Theorem 5.1). In that order, each form is progressively more concise and complete, but be-
comes progressively more obscure geometrically. All three forms were presented to give a
complete description of the epipolar constraint and its geometric consequences.

5.2 Triangulation

Triangulation, as applied to 3D vision, refers to depth recovery of 3D scene from two images.
In this section we’ll see that if two images are distinct views, and the motion between the two
views is known, it is possible to infer the 3D location of points observed in both images.

5.2.1 Algebraic Formulation

Figure 5.5: Triangulation from two image points. The vectors x2, Rx1 and T are coplanar. The
depth of the point P in the first camera frame relates the magnitudes of the vectors x2 × Rx1

and T× x2, both normal to the epipolar plane.

As in the preceding section, we consider stereoscopic situation shown in Figure 5.1. The
relation between the observed images in each camera is

Z2x2 = RZ1x1 + T

Since the depth of the point in one camera frame defines the depth in the other, we need only
solve for one of them in the above expression. Z2 is easily gotten rid of by crossing x2 with

3D Reconstruction 45

Figure 5.6: The rays r1 and r2 projected by each camera, in the presence of noise, may not
intersect. The shortest distance between the two rays is along the line perpendicular to both
rays (dashed line) connecting Q1 and Q2.

both sides, giving
Z1(x2 × Rx1) = T× x2 (5.3)

So the vector x2×Rx1 is a scalar multiple of T×x2, and that scalar is the depth Z1. As shown
in Figure 5.5, x2 × Rx1 and T× x2 are both normal to the epipolar plane.

(5.3) has the form Z1a = b, where a ≡ x2 × Rx1 and b ≡ T× x2, and so Z1 is found by
taking the dot product of both sides with a:

Ẑ1 =
(x2 × Rx1) · (T× x2)

‖x2 × Rx1‖2 (5.4)

Ẑ1 is the recovered object depth wrt. the first camera, and so the recovered object position
w.r.t. the first camera is .

X̂1 = Ẑ1x1 (5.5)

5.2.2 Geometric Interpretation

When the epipolar constraint is met, the vectors x2 × Rx1 and T× x2 (in (5.4) and shown in
Figure 5.5) are aligned with each other and perpendicular to the epipolar plane. In that case,
the recovered position (5.5) is unambiguously the true coordinates of the object w.r.t. the first
camera. However, if there is uncertainty in the images or the motion between the cameras, then
the epipolar constraint may not be met and x2×Rx1 and T×x2 are not aligned. Nevertheless,
we can still compute a recovered position. The question is; What is the geometric meaning of
the recovered position (5.5) when the epipolar constraint is not met?

3D Reconstruction 46

Figure 5.7: Non-intersecting rays in coordinates of the second camera, where v ≡ Rx1 and
u = x2. The ray from each camera is given by s1v + T and s2u, where s1 and s2 are scalars.

Consider Figure 5.6. The image of the object in each camera defines a ray (r1 and r2)
that is projected out into the world. As far as each camera is concerned, the object may exist
anywhere on its respective ray. For ideal, noise-free cameras, the recovered object position is
unambiguously the intersection point between the two rays. However, in the presence of noise
these two rays may not intersect. Nevertheless, there exists a point on each ray (Q1 and Q2)
that is closest to the other ray. We will show that the recovered position X̂1 is precisely the
point Q1.

Consider now Figure 5.7, which is a representation of Figure 5.6 in coordinates of the
second camera. For convenience, we denote v ≡ Rx1 and u = x2. Q1 and Q2 are on the ray
traced by the first and second camera, respectively. So

Q1 = s1v + T and Q2 = s2u

where s1 and s2 are scalars.
Now, Q1 are the coordinates of Q1 (from Figure 5.6) in the second camera frame. Since

Q1 = R(s1x1) + T, we see by inspection that its coordinates in the first camera frame are
s1x1. So in order to show that X̂1 is the point Q1 we must show that s1 = Ẑ1.

Let’s begin with finding an expression for s1. We can express the relationship between the
two scalars s1 and s2 by recognizing that Q2 is the projection of Q1 onto u:

Q2 = Q1·u
‖u‖2 u

s2u = (s1v+T)·u
‖u‖2 u

⇒ s2 =
(s1v + T) · u
‖u‖2

Now, let d be the difference between Q2 and Q1. For now, we’ll not worry about any

3D Reconstruction 47

specific properties of d. We have

Q2 −Q1 = d

s2u− (s1v + T) = d(
(s1v+T)·u
‖u‖2

)
u− (s1v + T) = d

s1

(
v·u
‖u‖2u− v

)
= d + T− T·u

‖u‖2u

Here we have, similarly to (5.3), an equation of the form s1a = b, where a = v·u
‖u‖2u − v

and b = d + T − T·u
‖u‖2u. Again, the solution to s1 is found by taking the dot product of both

sides with a:
s1 =

a · b
‖a‖2

Let’s evaluate each of these dot products. Evaluating a · b is greatly simplified by recognizing
the following fact: Since Q1 and Q2 are the points on each ray that is closest to the other ray,
the line connecting them is perpendicular to both rays. So d is perpendicular to both u and v,
and so d · u = 0 and d · v = 0. With this insight, we end up with

a · b = T ·
(
v · u
‖u‖2u− v

)
and ‖a‖2 = ‖v‖2 − (v · u)2

‖u‖2 ,

and our expression for s1 is

s1 =
T ·
(
(v · u)u− ‖u‖2 v

)
‖v‖2 ‖u‖2 − (v · u)2 . (5.6)

Recall our goal is to show Ẑ1 = s1, so we must show that the right hand sides of (5.4) and
(5.6) are equal. Our tactic is to manipulate (5.4) until we arrive at the same expression as in
(5.6). To do this, we’ll make use of two fundamental properties of the cross product: For any
vectors a, b and c, we have

1. a · (b× c) = b · (c× a) (Scalar Triple Product)
2. a× (b× c) = (a · c)b− (a · b) c (Vector Triple Product)

In the following derivation, employment of the Scalar Triple Product and Vector Triple
Product is indicate by “STP” and ‘VTP”, respectively. Again using the simplifying notation
v ≡ Rx1 and u = x2, the numerator of (5.4) is

(u× v) · (T× u) = T · (u× (u× v)) (STP)
= T ·

(
(v · u)u− ‖u‖2 v

)
(VTP)

3D Reconstruction 48

and the denominator of (5.4) is

(u× v) · (u× v) = u · (v × (u× v)) (STP)
= u ·

(
‖v‖2 u− (v · u)v

)
(VTP)

= ‖v‖2 ‖u‖2 − (v · u)2

Finally, we have

Ẑ1 =
T ·
(
(v · u)u− ‖u‖2 v

)
‖v‖2 ‖u‖2 − (v · u)2 = s1

So indeed Ẑ1 = s1 and so we have shown that the recovered depth (5.4) gives the point Q1

on the first ray r1 which is closest to second ray r2.

5.2.3 Theoretical Constraints

For a perfectly measured, noise-free system, the epipolar constraint is completely obeyed. Still,
this does not mean we are guaranteed a unique, let alone a physical solution for Ẑ1. Even in an
ideal, error-free system we must check the existence, uniqueness and physicality of the depth
inferred by equation (5.3).

Uniqueness of Depth

Using the notation a ≡ x2 × Rx1 and b ≡ T × x2 and referring to equation (5.4), let us
examine the conditions for a unique solution for Ẑ1. We have the following four cases:

1. If a = 0 and b = 0, then Ẑ1 is not unique.

2. If a = 0 and b 6= 0, no solution exists.

3. If a 6= 0 and b = 0, then Ẑ1 = 0.

4. If a 6= 0 and b 6= 0 then a solution exists provided a and b are colinear.

If we express the colinearity of a and b by their cross product, we have the following theorem.

Theorem 5.2 (Uniqueness of depth recovery). Given the images x1 and x2 of a point P
taken by two cameras with relative rigid motion {R,T}, a unique depth Ẑ1 of P w.r.t. the first
camera exists if

a 6= 0 and a× b = 0

where a ≡ x2 × Rx1 and b ≡ T× x2.

3D Reconstruction 49

Physicality of Depth

We have given the necessary conditions for a unique solution, but what about the conditions for
a physical one? An image is only physically realizable if the object is in front of the camera.
In other words, the depth of the object must be positive. For our two-view system the depth
w.r.t. both cameras must be positive.

Enforcing Ẑ1 > 0 eliminates the possibility a 6= 0 and b = 0 (case 3 above). It also refines
our statement about the colinearity of a and b; For Ẑ1 to be positive a and b must be aligned,
rather than just colinear. This can be stated formally in terms of the dot product; Two vectors
a and b are aligned if a · b = ‖a‖ ‖b‖.

Now, the recovered position w.r.t. the second camera is X̂2 = R
(
Ẑ1x1

)
+ T. Its z-

component, given by Ẑ1 (r3 · x1) + tz, is the depth of the object w.r.t. the second camera. So
enforcing Ẑ2 > 0 implies Ẑ1 (r3 · x1) + tz > 0.

The criteria developed in the above discussion is summarized in the following theorem.

Theorem 5.3 (Physical depth recovery). Given the images x1 and x2 of a point P taken by
two cameras with relative rigid motion {R,T}, then the positive recovered depths Ẑ1 and Ẑ2

of P w.r.t. the each camera exist if

1. a 6= 0

2. b 6= 0

3. a·b
‖a‖‖b‖ = 1

4. Ẑ1 (r3 · x1) + tz > 0

where a ≡ x2×Rx1, b ≡ T×x2, r3 is the third row of R, tz is the z-component of T and Ẑ1

is given by (5.4).

Interestingly, these theoretical constraints say something about the physical requirements
for triangulation. Consider the first constraint T× x2 6= 0.

First, it says neither T nor x2 can be zero. We already know this fact about x2, since it is
on the second image plane (z-component is one). So we must have at least some displacement
(T 6= 0) for triangulation.

Second, it says T and x2 can’t be colinear, which is equivalent to saying the image x2 is
not equal to the epipole e2. This can only happen if the point P responsible for the image is on
the same line that joins the camera centers. So the first constraint says that (1) the two camera
views must be distinct and (2) the point P must not lie on the line joining the camera centers.

3D Reconstruction 50

Now consider the second constraint x2×Rx1 6= 0. Since neither x1 nor x2 can be zero, this
statements simply says x2 and Rx1 are not colinear. Well, when would such a situation arise?
If the point P was very far from the first camera, then the separation between the two cameras
would be negligible and so (5.1) becomes Z2x2 = Z1Rx1 (in other words, they are colinear).
So the second constraint says the point P must be at a finite distance from the cameras.

5.2.4 Practical Constraints

In the preceding section we have established the constraints for a unique and positive depth
recovery from two images of a point in an ideal, error-free system. However, real cameras and
computer vision systems are not error-free. As such, we ought to relax the conditions (1)-(3)
in Theorem 5.3 by employing thresholds, such as

1. ‖a‖ > ε1

2. ‖b‖ > ε2

3. a·b
‖a‖‖a‖ > ε3

where a and b are defined as in Theorem 5.3.
The thresholds we set must be based on the uncertainty in the measurements of our system.

Our measurements take place on the sensor of each camera, and a measurement, to be exact,
is a location on the sensor. An uncertainty in the measurement, therefore, is a distance on the
sensor. So our thresholds must be related to distances on the camera sensor.

We assume the cameras are calibrated, and that the image sensor is related to the ideal
image plane by (not written yet), so we can relate distances on the image sensor to distances
on the ideal image plane. The question is: Are the values ‖a‖ and ‖b‖ distances on the image
plane? It turns out they are not, but are closely related to meaningful, observable distances. In
this section we will discuss these “observable distances” and modify the conditions (1) and (2)
in terms of them.

Relation to Disparity

We begin by developing physical interpretation of the vector x2×Rx1 in equation (5.3). Con-
sider two cameras whose axes are aligned and whose relative displacement is parallel to the
image planes. This setup, shown in Figure 5.8, is known as a calibrated stereo rig. In a cal-
ibrated configuration, the depth Z is the same for both cameras. Due to similar triangles, we

3D Reconstruction 51

Figure 5.8: Triangulation from two image points in a calibrated stereo rig. The image planes
are aligned and parallel to the translation between the two cameras.

Figure 5.9: Two image vectors x1 and x2 have a disparity d = ‖x1 × x1‖.

have
Z =

T

d

where d = ‖x2 − x1‖, known as the disparity, is the distance between the first and second
image. The disparity is a very relevant physical quantity because it is a distance on the image
plane, and so relates directly to units of the image sensor. In other words, the disparity, after
transformed to pixel coordinates, is the number of pixels between the first and second images.

Now consider the two image vectors, as shown in Figure 5.9. The image vectors and the
z = 1 plane form a triangle. Say the area of this triangle is A. Then, since this triangle has
a base of length d, and a height of 1, we have d = 2A. Now, ‖x2 × x1‖ is the area of the
parallelogram with sides ‖x1‖ and ‖x2‖, which is twice the area of the triangle in Figure 5.9.
So ‖x2 × x1‖ = 2A as well. This gives us the following interesting result.

Theorem 5.4 (Disparity Relation). If images x1 and x2 of a point P are taken by two

3D Reconstruction 52

Figure 5.10: Disparity in the presence of rotation. Due to the rotation between the cameras,
the vector Rx1 is not on the image plane Π2. If we were to rotate the first camera such that
its axes align with those of the second camera (Π1 → Π′1), the new image x′1 would be on the
image plane.

cameras with aligned axes, then their disparity d is the magnitude of their cross product:

d = ‖x2 − x1‖ = ‖x2 × x1‖

This means that when there is no rotation between the cameras the value ‖x2 × Rx1‖ →
‖x2 × x1‖ is, in fact, the disparity.

Now, what happens to the disparity when there is a rotation between the two cameras?
Let’s consider the uncalibrated situation shown in Figure 5.10. Because of the rotation, Rx1

is not necessarily on the second image plane. To express the disparity, then, we would have
to go realign the camera axes. That is, we would have to undo the rotation. Doing so would
produce a new image plane Π′1 and, correspondingly, a new image x′1. Since we’re back in
the calibrated case, x′1 is on the second image plane and we can once again define disparity.
So the distance ‖x2 − x′1‖, which we’ll call the calibrated disparity, is the disparity we would
have observed if the cameras axes were aligned. Now, notice from Figure 5.10 that undoing
the rotation in the first camera is equivalent to projecting Rx1 to the second image plane. So
we have x′1 = π(Rx1). Let’s put these notions together in the following definition.

Definition 5.2 (Calibrated Disparity). For two images x1 and x2 of a point P taken from
two cameras with relative rotation R, the calibrated disparity dR is the distance between the
image x2 and the projection of Rx1 onto the second image plane:

dR ≡ ‖x2 − π (Rx1)‖

Geometrically, the calibrated disparity is the disparity that would have been observed if the
axes of the first camera were aligned with those of the second camera.

3D Reconstruction 53

Figure 5.11: The calibrated disparity for two image points x1 and x2. An object (a garbage
can) as seen from the second camera is drawn with solid lines. The same object as seen from
the first camera is drawn with dotted lines1. The calibrated disparity d is the distance between
the two image points x′1 and x2, where x′1 = π (Rx1).

If we let z′ be the z-component of Rx1, by Theorem 5.4 the calibrated disparity can be
expressed as

‖x2 − π (Rx1)‖ = ‖x2 × π (Rx1)‖
=

∥∥x2 × (1
z′

Rx1)
∥∥

= ‖x2×Rx1‖
|z′| ,

which proves the following.

Corollary 5.1 (Calibrated Disparity). For two images x1 and x2 of a point P taken from
two cameras with relative rotation R, the calibrated disparity is given by

dR =
‖x2 × Rx1‖
|z′|

where z′ is the z-component of Rx1.

The value ‖x2 × Rx1‖, as it turns out, is closely related to the calibrated disparity. And
since the calibrated disparity is a distance on the image plane, we modify condition (1) as

‖x2 × Rx1‖ > ε1 → ‖x2 × Rx1‖
|z′|

> ε1 ⇔ ‖x2 − π (Rx1)‖ > ε1.

In other words, we require that the distance between the image points π (Rx1) and x2 (i.e., the
calibrated disparity) be greater than the threshold ε1. This is illustrated in Figure 5.11. Here we
see the image of an object (a garbage can) as viewed from the second camera. The image of the

3D Reconstruction 54

same object, as seen from the first camera, is superimposed on the same image and is shown
with dotted lines 1. Now let’s consider the top-right corner of the object and its image x′1 in the
first camera and x2 in the second camera. The distance between these two image points is d.
The modified condition (1) says that the pair (x1,x2) are triangulated only if d > ε1.

Relation to the Epipole

We use a similar line of reasoning for interpreting ‖T× x2‖. Recall that the projection of T
onto the second image plane is the second epipole e2. This can be seen in Figure 5.5. Notice
that, by Theorem 5.4, the distance between x2 and e2 is

‖e2 − x2‖ = ‖e2 × x2‖
=

∥∥∥(1
tz
T)× x2

∥∥∥
= ‖T×x2‖

|tz |

So we have the following.

Corollary 5.2 (Distance to the epipole). For two cameras with relative translation [tx ty tz]
T

(tz 6= 0) and an image x2 on the second image plane, the distance between x2 and the epipole
e2 is given by

‖e2 − x2‖ =
‖T× x2‖
|tz|

This is, of course, assuming e2 exists (or equivalently, tz 6= 0). For our case of a rear view
camera on a backing vehicle, the camera’s optical (z) axis is in the general direction of the
vehicle’s velocity, so this assumption is valid. So we have ‖T× x2‖ = |tz| ‖e2 − x2‖, where
|tz| And since ‖T×x2‖

|tz | is a distance on the image plane, we modify condition (1) as

‖T× x2‖ > ε2 → ‖T× x2‖
|tz|

> ε2 ⇔ ‖e2 − x2‖ > ε2.

In other words, we require that the distance between the image point x2 and the epipole e2

be greater than the threshold ε2. This is illustrated in Figure 5.12. The epipole e2 is in the
direction of the vehicle’s translation, and ε2 is the radius of the the shaded circle surrounding
the epipole. Effectively, an image point pair (x1,x2) are triangulated only if x2 is located
outside the shaded circle.

1 To be precise, the dotted image is the object seen from the first camera if the axes of the first camera were
aligned with those of the second camera, as in Figure 5.10. This would result in a perspective-skewed version of
the actual image observed by the first camera. However, for the sake of clarity, here we draw it as if there is no
rotation between the two cameras, and so the dotted image is exactly the image seen by the first camera.

3D Reconstruction 55

Figure 5.12: A feature must be at a certain distance from the epipole in order to obtain reliable
triangulation. Only features outisde the shaded circle are triangulated.

Setting the Thresholds

The sensor is made up of discrete units (pixels), so the threshold for disparity ε1 and the dis-
tance to epipole ε2 should be greater than the width of a single pixel. In fact, it is convenient to
express the thresholds in terms of an integral number of pixels. Say we choose the minimum
number of pixels between any two image points to be n, and the lens has a focal length f (in
units of pixels), then the minimum disparity on the ideal image plane is dmin = n/f . In our
application, we set dmin = 20/f for both conditions (1) and (2), so we have ε1 = ε2 = dmin.

For condition (3), the left side of the inequality is the cosine of the angle between a and b.
So for a maximum angle of θmax one should set ε3 = cos θmax. We use 10◦ as the maximum
angle between these two vectors, so we have ε3 = 0.985.

Finally, we summarize the results of this section in the following.

Proposition 5.3 (Practical constraints for triangulation). Given the images x1 and x2 of
a point P taken by two cameras with relative rigid motion {R,T}, a minimum disparity dmin

and a maximum angle θmax, then the positive recovered depths Ẑ1 and Ẑ2 of P w.r.t. the each
camera can be reliably computed if

1. ‖a‖ > |z′| dmin (Calibrated Disparity)

2. ‖b‖ > |tz| dmin (Distance to Epipole)

3. a·b
‖a‖‖b‖ > cos θmax (Vector Alignment)

4. Ẑ1 (r3 · x1) + tz > 0 (Positive depth Ẑ2)

3D Reconstruction 56

where a = x2 × Rx1;
b = T× x2;
r3 = third row of R;
tz = z-component of T;
z′ = z-component of Rx1;

and Ẑ1 is given by (5.4).

5.2.5 Optimal Triangulation

We acknowledge that the recovered depth given by (5.4) is not optimal in the sense that it does
not minimize errors on the image planes. ...

5.2.6 Multiview Triangulation

The least squares solution for the depth of a point wrt. the first camera, given by (5.4), is easily
extended to a least squares solution for multiple views. Say we have k images. From these
images we can define k−1 independent inter-image motions. Let {Ri,Ti} be the rigid motion
between the image i = 2 . . . k and image 1. That is, all rigid motions are wrt. the first image.
For a point object with corresponding points x1, x2 . . . xk+1 in each image, expression (5.3)
applies to each pair of images:

Z1(xi × Rix1) = Ti × xi i = 2 . . . k (5.7)

If we denote ai ≡ xi × Rix1 and bi ≡ Ti × xi, then we have the system of k − 1 equations
Z1ai = bi. If we stack all the a and b vectors to form the vectors as and bs, respectively,
we get an equivalent single vector equation; Z1as = bs. The least squares solution to this
expression is

Z1 =
as · bs
‖as‖

which is equivalent to summing the numerator and denominator portions of the 2-view least
squares solution (5.4)

Z1 =

∑k
i=2 (xi × Rix1) · (Ti × xi)∑k

i=2 ‖xi × Rix1‖
(5.8)

Now, due to noise and tracking error, point pairs are not guaranteed to obey the epipolar
constraint. So we must check that a given point pair fits the criteria in Proposition 5.3 before

3D Reconstruction 57

including it in the summation in (5.8). If none of the point pairs obey the epipolar constraint,
then the depth remains undefined. This leads to a more robust multi-view triangulation.

We present our multi-view triangulation in the following algorithm.

Algorithm 5.1 (Multiview Triangulation).
For a set of rigid motions {R2,T2} . . . {Rm,Tm}, where {Ri,Ti} is the motion between image
i and image 1, and a set of point correspondences x1 . . .xm, this algorithm computes the depth
of the point Z1 wrt. the first image.

numerator := 0
denominator := 0
for i = 2 to m do

if point pair (x1,xi) fits the criteria in Proposition 5.3, wrt. {Ri,Ti} then
numerator += (xi × Rix1) · (Ti × xi)

denominator += ‖xi × Rix1‖
end if

end for
if denominator > 0 then
Z1 := numerator/denominator

else
Z1 :=∞

end if

Chapter 6

Obstacle Detection

In this chapter we describe the Obstacle Detection (OD) algorithm in detail. In the first sec-
tion we present the main components and data flow of the algorithm. The following sections
describe each component in detail.

6.1 Algorithm Overview

Our algorithm achieves obstacle detection through 3D reconstruction of the scene using a sin-
gle camera. To do this we detect and track images features across multiple frames. From the
tracked features we estimate the motion of the camera and triangulate the features to create
a 3D model of the scene. Features located within a collision corridor behind the vehicle are
labelled as obstacles and the system reports the nearest obstacle distance to the driver.

An overview of the algorithm is shown in Figure 6.1. The algorithm is composed of six
modules; (1) Feature Tracking, (2) Snapshot Management, (3) Motion Estimation, (4) Feature
Triangulation, (5) Feature Labelling and (6) Feature Location.

The Feature Tracking module has three main responsibilities; (1) track existing features, (2)
delete invalid features and (3) create new features. It takes as input the current image (Image
(t)), the previous image (Image (t − 1)), and the previous list of features (Features (t-1)), and
it outputs the current list of features (Features (t)).

The Snapshot Management module selects a “good” set of previous images to pair with
the current image for 3D reconstruction. Here, “good” means that there is sufficient camera
displacement between each image in the set. For an image taken at time ts and belonging to
this “good” set, we call ts a snapshot. The input to the Snapshot Management module is the
current list of tracked features and the output is a list of snapshots.

58

Obstacle Detection 59

Figure 6.1: Overview of the obstacle detection algorithm. The current and previous images,
and the previous list of features are fed to the Feature Tracking module to obtain the current list
of features. The Snapshot Management module analyzes the motion of the features to deter-
mine what images (or snapshots) to use for 3D reconstruction. The Motion Estimation module
estimates the planar motion of the camera between the current snapshot and all snapshots in
the past. The Feature Triangulation module finds the 3D location of features, provided they
obey the epipolar constraint. The Feature Labelling module assigns interpretive labels (such
as “ground” or “obstacle”) to each feature based their location w.r.t. the vehicle. The Feature
Clustering module spatially clusters detected features to reduce false detections. The Fea-
ture Location module updates the location of triangulated points assuming a constant height.
Finally, the distance to the nearest obstacle is reported to the driver.

Obstacle Detection 60

If the current image is selected as a snapshot, the detection block is called. The detection
block is where image features are triangulated and labelled based on their location in 3D space.
If the current image is not a snapshot, then the 3D location of previously triangulated features
are updated in the Feature Location module.

The Motion Estimation module estimates the planar motion between all snapshots and the
current time. That is, the Motion Estimation module produces a set of motion parameters
{Ri,Ti} for each snapshot, where {Ri,Ti} is the motion between the current time and the ith

snapshot.
The Feature Triangulation module performs triangulation on the features w.r.t. the list of

motion parameters, provided they obey the epipolar constraint. For each feature, it is indicated
whether or not the epipolar constraint is obeyed, and if it is, the 3D location of the feature is
computed.

The Feature Labelling module assigns interpretive labels (such as “ground” or “obstacle”)
to each feature based their location w.r.t. the vehicle.

The Feature Clustering module spatially clusters detected features as a means of rejecting
isolated false detections.

With all the features labelled and clustered, the OD algorithm outputs the distance to the
nearest obstacle.

The Feature Location module updates the 3D location of all features that have been pre-
viously triangulated. It works on the assumption that the height (world z-component) of any
feature is constant, and so each feature is projected to its known world z-plane.

The remainder of this chapter is organized as follows. Section 6.2 describes the Feature
Tracking module. Section 6.3 describes feature selection for motion estimation and the core
motion estimation algorithm. Section 6.4 describes the Snapshot Management module. Sec-
tion 6.5 describes the Motion Estimation module. Section 6.6 describes the Feature Triangu-
lation. Section 6.7 describes the Feature Labelling module. Section 6.8 describes the Feature
Clustering module. Finally, Section 6.9 describes the Feature Labelling module.

6.2 The Tracking Module

The Feature Tracking module has three main responsibilities; (1) track existing features, (2)
delete invalid features and (3) create new features. It takes as input the current image (Image
(t)), the previous image (Image (t − 1)), and the previous list of features (Features (t-1)), and
it outputs the current list of features (Features (t)).

To track existing features from one image to the next, we calculate the optical flow at

Obstacle Detection 61

Figure 6.2: The Feature Tracking module consists of three processes; (1) the Lucas-Kanade
(KLT) tracking algorithm, (2) feature filtering and (3) feature detection. Feature filtering con-
sists of removing erratically moving features and features the become too close to one another.
Corner features are detected using the Good Features To Track algorithm wherever features
don’t already exist.

the center of each feature with the Lucas-Kanade (KLT) algorithm [21]. We use a square
feature template size of sT = 15 pixels and 3 pyramid levels to cope with large motions. For
each feature, the KLT algorithm sets a flag indicating whether or not the flow was able to be
computed. If the flow was found, we update the feature’s position according to the flow vector.
If the flow was not found, we delete the feature from the list. The result is a list of features
with updated positions, which is passed to the Feature Filter module.

The Feature Filter module deletes features based on two criteria; (1) features with erratic
motion and (2) features in close proximity to other features. Erratically moving features are
deleted because, since frame rate of the camera is high and the vehicle moves smoothly, we
expect the image of the scene to move smoothly. So, any erratic motion in the image is due
to either tracking error or some object moving about in the scene. In either case, the feature is
unwanted for both ground motion estimation and 3D reconstruction.

We measure the non-smoothness of a feature’s trajectory as a deviation from a linear trajec-
tory over a recent window of time. Specifically, we least-square-fit the last wδ pixel positions
of a feature to a line y(t) = at + b. Then we compute the mean reprojection error of the
trajectory

δ̄ =
1

m

∑
i

‖y(i)− xi‖.

Obstacle Detection 62

We define a smoothness of trajectory threshold εδ and remove any feature with δ̄ > εδ. We use
the last wδ = 5 frames and set εδ = 10 pixels.

The remaining features are then filtered based on their proximity to other features. Feature
templates can overlap when features are tracked along edges. In particular, features tend to
accumulate on the edge of the vehicle bumper at the bottom of the image. To avoid tracking
the same image region multiple times, it is important to remove proximate tracked features.

For each pair of features, if their distance is less than the threshold rmin, we eliminate
the feature with the greater mean reprojection error δ̄ (described above). This way, features
producing smooth trajectories are favoured. We set rmin = sT/2, the half-width of the tracking
template size (7 pixels).

The list of remaining features is passed to the feature detection module, which is responsi-
ble for generating new features to track. The first step in our feature detection, is the generation
of a vacancy mask. The vacancy mask is a binary image indicating the regions of the image
that are currently unnoccupied by any features. It is only these vacant regions that we search
for features to track, since we do not want to create trackers where some already exist.

To generate the vacancy mask we start with a white binary image of the same size as the
image on which tracking is performed. Then, for each tracked feature, the pixels within a
square region of size sv and centered at the feature’s current location are set to black. To
ensure that features are not initialized too close to each other, we set sv = 1.5sT , one and a
half times the tracking template size.

The vacancy mask is used as the mask for applying a modified Good Features to Track
(GFTT) algorithm [29]. The modification is the following. In GFTT, a relative quality thresh-
old (between 0 and 1) is used to decide whether or not a corner feature is “good enough”. So,
if the image is of uniform texture and the strongest feature is weak (in absolute terms), then
the corners returned by GFTT are due to noise and so are meaningless. To avoid this situation,
we use an absolute corner quality threshold of qc = 0.001, rather than a relative one.

The new features detected by our modified GFTT are added to the list of currently tracked
features to become the complete current feature list (features (t) in Figure 6.2).

6.3 Motion Estimation from Good Ground Features

Before describing the Snapshot Selection and Motion Estimation components (Figure 6.1), it
will be convenient to first describe in detail our motion estimation procedure. In Section 4.6
we describe an algorithm for estimating planar motion from image features assumed to be
moving on the plane. In this section we describe a feature selection method for increasing

Obstacle Detection 63

the likelihood that a selected feature belongs to the ground. Then we describe our motion
estimation algorithm that makes use of these selected features, and that is used in both the
Snapshot Management (Section 6.4) and Motion Estimation (Section 6.5) components.

6.3.1 Selecting Good Ground Features

We now address the issue of selecting of good ground features for estimating the motion be-
tween two images. Let the image indices be t1 and t2.

First and foremost, a feature considered for ground motion estimation must exist in both
images. That is, the feature has an ideal image position x1 and x2 for the images t1 and t2,
respectively.

Figure 6.3: The regions of interest in the vehicle coordinate system. The ground region of
interest (A) is the region in which ground features are used for motion estimation. Any feature
located in the collision volume (B) is determined to be an obstacle. The blue arrow indicates
the camera’s optical axis.

Second, for a feature to possibly belong to the ground, it must be within the image region
onto which the ground is projected. To assert this, we define a rectangular ground region of
interest (ground ROI) in vehicle coordinates, shown in Figure 6.3. Only features that project
to the ground ROI (via (4.12)) are used for motion estimation.

Third, we would like to avoid using stationary features since they may correspond to shad-
ows or objects moving with the vehicle, or points at infinity. So the feature should have suffi-
cient disparity between the two images. We therefore assert that ‖x2 − x1‖ > dmin, where dmin

is the minimum disparity threshold defined in Section 5.2.4.
The fourth condition requires some prior justification. The third condition filters out fea-

tures near the top of the ground ROI that, due to the perspective projection, move less than
features near the bottom of the ground ROI. By the same token, the movement of features near
the bottom of the ground ROI may produce sufficient disparity on the image, but correspond to
insignificant ground motion. For this reason, we place an additional constraint on the feature’s

Obstacle Detection 64

ground projection. Let g1 and g2 be the respective ground projections of x1 and x2, given
by (4.12). Then we assert ‖g2 − g1‖ > dg, where dg is the minimum ground displacement
threshold (in meters). We have found a practical value for dg to be 0.1h, where h is the camera
height.

We summarize the criteria for selecting a good ground feature for motion estimation in the
following proposition.

Proposition 6.1 (Selecting Good Ground Features). A good set of features for ground
motion estimation between frames t1 and t2 must meet the following criteria:

1. The feature must be present at both frames t1 and t2.

2. The feature must currently be within the ground ROI.

3. The feature must have sufficient disparity between the frames. Let x1 and x2 be the
feature’s ideal image coordinates at frames t1 and t2, respectively. Then we assert
‖x2 − x1‖ > dmin.

4. There must be sufficient displacement of the feature’s ground projection. Let g1 and g2

be the respective ground projections of x1 and x2, given by (4.12). We assert ‖g2 − g1‖ >
dg.

6.3.2 The Motion Estimation Algorithm

Now that we have defined what it means for a feature to be a “good ground feature” (Proposi-
tion 6.1), we may define a refined ground motion estimation algorithm. This refined algorithm
uses only good ground features as input to the planar motion estimation algorithm (Algorithm
4.2). Additionally, to increase robustness of the estimate we assert that the number of good
features exceeds a minimum point-correspondence threshold Nmin. TWe use Nmin = 10.

Algorithm 6.1 (Planar Motion Estimation from Good Ground Features).
For a set of tracked features F , this algorithm estimates the planar motion {R,T} between
frames t1 and t2.

1. Select good ground features.
Let Fg be the subset of “good ground features”. That is,

Fg = {f ∈ F |f adheres to the criteria in Proposition 6.1} .

Obstacle Detection 65

2. Check that there are enough good ground features.
If |Fg| < Nmin, exit the procedure.

3. Estimate the motion.
Compute the planar motion {R,T} between frames t1 and t2 using the point correspon-
dences of Fg in Algorithm 4.2.

6.4 Snapshot Management

In Section 5.2.3 we showed that triangulation of correspondence points requires a non-zero
translation of the camera. In fact, there must be sufficient translation to overcome the dis-
cretization of the image, image noise, and tracking error. For this reason we must ensure there
is sufficient camera displacement between the frames for which we are attempting to perform
triangulation.

To this end, we select keyframes for which the estimated camera displacement between
them is greater than some appropriate threshold. We call these keyframes snapshots. The
snapshots are triggered by vehicle displacement, rather than elapsed time. The faster the vehi-
cle moves, the more frequently snapshots are taken, and vice versa.

A snapshot is simply indicated by its frame number. At any given time, we have a snapshot
list S = {s1, s2, . . . sm} consisting of the numbers of all the frames that were chosen as snap-
shots. It is precisely these frame intervals that are considered for our multiview triangulation
procedure (Algorithm 5.1).

The purpose of the Snapshot Management module, then, is to modify the snapshot list S
based on feature tracking. A modification to the list can be one of two things; (1) the clearing
of the list, and/or (2) the addition of the current frame to list. The combination of clear the list
and adding the current frame can be thought of as an initialization, or resetting of the list.

First, we define the condition for clearing the list. When tracking features, if the features in
the ground ROI are too few, the motion estimation will be unreliable. Theoretically, only two
features are required for a planar motion estimate. However, we would like to have more to
increase the robustness of the estimate, so we use the minimum point-correspondence threshold
Nmin (Section 6.3.2)). So, if the number of features within the ground ROI is less than Nmin,
we clear the snapshot list. Otherwise, we consider the following situations.

Next, we define the conditions for resetting the list. Say the number of features within the
ground ROI exceeds Nmin, If the snapshot list is empty (as is the case when the system starts
up) make the current frame the first snapshot.

Obstacle Detection 66

Alternatively, if there exists a previous snapshot, but it was taken long ago, there is the
possibility that features have drifted, and that many new features of been created or deleted in
that interval. To avoid long-term tracking drifts and make use of recently detected features, we
set a maximum snapshot interval threshold ∆s = 300. At 30 fps, this amounts to a maximum
snapshot interval of 10 seconds. If the interval between the current frame and the last snapshot
exceeds ∆s, we reset the snapshot list.

Yet another alternative is that, although the current number of features may be great, the
number of features that existed at the previous snapshot may be small. If that is the case, the
motion estimation will be unreliable, since we would be comparing the motion between the
current frame and the previous snapshot. Again we use the minimum point-correspondence
threshold Nmin, and reset the snapshot list if the number of features existing at the previous
snapshot fall below Nmin.

Last, we define the condition for adding the current frame to the snapshot list. If there are
sufficient features in the ground ROI and that existed at the previous snapshot, we estimate
the planar motion {R,T} using Algorithm 6.1. If the motion was successfully computed (i.e.,
there are enough “good” ground features), then we check if there is sufficient displacement
between the frames. Let us define the snapshot displacement threshold ds. Then the current
frame is added to the snapshot list if ‖T‖ > ds. We have found a practical value for ds to be
0.2h, where h is the camera height.

The above discussion is summarized in the following algorithm.

Algorithm 6.2 (Snapshot Management).
For a list of features F = {f1 . . . fn} of the current frame tc, and a list of snapshot times
S = {s1 . . . sm}, this algorithm decides whether or not to clear the snapshot list, and whether
or not the current frame is a snapshot.

1. Decide if the snapshot list should be cleared.
Clear the snapshot list if the number of features (n) is less than the minimum feature
threshold (Nmin).

2. Decide if the snapshot list should be reset.
Resetting the snapshot list means making the current frame the only snapshot, that is
S ← {tc}. This is done if any of the following conditions are met.

(a) There are no previous snapshots (S = ∅).

(b) The time since the last snapshot has exceeded the maximum snapshot interval
threshold (tc − sm > ∆s).

Obstacle Detection 67

(c) The number of features present at the previous snapshot is less than Nmin.

3. Decide if this frame should be appended to the snapshot list.
Compute the planar motion {R, T} between the previous snapshot and the current frame
using Algorithm 6.1. If the displacement (‖T‖) of the camera is greater than the second
displacement threshold (ds), add this frame to the snapshot list.

If the current image is selected as a snapshot, and there are at least two elements in the
snapshot list, then the Detection Block (Figure 6.1) is called. Otherwise, triangulated feature
locations are updated in the Feature Location Module.

6.5 Inter-Snapshot Motion Estimation

In this section we describe how we estimate motion over multiple snapshot intervals. Say we
have a list of snapshots S = {s1 . . . sm} where si is the frame number of the ith snapshot. If the
current frame is selected as a snapshot in the Snapshot Management module (Section 6.4), then
sm is the current frame. What we want is a motion estimate between each snapshot in the list
and the last one (which is the current frame). This is depicted in Figure 6.4. Having all motions
wrt. the current snapshot simplifies the multi-view triangulation in the Feature Triangulation
module (Section 6.6).

Figure 6.4: Inter-Snapshot motion estimation. Here four snapshots are plotted on a time-
line. The latest snapshot s4 is the current frame. All motion estimates are between previous
snapshots and the latest one.

The planar motion {R1,T1} between the previous snapshot sm−1 and the current one sm
is estimated in the Snapshot Management module (step 3 of Algorithm 6.2), so it need not

Obstacle Detection 68

be computed again. We therefore begin by estimating the planar motion {R2,T2} between
snapshots sm−2 and sm using Algorithm 6.1. If {R2,T2} is successfully computed (i.e., enough
good ground features are found for the interval (sm−2, sm)), then we proceed to estimate
the motion between sm−3 and sm. We continue until all the snapshot interval motions are
estimated, or until one of the interval motions cannot be computed. Once we are finished, we
have a list of planar motion parameters M = {{R1,T1} , {R2,T2} , . . . {Rk,Tk}}. Here,
{Ri,Ti} is the motion between the snapshot pair (sm−i, sm)), and 1 ≥ k ≤ m is the number
of successful motion estimates.

The above discussion is summarized in the following algorithm.

Algorithm 6.3 (Inter-Snapshot Motion Estimation).
For a list of snapshot times S = {s1 . . . sm}, this algorithm produces a list of planar motion pa-
rameters M = {{R1,T1} , {R2,T2} , . . . {Rk,Tk}}, where {Ri,Ti} is the motion between
the snapshot pair (sm−i, sm)), and 1 ≥ k ≤ m is the number of successful motion estimates.

1. Initialize the list of motion parameters
The first inter-snapshot list is computed in the Snapshot Management module, so it need
not be re-computed. Set M = {{R1,T1}}.

2. Compute the remaining inter-snapshot motions.

for i = 2 to m do
if {Ri,Ti} is successfully computed using Algorithm 6.1 then

append {Ri,Ti} to M
else

break
end if

end for

6.6 Feature Triangulation

In this section we describe our procedure for triangulating features from multiple views.
From the Motion Estimation module we have a list of planar motion parameters M =

{{R1,T1} . . . {Rk,Tk}}. Each parameter set describes the camera motion from some snap-
shot in the past, to the current frame. Let si denote the past snapshot corresponding {Ri,Ti}.

Obstacle Detection 69

For a given tracked feature, we must determine how many views (i.e., snapshots) can be
used in the triangulation. In order to use a particular snapshot, the feature must have existed
at that frame, so as to have a corresponding image point. So, for each feature, we build a
list of motions parameters M ′ ⊆ M for which the feature has existed, and the corresponding
set of image points X = {x1, x2, . . .}. These sets are then passed to Algorithm 5.1, where
the feature’s depth wrt. the current frame is computed. If M ′ is empty, triangulation is not
attempted and the depth remains undefined.

The following algorithm summarizes our multiview triangulation for tracked features.

Algorithm 6.4 (Feature Multiview Triangulation).
For a list of planar motion parameters M = {{R1,T1} . . . {Rk,Tk}}, where {Ri,Ti} relates
a previous snapshot si to the current frame tc, this algorithm computes the depth Z1 of a given
tracked feature f wrt. the current frame using the most views possible.

1. Build the set of motions for which this feature has a correspondence point.
M ′ = {{Ri,Ti} |f exists at snapshot si}
X = {x(tc)} ∪ {x(si)|f exists at snapshot si}
where x(t) is the feature’s position at frame t.

2. Perform least squares multiview triangulation.
If M ′ is not empty, compute Z1 using M ′ and X as inputs to Algorithm 5.1. Otherwise,
set Z1 as undefined.

6.7 Feature Labelling

With all the features robustly triangulated based on multiple views, the next step is to label the
features as obstacles or not, based on the 3D location of the feature. We define an obstacle
as any feature occupying the collision volume Figure 6.3 behind the vehicle. The height and
width of the collision volume are determined by the size of the vehicle on which the OD system
is installed. The depth of the volume (along the y-axis) can be made small if the user wants to
remove long-range detections. The height of the volume must be set to reflect the sensitivity of
the scene reconstruction; The volume height must be high enough such that there are not too
many false detections of noisy ground features. We have found a practical collision volume
height to be 0.2h, where h is the camera height.

Obstacle Detection 70

Our labelling scheme is the following. All features are initially labelled undefined, since
no we have no knowledge of their motion. After a snapshot is taken and the Detection Block
is called(Figure 6.1), triangulation is attempted for each feature.

If triangulation of a given feature is successful, then we can label that feature based on
its 3D location. Any feature within the collision volume is labelled an obstacle. For features
outside the collision volume, we have two possible labels. If they are below the collision
volume height (in our case, 0.2h), we label them ground. Otherwise, we label them above-
ground. This ground/above-ground distinction is not critical to the detection aspect of the
algorithm, but is useful in verifying that the scene is correctly interpreted.

Features that were not successfully triangulated may remain labelled as undefined for the
purpose of static obstacle detection. However, we provide an extra label for detecting moving
obstacles. If a feature has enough disparity on the image, but does not move along its epipolar
line, this could indicate a moving object in the scene. When this occurs, we cannot triangulate
the feature, but we can label it moving.

Specifically, this is accomplished by monitoring which conditions of Proposition 5.3 fail
when attempting to triangulate a feature. If conditions 1 and 2 pass, but 3 fails, this indicates a
feature is moving but not along its epipolar line.

Now, because we do multiview triangulation we must check these conditions for each pair
of views. In Algorithm 5.1, Proposition 5.3 is checked for each pair of correspondence points.
If all point pairs fail, and the majority reason for failure is that the point does not move along
its epipolar line, then we label this point moving.

6.8 Feature Clustering

Unfortunately, no matter how good the video quality there are always features that are mis-
tracked. Most mistracks are in directions other than the epipolar lines, and so are rejected by
Proposition 5.3. However, there remain a significant number of features that are mistracked
such that the epipolar constraint is still obeyed. These mistracks cannot be disambiguated from
good ones by means of epipolar geometry alone.

We have observed that the false detections through mistracks tend to be spatially sparse,
both on the image and in the reconstructed space. Then, to filter out these false detections, we
spatially cluster the detected features and set a minimum cluster size Nc for detection. This
way, spatially sparse detections are filtered out. The disadvantage to this, of course, is that true
detections from small, or sparsely featured obstacles are also filtered.

We cluster detected features in the following way. First, we randomly select a feature and

Obstacle Detection 71

create a cluster for that feature. Then, all other features that have a similar distance to the
vehicle are added to the cluster. For all the features that were not accepted into the cluster, the
process is repeated to form a second cluster. This continues until every feature is assigned to a
cluster. Then we remove all clusters with fewer than the minimum cluster size.

The intention here is to cluster large surfaces perpendicular to the ground, so features are
clustered based on their distance to the vehicle only. Specifically, we use the relative dif-
ference in the feature’s world y-coordinate. If feature 1 and feature 2 have respective world
y-coordinates Yw1 and Yw2, then feature 1 is clustered with feature 2 if

|Yw1 − Yw2|
|Yw1|

< wc

where wc is the cluster width threshold.
The clustering algorithm is as follows.

Algorithm 6.5 (Feature Clustering).
For a list detected obstacle features F = {f1, f2, . . . , fn} with respective world y-coordinates
{y1, y2, . . . , yn} and a cluster halfwidth threshold wc, this algorithm spatially clusters the fea-
tures.

1. Begin with the entire list of features
Begin with the list F ′ = F .

2. Randomly select a seed feature
Randomly select a seed feature fs ∈ F ′ and create a cluster for that feature. Let the
y-coordinate of the seed feature be ys.

3. Compare all other features to the seed feature
∀fi ∈ F ′, if |ys−yi||ys| < wc then add fi to the cluster and remove it from F ′.

4. Repeat until all the features belong to a cluster
If there are unclustered features, go to step 2.

5. Remove all clusters with fewer than Nc features.

Of course, the final cluster configuration depends on the randomly chosen seed features.
We would like a configuration that clusters the most features in the least amount of clusters.
To obtain this we wrap Algorithm 6.5 in a RANSAC process and search for the configuration
that maximizes nf/nc, where nf is the number of features assigned to a cluster and nc is the
number of clusters.

Obstacle Detection 72

6.9 Feature Location

If the current frame is not selected as a snapshot, the 3D location of previously triangulated
features are updated in the Feature Location module. In this module, the world (x, y) coordi-
nates of each triangulated feature is updated, given the features current location on the image
x and its known (triangulated) world z-coordinate Z. The updated (x, y) coordinates are given
by the expression w(x, Z) of (4.12). However, this expression diverges as the triangulated
world height Z approaches the camera height. So we only update features whose height is not
too close the camera’s. We a height similarity threshold of hs = 0.1h.

Algorithm 6.6 (Feature Location).
For a feature whose world z-coordinate Z is known from a previous triangulation and a height
similarity threshold hs, this algorithm computes the feature’s world (x, y) coordinates from its
current image location x. XY

Z

 =

[
w(x, Z)

Z

]
if |Z − h| > hs

where h is the camera height, hs is the height similarity threshold, and w(·) is given by (4.12)

In this chapter we have presented an overview of our OD algorithm and have described
each component in detail.

Chapter 7

Experimental Results

For testing the algorithm, we have installed a Boyo Vision CMOS rear view colour camera
(VTB170) at the rear of a minivan and calibrated it using OpenCV’s calibration routine [4],
which estimates the camera matrix and distortion parameters from a series of checkerboard
images.

The camera’s orientation, wrt. the ground was manually estimated as follows. Given a
calibrated camera, if one knows the camera’s orientation wrt. the ground, one can produce a
bird’s eye view [15] of the ground. That is, one can define a homographic transformation of
the ground such that the image appears to have been taken from directly above. To manually
estimate the orientation of the camera, we reverse this process: we adjust the angles of the
camera wrt. the ground until we produce a good bird’s eye. Namely, a “good” bird’s eye view
is one that preserves the geometry of known patterns on the ground, such as right angles and
parallel lines. An example of this is shown in Figure 7.1. On the left, we have a dewarped
image taken from the installed camera. On the right is a bird’s eye view of the ground region
marked by the red trapezoid in the dewarped image. We have chosen the camera orientation
such that the handicapped parking symbol is rectangular and that the parking lines are parallel
in the bird’s eye. The red horizontal line indicates the world horizon as seen from the camera,
given our chosen orientation. This line serves as an extra check to make sure our chosen
orientation is realistic.

We captured 14 videos of the vehicle backing into various stationary obstacles. The raw
video resolution was 640×480 and the resolution after dewarping and cropping was 576×370.
The obstacles include large objects (parked vehicles, shrubs, dumpster), medium sized objects
(garbage can, fire hydrant, leaf bag), and narrow objects (bike parking rack, wooden 2x4 used
as construction site barricade). The videos are MPEG-2 compressed at 30 fps.

73

Experimental Results 74

Figure 7.1: Manual camera orientation estimation from a bird’s eye view. The bird’s eye view
(right) taken from the dewarped image (left) is produced by manually selecting the camera
orientation w.r.t. the ground.

7.1 Parameter Tuning

The OD algorithm has 14 free parameters. Four of these are tracking parameters, while the
rest are obstacle detection parameters. The tracking parameters have been set over the course
of development to give the most visually intuitive tracking performance. We list the tracking
parameters and their chosen values in the Table 7.1.

Symbol Value Description Page Ref.
sT 15× 15 The tracking template size. 61
qc 0.001 The corner quality (eigenvalue) threshold. 62
wδ 5 The window size for evaluating trajectory smoothness 62
εδ 10 The smoothness of trajectory threshold 62

Table 7.1: List of tracking parameters.

The complete set of obstacle detection parameters are listed in Table 7.2. The parameters
n, θmax and ds are crucial in feature triangulation. The first two decide what features are
suitable for triangulation based on their motion (discussed in Section 5.2.4), and the third
sets the minimum camera displacement between images. Another important parameter is the
minimum obstacle cluster size Nc. Increasing minimum cluster size filters out spatially sparse

Experimental Results 75

false detections, but removes true detections from small objects. As such, it is imporant to
understand the appropriate range of these parameters.

Symbol Value Description Page ref.
Nmin 10 Minimum number of points required for various computa-

tions.
65

n 20 Minimum disparity in pixels. 55
θmax 10◦ Maximum angle between a point trajectory and its epipolar

line.
55

∆s 300 Maximum number of frames between snapshots. 66
dg 0.1h Minimum ground displacement to consider a feature as

moving.
64

ds 0.2h Minimum ground displacement to trigger a snapshot. 66
εr 0.1h RANSAC reprojection error for rigid motion estimation. 30
hs 0.1h Minimum height difference between a feature and the cam-

era in order to project that feature to the ground.
72

Nc 3 Minimum obstacle cluster size. 70
wc 0.2 Minimum relative cluster depth. 71

Table 7.2: List of obstacle detection parameters.

To evaluate the optimality of these parameters, we have varied each for a reasonable range
and plotted precision VS recall graphs. To this end, we have established a ground truth of
obstacle position by manually marking the base of the objects on the image, for every frame.
The knowledge of the camera height and orientation allow us to convert these pixel coordinates
into world ground coordinates. We take the world y-component of the obstacle to be its dis-
tance to the vehicle. Let the true obstacle distance be dtrue and the distance reported by the OD
algorithm be dOD. We say the true and reported distances are similar if their relative difference
is less than one half, that is, if

|dtrue − dOD|
dtrue

< 0.5.

Then we define the following types of detection:

Experimental Results 76

True Positive (TP): An obstacle is present, detected, and the reported and true distances are
similar

False Negative (FN): An obstacle is present and undetected OR an obstacle is present, de-
tected, and the reported and true distances are not similar

False Positive (FP): No obstacle is present, but one is detected
True Negative (TN): No obstacle is present, and none is detected

With these definitions we may tally the number of TPs, TNs, FPs and FNs for each snapshot
and for each video. The confidence that a detection actually corresponds to an obstacle is the
precision, and is given by

#ofTruePositives

of True Positives + # of False Positives
.

The confidence not to miss an obstacle is the recall, and is given by

of True Positives
of True Positives + # of False Negatives

.

A perfect detector is one with a precision and recall both equal to one. Thus, we may optimize
a given OD parameter by choosing the value that maximizes both precision and recall.

Parameter Test Range Acceptable Range Optimal Value Precision Recall
n 10 - 50 20 - 40 35 0.75 0.96

θmax 0.1◦ - 20◦ 1◦ - 10◦ 1◦ 0.8 0.9

ds 0.1h - 0.4h 0.2h - 0.4h 0.2h 0.76 0.97

Nc 1 - 20 2 - 4 3 0.83 0.95

Table 7.3: Results of Precision-Recall analysis. For each parameter we show the range of
values that were tested (Test Range), the range of values for which high precision and recall
was observed (Acceptable Range), the optimal value and the associated precision and recall.

The precision-recall plots for the four chosen parameters are shown in Figure 7.2. The
precision-recall plot for the minimum disparity threshold n is the top-left panel. We varied n
from 10 (high recall, low precision) to 50 (low recall, high precision). We we observe the best
algorithm performance for n ranging from 20 to 40 and an optimal value of 35, corresponding
to a precision of 0.75 and a recall of 0.96.

The precision-recall plot for the maximum angle between a feature’s trajectory and its
epipolar line, θmax, is the top-right panel. We varied θmax from 0.5◦ (high recall, low precision)

Experimental Results 77

Figure 7.2: Precision VS Recall plots for various OD parameters. The parameter being varied
is indicated on the bottom left of each plot.

to 20◦ (low recall, high precision). We observe the best performance for θmax ranging from 1◦

to 10◦ and an optimal value of 1◦, corresponding to a precision of 0.8 and a recall of 0.9.
The precision-recall plot for the snapshot displacement threshold ds is the bottom-right

panel. We varied ds from 0.1h to 0.4h and observed a significant effect on the precision alone.
The recall remained at aproximately 0.95 for all values. We observe the best performance for
ds ranging from 0.2h to 0.4h and an optimal value of 0.4h, corresponding to a precision of
0.76 and a recall of 0.97.

Finally, the precision-recall plot for the minimum cluster size Nc is the bottom-right panel.
We varied Nc from 1 (low recall, high precision) to 20 (high recall, low precision). We observe
the best performance for Nc ranging from 2 to 4 and an optimal value of 3, corresponding to a
precision of 0.83 and a recall of 0.95.

These results are summarized in Table 7.3.
The highest performance observed is for the parameter values shown in Table 7.2, giving a

precision of 0.83 and a recall of 0.95.

Experimental Results 78

7.2 Algorithm Performance

7.2.1 Performance on Selected Clips

In this section we present the detection and distance estimation performance of the OD algo-
rithm for selected set of sequences.

Figure 7.3 shows the output of the OD algorithm for three different obstacles; (a) a large
dumpster, (b) a garbage can and (c) a bicycle parking rack. For each obstacle, we show a
snapshot of the output when the obstacle is at an approximate distance of 2m (top), 1m (center)
and 0.5m (bottom). The points drawn on the images are the features tracked by the Feature
Tracking Module. These points are coloured to indicate the labelling provided by the OD
module: green points are on the ground, blue points are below the ground, yellow points are
above the ground (but not in the collision volume), red points are obstacles and white points
have not yet been labelled. The distance to the nearest obstacle feature is displayed at the top-
left of the image, and the projection of that distance on the ground is the horizontal red line.
That is, the horizontal red line marks the base of the detected obstacle (provided successful
detection). Note that the images shown are not the original input images, but the dewarped
images obtained by camera calibration.

We have chosen these three obstacles to illustrate the behaviour of the algorithm over a
wide range of detectable obstacle features. The dumpster (a) is large, flat and textured and
so provides many detectable features for tracking. The garbage can (b) is of moderate size,
rounded and smooth and so provides fewer detectable features. The bike rack (c) is short and
tubular and so provides little in the way of detectable features.

In Figure 7.4 we show the true and estimated obstacle distances (top graphs) and the num-
ber of detected obstacle features (bottom graphs) for the sequences shown in Figure 7.3. The
true distance was obtained by manually indicating the base of the object (where the object
meets the ground) at each frame. That pixel coordinate, combined with the intrinsic and ex-
trinsic camera parameters give a world ground coordinate [X Y 0]T. The distance from the
obstacle to the camera (equivalently, the rear bumper) along the car’s axis (i.e., the world y-
axis) is |Y |.

The dumpster is accurately located at a distance of 2.3m and remains so until the vehicle
stops. The maximum number of detected features on the dumpster is 36. The garbage can is
initially detected at 2.0m and a stable, accurate localization is maintained below 1.5m. The
maximum number of (stable) detected features on the garbage can is 18. The bike rack is
initially detected at 1.9m, but a stable, accurate localization is only achieved below 1m. This

Experimental Results 79

Figure 7.3: Output of the OD algorithm for three objects: (a) a dumpster, (b) a garbage can
and (c) a bicycle parking rack. The points drawn on the image are tracked features and are
colour-coded as follows: Green = ground, blue = below ground, yellow = above ground (but
not in the collision volume), red = obstacles and white = unknown.

detection is achieved with a maximum of only 3 stable detected features.
From these results we make the following observations. First, as one might expect, larger

obstacles can be detected at a greater distance than small ones. The reason for this shown
in Figure 7.5 is the following. Recall that a feature can be reliably triangulated only if it is
sufficiently far from the epipole (stated formally as condition 2 in Proposition 5.3). For a
vehicle backing towards an obstacle, the epipole typically (and unfortunately) lies somewhere
on the object. As the obstacle gets closer, it’s features diverge from the epipole. Once the
obstacle is close enough, the features on its periphery are far enough from the epipole for
triangulation (and thus detection) to occur. So naturally, the distance for which this occurs will
be greater for larger objects (Figure 7.5 (a)) than smaller objects (Figure 7.5 (b)).

Second, the more textured the object, the more robust the detection. The dumpster is large
and textured and so offers many features for detection. When it is closest to the vehicle (Figure
7.3 (a), bottom panel) a total of 36 of its features are detected. The garbage can is smaller and

Experimental Results 80

Figure 7.4: The true and estimated obstacle distances (top) and the number of detected obstacle
features (bottom) for the sequences shown in Figure 7.3.

smooth, so there are fewer features available for detection. When it is closest (Figure 7.3 (b),
bottom panel), a total of 10 of its features are detected (the additional detected features actually
belong to the wall behind it). Lastly, the bike rack offers very few features for detection. When
it is closest (Figure 7.3 (c), bottom panel), only two of its features are detected. Such a wide
range of object size and texture make it difficult to apply filtering schemes meant to reduce
noise and false detections, because the detection of small, low-textured objects (such as the
bike rack) would likely fail.

Third, the accuracy of the distance estimation is not dependent on the number of detected
features. Although detection occurs at different distances (depending on object size), we ob-
serve similar accuracies in distance estimation for all three objects, once detection has oc-
curred. This is due to our choice in what we report as the obstacle distance. We report the
distance of the nearest detected feature and ignore all others, so the accuracy in distance es-
timation is the accuracy in triangulating any one feature. For any given feature, the accuracy
in its triangulation depends on two things; the accuracy of ground motion estimation and the
accuracy in the tracking of the feature itself. So, given similar quality in tracking and motion
estimation we should expect similar accuracy in distance estimation, regardless of the number
of features detected.

Experimental Results 81

Figure 7.5: The peripheral features (marked by a red circle) of large objects are sufficiently far
from the epipole (marked by an “X”) at greater distances from the camera than smaller objects.
For this reason, large objects may be detected at a greater distance than small ones.

7.2.2 Overall Performance

In this section we evaluate the performance of the OD algorithm for all fourteen sequences. In
addition to the precision-recall analysis provided in Section 7.1, we provide the following three
performance metrics. First, we look at the density of detected features, an imporant issue for
detection robustness. Next, we evaluate the range of the detector by looking at the detection
rate as a function of obstacle distance. Finally, we examine the precision of the distance-to-
obstacle estimate.

Detected Feature Density

Figure 7.6: The average number of detected features as a function of obstacle distance. The
upper and lower bounds (dotted lines) are the average pm one standard deviation.

Experimental Results 82

Figure 7.6 shows the average number of detected features as a function of obstacle distance
for all fourteen sequences. The dotted curves are the average ± the standard deviation for a
given distance. The large variation in detected features at close range is a result of the widely
varying size and texture of the objects used in our experiment. Some are small and smooth,
yielding but a few trackable features, while others are large and grainy, giving more than 60

detected features. This large variation makes it particularly challenging to enhance detection
performance via spatial filtering or clustering of detected features. As a case in point, the
detection recall in the bottom-right panel of Figure 7.2 drops dramatically as the minimum
cluster size in increased beyond 4. In other words, small objects go undetected if we require
large feature clusters.

Range of Detection

To evaluate the obstacle detection range we calculate the detection rate for a given true obstacle
distance. Specifically, we divide a 5m detection range into 20cm bins. Let ni be the number
of snapshots for which an obstacle is located in bin i. Let mi be the number of snapshots for
which an obstacle is located in bin i and it was detected. Both ni and mi are counted over
all fourteen videos. Then, the overall detection rate for the ith is given by mi/ni. This can
be thought of as the likelihood of detecting an obstacle, given the obstacles distance from the
vehicle.

Figure 7.7: Detection rate as a function of obstacle distance.

As we see in Figure 7.7, the detection rate is roughly inversely proportional to the obsta-
cle’s distance. This can be explained from the following two observations: (1) The likelihood
of detecting a feature on an object is proportional to the object’s size on the image (i.e., the ap-
parent size). (2) An object’s apparent size scales inversely proportional to its distance from the

Experimental Results 83

camera. So, we should expect the detection rate to be inversely proportional to the obstacle’s
distance.

The detection rate for obstacles 1m is 1. That is, in all fourteen videos, obstacles within
1m are detected %100 of the time. Obstacles at 2m are detected half of the time, and obstacles
at 3m are detected one third of the time. The rapid drop in the detection rate is due to the
unfortunate fact that obstacles are always in the vehicle’s (and so, the camera’s) direction of
travel. This results in obstacle features having the least amount of disparity for a given camera
displacement. If the camera were to strafe to the side of the obstacle, rather than towards
it, the disparity would be much greater (maximal, in fact) and the detection rate would be
proportionally so. It is this “minimal disparity” situation that is the greatest technical challenge
in scene reconstruction in the context of a parking camera.

Precision of Obstacle Distance

Figure 7.8: Standard deviation of distance-to-obstacle estimate as a function of distance.

To measure the precision of the distance-to-obstacle estimate provided by the detector, we
compared the computed distances with the true ones. Again, we divide the detection range into
0.2m bins. We then compute the standard deviation of dtrue − dOD (the difference between the
true distance and the reported distance) for all occurences within a given bin. From Figure 7.8,
we see that the standard deviation of dtrue−dOD is proportional to dtrue and has a slope of 0.177.
If we define the uncertainty of the detector as being one standard deviation, then the reported
distance has a relative uncertainty of 18%.

Chapter 8

Conclusion

In this thesis we have presented 3D reconstruction-based obstacle detection method for a single
rear view parking camera. We track ground features and use the knowledge of camera pose
to efficiently and robustly estimate the planar motion of the vehicle. Snapshots are selected to
ensure a sufficient baseline between images. Multiview triangulation is performed among these
snapshots. Once the scene is reconstructed, features located within a collision volume behind
the vehicle are considered obstacles. To increase robustness, detected features are spatially
clustered. Finally the distance to the nearest obstacle is reported to the driver.

8.1 Future Work

Currently, the vehicle motion is estimated from ground features only. Robustness in the es-
tiamation may be increased if all image features were considered. This would be especially
beneficial when the vehicle is backing through a clutrered scene. Incorporating all image
features into motion estimation may also allow us to estimate camera pose directly from the
images. This would reduce the calibration procedure to simply specifying the camera height.
It would also allow the system to recover from sudden camera pose changes.

The most difficult challenge in developing this system was the reduction of false detections
due to tracking error. Our solution of spatial clustering improved the false positive rate but
made the detection of small or narrow objects less reliable. Tracking error may be decrease
through the use of more sophisticated features, such as SIFT or SURF. Another solution may
be a bundle adjustment across the multiple views.

84

Bibliography

[1] A mobile vision system for robust multi-person tracking, 2008.

[2] Parag Batavia and Sanjiv Singh. Obstacle detection in smooth high curvature terrain. In
Proceedings of the IEEE Conference on Robotics and Automation (ICRA ’02), May 2002.

[3] James R. Bergen, P. Anandan, Th J. Hanna, and Rajesh Hingorani. Hierarchical model-
based motion estimation. pages 237–252. Springer-Verlag, 1992.

[4] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly Media, Inc., 2008.

[5] Tommy Chang, Steve Legowik, and Marilyn N. Abrams. Concealment and obstacle
detection for autonomous driving. In Proceedings of the Robotics & Applications 1999
Conference, pages 28–30, 1999.

[6] Wilfried Enkelmann. Obstacle detection by evaluation of optical flow fields from image
sequences. Image Vision Comput., 9(3):160–168, 1991.

[7] Robert M. Haralick, Chung-Nan Lee, Karsten Ottenberg, and Michael Nölle. Review and
analysis of solutions of the three point perspective pose estimation problem. International
Journal of Computer Vision, 13(3):331–356, 1994.

[8] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the
4th Alvey Vision Conference, pages 147–151, 1988.

[9] Richard I. Hartley. In defense of the eight-point algorithm. IEEE Trans. Pattern Anal.
Mach. Intell., 19:580–593, June 1997.

[10] Berthold K. P. Horn and E J. Weldon. Direct methods for recovering motion. Interna-
tional Journal of Computer Vision, 2(1):51–76, 1988.

85

Experimental Results 86

[11] Ian Horswill. Visual collision avoidance by segmentation. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 902–909.
IEEE Press, 1994.

[12] Michael Jenkin and Allan Jepson. Detecting floor anomalies. In Proceedings of the
British Machine Vision Conference, BMVC-94, pages 731–740.

[13] BerndManfred Kitt, Joern Rehder, AndrewD Chambers, Miriam Schonbein, Henning
Lategahn, and Sanjiv Singh. Monocular visual odometry using a planar road model to
solve scale ambiguity. In Proc. European Conference on Mobile Robots, September 2011.

[14] W. Kruger. Robust real-time ground plane motion compensation from a moving vehicle.
Mach. Vision Appl., 11:203–212, December 1999.

[15] Robert Laganire. Compositing a bird’s eye view mosaic. In In Proc. Conf. Vision Inter-
face, pages 382–387, 2000.

[16] Gildas Lefaix, ric Marchand, and Patrick Bouthemy. Motion-based obstacle detection
and tracking for car driving assistance. In ICPR (4)’02, pages 74–77, 2002.

[17] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o(n)
solution to the pnp problem. International Journal of Computer Vision, 81(2):155–166,
2009.

[18] Liana M. Lorigo, Rodney A. Brooks, and W. E. L. Grimson. Visually-guided obstacle
avoidance in unstructured environments. In IEEE Conference on Intelligent Robots and
Systems, pages 373–379, 1997.

[19] Manolis I. A. Lourakis and Stelios C. Orphanoudakis. Visual detection of obstacles as-
suming a locally planar ground. In Proceedings of the Third Asian Conference on Com-
puter Vision-Volume II, ACCV ’98, pages 527–534, London, UK, 1997. Springer-Verlag.

[20] Steven Lovegrove, Andrew J. Davison, and Javier Ibanez-Guzman. Accurate visual
odometry from a rear parking camera. In Intelligent Vehicles Symposium, pages 788
– 793, 2011.

[21] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. pages 674–679, 1981.

Experimental Results 87

[22] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D Vision
- From Images to Geometric Models. Springer-Verlag New York, Inc., 2004.

[23] Ezio Malis. Improving vision-based control using efficient second-order minimization
techniques. In ICRA, pages 1843–1848. IEEE, 2004.

[24] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 1, pages I–652 – I–659 Vol.1, june-2 july 2004.

[25] David Nister. An efficient solution to the five-point relative pose problem. IEEE Trans.
Pattern Anal. Mach. Intell., 26:756–777, June 2004.

[26] J. M. Odobez and P. Bouthemy. Robust multiresolution estimation of parametric motion
models. Jal of Vis. Comm. and Image Representation, 1995.

[27] J. Oliensis and Yakup Genc. New algorithms for two-frame structure from motion. In
Proceedings of the International Conference on Computer Vision-Volume 2 - Volume 2,
ICCV ’99, pages 737–, Washington, DC, USA, 1999. IEEE Computer Society.

[28] D Scaramuzza, F Fraundorfer, and R Siegwart. Real-time monocular visual odometry for
on-road vehicles with 1-point ransac. In Proc. of The IEEE International Conference on
Robotics and Automation (ICRA), May 2009.

[29] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

[30] Gideon P. Stein, Ofer Mano, and Amnon Shashua. A robust method for computing vehi-
cle ego-motion. In In IEEE Intelligent Vehicles Symposium (IV2000), 2000.

[31] Toshihiko Suzuki and Takeo Kanade. Measurement of vehicle motion and orientation us-
ing optical flow. In 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Trans-
portation Systems., pages 25 – 30, 1999.

[32] A. Talukder, R. Manduchi, A. Rankin, and L. Matthies. Fast and reliable obstacle de-
tection and segmentation for cross-country navigation. In In IEEE Intelligent Vehicles
Symposium, pages 610–618, 2002.

[33] Iwan Ulrich and Illah Nourbakhsh. Appearance-based obstacle detection with monocular
color vision. In Proceedings of AAAI 2000, 2000.

Experimental Results 88

[34] D. Willersinn and W. Enkelmann. Robust obstacle detection and tracking by motion
analysis. pages 717 – 722, 1997.

[35] K Yamaguchi, T Kato, and Y Ninomiya. Moving obstacle detection using monocular
vision. 2006 IEEE Intelligent Vehicles Symposium, pages 288–293, 2006.

[36] Zhongfei Zhang, Richard Weiss, and Allen R. Hanson. Obstacle detection based on
qualitative and quantitative 3d reconstruction. IEEE Trans. on PAMI, 19:15–26, 1997.

	List of Symbols
	Introduction
	Motivation
	A Real World Consumer Product
	Overall OD System Architecture
	Thesis Organization

	Literature Review
	Visual Odometry
	Direct Methods for Visual Odometry
	Visual Odometry from Optical Flow
	Visual Odometry from 3D Reconstruction

	Obstacle Detection
	Stereo Methods
	Monocular Methods
	Structure-based Methods

	Preliminary Material
	Rigid Body Motion
	Rotations in R3
	A Formulation of Rigid Motion

	Camera Modeling
	Perspective Projection
	Lens Modelling
	Sensor Modelling
	Putting it All Together

	Motion Estimation
	Camera Motion as Planar Motion
	Estimating Motion on a Planar Surface
	The RANSAC Algorithm
	World Plane Projection
	Feature Tracking
	Planar Motion from Images

	3D Reconstruction
	Epipolar Geometry
	The Epipolar Identities
	The Epipolar Constraint

	Triangulation
	Algebraic Formulation
	Geometric Interpretation
	Theoretical Constraints
	Practical Constraints
	Optimal Triangulation
	Multiview Triangulation

	Obstacle Detection
	Algorithm Overview
	The Tracking Module
	Motion Estimation from Good Ground Features
	Selecting Good Ground Features
	The Motion Estimation Algorithm

	Snapshot Management
	Inter-Snapshot Motion Estimation
	Feature Triangulation
	Feature Labelling
	Feature Clustering
	Feature Location

	Experimental Results
	Parameter Tuning
	Algorithm Performance
	Performance on Selected Clips
	Overall Performance

	Conclusion
	Future Work

