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ABSTRACT — We propose to perform
detail-preserving filtering by minimizing an
objective function that uses a fairly simple
regularization function to control smoothing
interaction of pixel neighbors where discon-
tinuities are implicitly addressed. To accom-
plish the minimization of this objective func-
tion, we use Tabu search. Tabu search adapts
to the particular structure of the problem it
tries to solve, and thus preforms an intelligent
exploration of the state space.

1 Introduction

Robust image restoration consists of suppress-
ing image noise while preserving significant de-
tails such as sharp edges. Given a noisy image
with pixel intensities {dj, ..., dn}, the goal is to
find the filtered version of this image {21, ...zn}
in which noise has been removed. A common
approach to this problem is to express the prob-
lem of image filtering with a functionnal whose
global minimum corresponds to the desired im-
age [1]. Typically, this objective function is of
the form:

N
F(x)= Y a(zi—d)*+ X Y g(zi - z;)
i=1 JEN;

where g(s) is the regularization function that
defines how the neighborhood N; of pixel i in-
teracts with the candidate solution z;. In this
context, suitable filtering will be achieved if 1)
F(x) is easily computable, 2) smoothing proper-
ties of g(s) preserve discontinuities and 3) mini-

mization can be performed at a reasonable com-
putational cost.

A common solution to realize an edge-
preserving regularization is to introduce in the
defintion of g(s) a line process to delineate re-
gions on which smoothing can applied [2]. But
this formulation renders the objective function
too complex by considerably increasing the di-
mensionality of the search space.

Under the assumption that the restored im-
age must correspond to the state of minimum
energy of the objective function, it is essential
to proceed to this global minimization. Simu-
lated annealing in the context of MRF modeling
has been widely used to perform this task [2][3].
This technique is known for its high computa-
tional cost. More recently, a technique called
graduated non convexity (GNC) has been pro-
posed [4][5]. GNC can be seen as a deterministic
annealing approach and its complexity strongly
depends on the adopted mathematical formula-
tion.

We propose to perform detail-preserving fil-
tering by minimizing an objective function that
uses a fairly simple regularization function to
control smoothing interaction of pixel neighbors
where discontinuities are implicitly addressed as
proposed in [6]. Minimization of the objective
function is performed by Tabu search (7] -[11],

2 _Tabu search

Let F(x), x = {z1,...,zN}, be an objective
function that one whishes to minimize. And
let the state space X be the set of all feasible



solutions (i.e. x € X'). The goal is to move from
one state to another in order to iteratively reach
the global minimum of the function. The set of
all allowed moves from a state x is designated
by M(x) C X. The Tabu procedure consists
in choosing the move M(x) that will produce
the highest reduction of the objective function.
From here this is similar to the usual gradient
descent: iteratively, the procedure will eventu-
ally bring the objective function to a local min-
imum. In such a situation, the best move will
cause an augmentation of the objective func-
tion. The Tabu search technique allows such a
move when it is not possibe to do better. The
key aspect of the Tabu Search is that, in order
to avoid cycling (i.e. to come back to an already
visited state), each time a move to a new state is
performed, all complementary moves (i.e. those
that cancelled this move) enter into a Tabu sta-
tus. This Tabu status remains valid for a certain
amount of time. In general, a move that is in a
Tabu status will be forbidden. This is the short
term memory that forbid backward moves and
thus allows to escape from a local minimum.
A long-term memory also exists, expressed by
an aspiration level condition that allows, under
some circumstances, a move despite its Tabu
status, if this move is considered as very ad-
vantageous in terms of the objective function.
The stopping criteria of the search is generally
based on a maximum number of iteration until
no improvement of the current best minimum is
obtained.

3 Image restoration

Let us assume that, in a small neighborhood,
all pixel intensity values are realizations of the
same gaussian distribution with mean depend-
ing on the original image and variance propor-
tional to the level of noise. Then the optimal
estimate is the mean of all observations {z;}
which corresponds to the minimum of A(z—z;)2.
The problem here is that some of the neighbors
z; may not belong to the same distribution as
z. In fact, if the difference between z and z; be-
comes important then the probability that these
two observations come from the same distribu-

tion decreases. As a consequence, when (z—zj)?
is above a certain threshold, z; should not con-
tribute to the estimation of z. This suggests the
following form of g(s) (see Figure 1):

9(s) =7+ (s? — 7)e?*

For small differences, g(s) is similar to s (the
dotted curve in Figure 1) and this remains true
until a certain threshold from which the contri-
bution decreases. Note that the residual cost
v is required to penalize situations where most
of the neighbors would be discarded as outliers.
Similar functions have also been proposed in [12]
and [6].

Minimization of F(x) can be formulated as
an integer programming problem: each z; can
take integer values from 0 to 255. Let us define
the contribution C; of a pixel i: this is the sum
of all terms in the objective function where the
term z; appears:

Ci= a(z; —d;)* + 2 Z g(z; —z;)
JEN;

Note that the sum for ¢ = 1,.., N of the values
all contributions is not equal to the value of the
objective function. Now suppose that we are in
a given state x. We define an allowed move as
one for which there is an increase or a decrease
of a pixel intensity of 1. This gives 2N possible
moves. We select the one having the smallest
contribution C! that is not in a Tabu status.
The corresponding reduction in the objective
function is simply C}! — C;. When a move is
done, the complementary move becomes Tabu.
This means that a backward move to a previous
pixel value cannot occur during its Tabu period
except if this move makes the objective function
smaller than the best minimum found so far.

4 Results

Minimization should be done over the whole im-
age. However, considering the fact that a sin-
gle pixel has a limited influence on the global
objective function, local minimization is appro-
priate. We chose to perform minimization over



3x3 windows. Moreover, if we carefully choose a
non-overlaping window configuration, then par-
allel computing become possible. In order to
propagate results of a local minimization these
parallel minimizations have been repeated with
16 different window configurations such that
each pixel is once the central pixel of one win-
dow. With such procedure, most pixels are sub-
jected to 9 minimization procedures.

Figure 3 shows results that we obtained when
filtering an artificial image corrupted with a
noise of variance 02 = 4. Result of the mini-
mization of the proposed objective function us-
ing Tabu search is compared to simple mean
and median filtering, and with result obtained
from the minimization with an objective func-
tion where g(s) is simply s2. Evolution of the
objective function when applying our parallel
Tabu search algorithm is shown in Figure 2.
Each iteration corresponds to the application
of a Tabu search sequence made of 25 moves
with Tabu status of duration 10. Curve 2(b)
illustrates how objective function value is tem-
porarly increases during minimization in order
to escape from local minimum and thus poten-
tially reach a more interesting minimum. Fig-
ure 4 shows results obtained for different level of
noise. Figure 5 shows results with a real image.
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Figure 1. Graphical representation of Ag(s)
with A = 0.2, ¥y = 25 and 8 = 0.02. The
dotted curve is g(s) = 0.25s2
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Figure 2. (a) Evolution of the objective ] /}‘E‘{\’u-’f;j"i‘, 1
function during minimization that produced ! ”/“‘.\‘"“s“i“"‘“ N
result of figure 4(f). One iteration corre- "\ :;-.")“\\N\‘\“.gg"’.ﬂ‘-
sponds to the application of a Tabu search f’yl‘ “‘-ﬂ""'" \
procedure over one window. (b) Evolution of . - N -
the objective function for a particular win- (c) (d)
dow. Figure 4. (a) Image corrupted with noise

0? = 16. (b) Filtered image. (c) Image cor-
rupted with noise 0? = 25. (d) Filtered im-
age.
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Figure 5. (a) Origin)al image. (b) Image
corrupted with noise ¢? = 400. (c) Result-
Figure 3. (a) Original image. (b) Image ing ﬁ{)tered image with A = 0.015 (a) = 0.01
corrupted with noise 0% = 4. (c) Mean filter- A = 0.0056 and v = 500 ’ ’
ing. (d) Median filtering. (e) Minimization of ' ’
F(x) with g(s) = s?, A = 0.25 and a = 0.5.
(f) Minimization of F(x) with g(s) of Figure
1 and o = 0.5.



