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Abstract

This paper addresses the problem of computing the three-dimensional
path of a moving rigid object using a calibrated stereoscopic vision setup.
The proposed system begins by detecting feature points on the moving ob-
ject. By tracking these points over time, it produces clouds of 3D points
that can be registered, thus giving information about the underlying camera
motion. A novel correction scheme is also proposed, that compensates for
the accumulated error in the computed positions by the automatic detection
of loop back points in the movement of the object. An application to rapid
object modelling is presented in which a hand-held object is moved in front
of a camera and is reconstructed using silhouette intersection.

1 Introduction

One of the main challenges inherent in using images from a large number of viewpoints is
the issue of camera pose estimation. For 3D reconstruction to be possible, the location and
orientation of the cameras at different capture instant must be accurately known. Several
applications can benefit from the knowledge of the position of a camera with respect to
some rigid reference frame. Among them are virtual or augmented reality systems, scene
reconstruction, object modelling and robotics. In a video sequence in which a camera is
moving inside a fixed environment, keeping track of the camera/object respective posi-
tions can be challenging. In the case of a moving camera, a workable solution consists in
installing calibration targets, precisely registered with respect to a global reference frame.
By having them visible inside the scene, it becomes possible to compute the camera po-
sition as the camera moves with respect to the global reference frame [5]. Alternately,
in an object-based solution, a CAD model of the observed objects can be created and by
registering that model to the observations, the spatial relation between the scene and the



camera can be determined [1]. In practice, however, these solution are not always fea-
sible. It is therefore desirable to develop a method to compute the camera motion in an
unprepared scene for which no a priori knowledge is available.

In 3D reconstruction, bundle adjustment is a widely accepted approach [2], and com-
mercial software tools are now available. The technique most often relies on a human
operator, who has to supply the matches since there is typically a small number of widely
separated views. Bundle adjustment is used for a wide spectrum of applications, such
as accident reconstruction, animation and graphics, archaeology, forensics, engineering
and architecture. The main drawback of bundle adjustment is its instability. In many
situations, the algorithm will fail to converge to an accurate solution. To overcome this
problem, it is recommended that the user starts with a small subset of the available pic-
tures, and a small number of feature points that can be seen in many pictures. Once the
algorithm succeeded in converging to a first reasonable solution, additional intermediate
pictures and more feature points can be added to improve the accuracy. This lack of ro-
bustness can be related to the iterative nature of bundle adjustment, which implies initial
estimates of the camera positions. If these estimates are very far from the actual solution,
the algorithm may fail to converge.

This problem is amplified when one wants to automate the whole process. Matches
between narrowly separated views can be found automatically through correlation. Un-
fortunately, nothing can guarantee that the matches will all be good. Bad matches will
definitely affect negatively any structure and motion estimation process. While the use of
more widely separated views would help to improve the accuracy of the reconstruction,
the matching process would become much more difficult and error prone.

The method proposed in this paper aims at resolving these issues using a calibrated
stereoscopic vision setup. This system is observing a rigid object in motion on which
feature points are detected. Because they are seen by a stereo setup, these points can be
3D reconstructed when they are matched. By tracking these points over time, the result-
ing clouds of 3D points can be registered thus giving information about the underlying
camera motion. This is the idea that is exploited in this paper to robustly keep track the
cameras/object relative motion along a sequence. In addition, a novel correction scheme
is proposed, that compensates for the accumulated error in the computed positions, ex-
ploiting the automatic detection of loop back points in the movement of the object. An
application to rapid object modelling is presented in which a hand-held object is moved
in front of a camera and is reconstructed using silhouette intersection.

The path of a binocular or trinocular stereoscopic setup is computed in [4]. In this
approach, points are matched at each camera location. In addition points in one view
are tracked from image to image. The method uses trilinear tensors and/or fundamental
matrix constraints for robust tracking and matching over views. The computed transfor-
mations are then cascaded in order to place them in a common coordinate frame. To
overcome the problem of error accumulation, it is proposed to add an extra step where the
final 3D transformation for all cameras would be computed simultaneously.

In [7], the goal is to compute the registration of two consecutive scene captures along
with the extrinsic calibration parameters of the stereo setup and the 3D location of a
minimum of four matched and tracked feature points. The essential matrix of the stereo
setup is calculated from the eight correspondences given by the four feature points in both
captures, and nonlinear methods are used to enforce its constraints. It is decomposed to
retrieve the extrinsic calibration parameters up to a scale factor of the translation vector.



At this point, 3D reconstruction can be applied to the feature points, yielding two clouds
of a minimum of four 3D points. The registration between the two 3D point clouds
can then be calculated. It differs from the proposed method in the fact that they do not
compute the extrinsic calibration parameters of the stereo setup prior to the computation
of the registration. As a consequence, the matching process cannot be guided by the
epipolar constraint. No experimental results along a sequence were shown to display the
accumulation of error.

The method in [24] tracks points in each view of a stereo rig. It introduced binoc-
ular matching constraints. Camera motion is recovered from the left and right temporal
fundamental matrices. Stereo correspondences are then inferred by combining stereo ge-
ometry and motion correspondences through a projective mapping. A similar approach is
presented in [8], stereoscopic vision and shape-from-motion are combined in an attempt
to exploit the strengths of both approaches, i.e. accurate 3D reconstruction for stereo and
easy feature tracking for visual motion. The result is a 3D reconstruction of feature points
and the camera motion in two separate steps. In this research, the experiments were lim-
ited to short sequences where the viewpoints don’t change dramatically from the first to
the last capture.

Stereo and motion correspondences are computed simultaneously in [23]. They de-
fined a coarse-to-fine algorithm in which local surface parameters and rigid-body motion
parameters are iteratively estimated. They were able to extract local range information
from a sequence of few stereo images.

In [6], self-calibration and Euclidean reconstruction from a stereo rig are achieved
through a stratified approach that proceeds by upgrading a projective reconstruction to
affine and to metric reconstruction. Results are shown for images taken before and after a
single rigid motion.

A strategy based on active stereo is proposed in [11] for simultaneous localization and
mapping in a robotic application. As the robot moves inside the scene, the stereo head
is actively moved in order to select the feature measurement that will best improve the
current robot position estimation. The solution is based on the definition of measurement
and motion models predicted using a Kalman filter.

The rest of this paper is organized as follows. Section 2 reviews the concepts of 3D
reconstruction. Section 3 presents the used feature matching and tracking strategy. Sec-
tion 4 discusses the problem of previously visited locations while Section 5 is concerned
with accumulated error correction. Finally, Section 6 presents experimental results and
Section 7 is a conclusion.

2 Stereo Reconstruction

Three dimensional reconstruction requires the computation of the Euclidian coordinates
of image features from the visual data observed in multiple views. Stereoscopic vision
involves the use of two cameras for which there is a fixed rigid transformation between
them.

2.1 Calibration

Stereo calibration aims at computing the projection matrices of the two cameras. When
a set of 3D points at precisely known locations is available, the projection matrices can



be obtained straightforwardly. Indeed, a point,X i , along with its corresponding image
coordinatesxi , satisfy the following relationship:

x = PX = K[R | T]X



x
y
1


 = λ




p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23







X
Y
Z
1


 (1)

Eliminating λ and rearranging the expressions yields a pair of homogeneous linear
equations in 12 unknowns, the entries of the projection matrix. Putting together the in-
formation ofn 3D points (n≥ 6) gives2n homogeneous linear equations in 12 unknowns
p00, p01, ..., p23. This system can be solved up to a scale factor, through SVD. The quality
of the computed projection matrix depends on the linearity of the camera model and the
accuracy in the measured 3D location of the points. Once the projection matrices are com-
puted for both cameras, they can be decomposed to retrieve their intrinsic and extrinsic
calibration parameters [3].

In practice, however, it is more convenient to use a planar configuration object with
known metric pattern. By exploiting the homographic constraints that exists between the
calibration plane and the corresponding images, it is possible to build a linear system of
equations. This is the approach proposed in [17] and [18] where several views of the
planar calibration pattern are used to calibrate a single camera. The procedure has been
extended to the case of a stereo setting in [20]. The method makes use of the additional
constraint provided by the stereo rig configuration. The constraint is also expressed in the
form of a homography; the one that links the image of the calibration plane as a function
of the rigid transformation between the cameras of the stereo head, i.e. [19]:

H = K

[
R− Tn>

d

]
K−1 (2)

Heren is the normal of the calibration andd is the distance from the camera to the plane.
In order to determine the optimal stereo configuration of the cameras, we performed

an experiment in which we used three stereo setups with different baselines (0.139 m,
0.416 m and 0.756 m). The angles between theZ-axes of the two cameras were adjusted
in such a way that a given working volume was preserved, resulting in angles of 0.112
rad, 0.463 rad and 1.05 rad respectively. A calibration pattern was used, allowing easy
detection of its feature points with sub-pixel resolution. The position of the calibration
pattern with respect to the table was measured with a ruler. This procedure provides the
ground truth value of the feature points position, with an estimated accuracy of 0.3 mm.

Figure 1 shows the reconstruction error (|~xcalculated−~xmeasured|) averaged over the 20
feature points of a calibration pattern as a function of theZ position of the calibration
pattern, for three different baselines. It can be observed that the reconstruction error is
higher for the stereo setup with the smallest baseline, as expected. No significant dif-
ference can be observed by comparing the results of the stereo setups with baselines of
0.416 m and 0.756 m. Since matching is facilitated when the baseline is shorter, we can
conclude that there is no need to increase the baseline of our stereo setup above 0.4 m, as
it does not seem to provide any significant improvement in reconstruction accuracy and it
would make the matching process more difficult.



Figure 1: Average reconstruction error, for three different baselines.

2.2 3D Point Reconstruction

Once the stereo rig calibrated, and consequently the projection matricesP1 andP2 are
known, it is possible to compute the 3D position of any point seen by the two cameras.
Using the projective relation of Equation (1), the 3D locationX of a feature point whose
image coordinates in the two images arex1 andx2 can be obtained by solving the follow-
ing system of 4 linear equations in 3 unknowns:




(p00−xp20)1 (p01−xp21)1 (p02−xp22)1

(p10−yp20)1 (p11−yp21)1 (p12−yp22)1

(p00−xp20)2 (p01−xp21)2 (p02−xp22)2

(p10−yp20)2 (p11−yp21)2 (p12−yp22)2


 .




X
Y
Z


 =




(xp23− p03)1

(yp23− p13)1

(xp23− p03)2

(yp23− p13)2


 (3)

This system can be solved through a least-square method. Even if this approach, involving
the minimization of algebraic quantities, works well in practice, a geometric triangulation
formulation is often preferred. The method finds the 3D point that minimizes its 3D
distance with two non-crossing lines in space. In order words, it returns the middle point
of the segment perpendicular to both rays.

Figure 2 shows the geometry of two cameras projecting the imagesx1 andx2 of the

3D pointX. In an ideal situation, the extension of the lines
−−−−−−→
O1K−1

1 x1 and
−−−−−−→
O2K−1

2 x2 should
cross each other in space at the location of the projected 3D pointX. In reality, the two
lines may not cross. The best solution is therefore to search for the pointX that is the



Figure 2: Geometry of the triangulation procedure

middle of the segment perpendicular to both lines. We have, from Figure 2:

X1 =
1
λ1

K−1
1 x1 (4)

X2 =
1
λ2

K−1
2 x2 (5)

Expressing pointX2 in the reference frame of the first camera gives:

X2|cam1 = RX2 +T

=
1
λ2

RK−1
2 x2 +T (6)

Let us now define the vector~d, that is proportional to the cross product ofX1|cam1 and
(X2|cam1−T):

~d ≡ λ1λ2X1|cam1× (X2|cam1−T)
= K−1

1 x1×RK−1
2 x2 (7)

The vector~d is therefore parallel to the vector
−−−→X1X2. Let us now define three scalarsa, b

andc such that the pathO1X1X2O2O1 forms a closed loop:

aK−1
1 x1 +b~d+cRK−1

2 x2−T = 0 (8)

aK−1
1 x1 +b[K−1

1 x1×RK−1
2 x2]+cRK−1

2 x2 = T (9)

Equation (9) provides three linear equations in three unknowns,a, b andc. Once this
system is solved for a given match(x1,x2), the location of the pointX can be calculated:

X|cam1 = aK−1
1 x1 +

1
2

b[K−1
1 x1×RK−1

2 x2] (10)



3 Feature-based Stereokineopsis

In order to keep track of the position of an object that moves in front of a set of cam-
eras, we used amatch-and-trackparadigm. At one instant, feature points are detected
and matched across views. The matched points are then independently tracked in each
view until a new matching process is initiated. Proceeding this way, we benefit from both
the accuracy of the reconstruction provided by stereo-matching and the reliability and
efficiency of image tracking. Robustness of the process to the unavoidable presence of
outliers is ensured by the 3D registration procedure that is applied between each stereo
matching phase. Note that matching is typically applied everyX frames, while tracking
is performed at full frame rate. In fact, the matching rate is determined by the frequency
at which a given application requires new object position data. The following subsections
detail each of these steps. Another important difficulty related to sequential pose esti-
mation approaches concerns the error accumulation problem; this aspect is addressed in
sections 4 and 5.

3.1 Tracking

Feature point tracking is achieved using the Intel OpenCV implementation of the Lucas-
Kanade tracker [14]. It is an accurate and robust tracker that can run at several frames
per second. In order to reduce the computational load, the tracker uses a pyramid of
resolutions in the computation of the displacement vectors.

When Harris corners are used, the tracker performs reliably over quite long sequences.
However, it is unavoidable to have some false tracks occurring. Occlusion boundary, for
instance, are particularly problematic as they tend to produce moving corners on the im-
age. Consequently, even when starting with an exact match set, the independent track-
ing of the features in each view will most probably cause the introduction of some false
matches; therefore the 3D registration process has to be robust to outliers.

3.2 Matching

Since the epipolar geometry is available through a preliminary calibration phase it is used
to guide the matching of features. Thus, only points from the second image that lie close
to the epipolar line of a point in the first image are considered as possible matches.

Feature comparison is done using variance normalized correlation (VNC), which is
designed to produce reliable results over a wide range of viewing conditions. VNC is
defined for a candidate match(x1,x2) as:

VNC(x1,x2) =
∑k1,k2

[I1(k1)− I1(x1)][I2(k2)− I2(x2)]

N
√

σ2
I1
(x1)σ2

I2
(x2)

(11)

where the sum is taken over the pointsk1 andk2 in the neighborhoods ofx1 andx2 and
whereI(x) andσ2

I (x) are respectively the mean and the variance of the pixel intensities
over the neighborhoods.

The point pairs found through correlation along the epipolar lines are not necessarily
accurate correspondences. This is why additional matching constraints must be applied.
In particular, the uniqueness and symmetry constraints have been shown to be simple and



advantageous [13]. Uniqueness requires that only the best match in the second image be
kept, for a given point in the first image. Symmetry requires that the point in the first
image also be the best match for the other point.

Finally, in order to prune additional mismatches that might still be present, the dispar-
ity gradient is used, as in [25]. The disparity gradient is a measure of the compatibility
of matched points. For two pairs(x1,x2) and(y1,y2), having disparitiesd(x1,x2) and
d(y1,y2) respectively, the cyclopean separation,dcs(x1,x2;y1,y2), is the vector joining
the midpoints of the line segmentsx1x2 andy1y2, and, their disparity gradient is defined
as:

∆d(x1x2;y1y2) =
|d(x1,x2)−d(y1,y2)|
|dcs(x1,x2;y1,y2)| (12)

This compatibility measure is used in a constraint that accepts pairs that share a dis-
parity gradients below some threshold value, with at least 2 of their 3 closest neighbors.
This eliminates false matches as long as they are not surrounded by other similar false
matches.

3.3 Robust Registration

After having found matches and tracked the corresponding points in both sequences,3D
points can be reconstructed. Based on the matches at a given instantM and their tracked
correspondents at a latter instantN, the resulting two clouds of3D points can be registered
to find the rigid motion of the object (or, reciprocally, the rigid motion of the stereo
setup, when the reference frame is attached to the object). Unfortunately, in identifying
the motion complying with the observations, one cannot simply use the complete data
set, since the false matches and the tracking errors will corrupt the result. Instead, it is
necessary to introduce a random sample consensus (RANSAC) algorithm [9] in order to
filter out the corrupted pairs of 3D points.

A minimum of 3 pairs of non-collinear 3D points are necessary to compute an unam-
biguous 3D registration. As a consequence, the first step of the algorithm will consist in
finding a triplet of 3D matches.

In order to make sure that a randomly selected triplet of 3D matches does not consti-
tute a degenerate case (i.e. is not in a collinear configuration), two conditions are imposed:

1. The distance between any two points of the trio must be greater than a given mini-
mum;

2. The area defined by the three points must be greater than a given minimum.

The first item alone is not sufficient since three collinear points that are located far apart
would satisfy it, while the second item alone would allow a triplet constituted of two
points close from each other with a third point far away, such that the area of the triangle
is sufficient.

Once corresponding triplets have been identified as being non-collinear, the rotation
and the translation that best describe the rigid movement of the points can be computed.
This now constitutes a candidate registration(RN/M,TN/M).

Given such a candidate registration, a count of the number of supporting matches can
be obtained as follows. For each 3D match, if the distance betweenXN andRN/MXM +
TN/M is less than a maximum distance, then this match is said to agree with or support



the candidate registration. This procedure is repeated several times with the number of
trials set so that the probability of success is above a desired value. The candidate reg-
istration having the highest number of supporting matches is declared the best candidate
registration.

Finally, all the matches that support the best candidate registration are used to compute
the final output registration through least-square fitting of the two sets of points [10]:

QN/M =
[

RN/M TN/M

0T 1

]
(13)

From the computed homogeneous transformationQN/M, the new world coordinates of the
cameras can be computed as:

QN = QN/MQM (14)

The main problem associated with this technique resides in the accumulation of errors,
due to the fact that every new position is computed from the previous one. Since it is
assumed that no special target points that could allow recalibration are available on the
object, the only information that can be used here is the knowledge of the approximate
camera positions that will allow us to identify points of view that were previously cap-
tured. This is the information that will be used here to correct for the drift, each time the
cameras pass by a location where they have been before.

4 Detection of Previously Visited Locations

The goal of this procedure is to take a sequence of camera positions and identify those
that are close to their previous positions in an earlier image capture. Whenever such a
loop back situation is detected, a connection between the earlier and later views becomes
possible. Once this is done a registration between the two positions and correction of the
accumulated error can be undertaken.

Because the tracking algorithm described in Section 3.1 is used to match the two ex-
treme views of a detected loop, it is necessary that these views be separated by a relatively
short baseline; this requirement can be expressed by the following two conditions:

• TheZ-axes of the two views must be nearly parallel;

• The distance between the center of projection of the views must be sufficiently
small.

At first sight, these conditions might appear to be insufficient for loop back detection to
work properly as this test is not completely rotationally invariant. Indeed, it is also nec-
essary that theY- (or theX-) axes be nearly parallel for correct neighborhood matching.
Nevertheless, we can relax this constraint since our knowledge of the approximate camera
positions will allow us to de-rotate the images around theirZ-axes in such a way that they
become adequately aligned.

The distance between the center of projection of the views is directly calculated from
the length of the vector going from one center to the other. In order to calculate the
maximum distance we can tolerate, we must take into consideration the fact that the two
views may be collinear along their parallelZ-axes (i.e. one view may be in front of the
other), resulting in a scale difference between the two images.



The angle between theZ-axes of two views can be computed through a scalar prod-
uct of unit vectors parallel to theZ-axes of the two cameras, as expressed in the world
reference frame:

k̂M = QM




0
0
1
0


 (15)

k̂N = QN




0
0
1
0


 (16)

cos(θ) = k̂M · k̂N (17)

In a sequence, the minimal angle (or distance) with respect to a given frame may not
happen at the same frame for the left and the right camera. When trying to identify the
best capture to be matched with an earlier capture, we must find a compromise between
the two cameras.

Whenever a view is detected as being close to a previously captured view, the drift
of the later view can be compensated. Of course, it is assumed that the earlier the view,
the better the accuracy, since its location has been computed from a smaller number of
cascaded transformations. This is discussed in Section 5.

4.1 Identification of the Rotation Angle Around the Z-Axis

As discussed previously, two views are similar if theirZ-axes are nearly parallel; they can
however have a wide angular difference around theirZ-axes. Since the tracking algorithm
is not rotation invariant, this situation could prevent the identification of correspondences.
We can overcome this difficulty by making use of the knowledge we have of the approx-
imate positions of the camera; that is we can determine the rotation that must be applied
to the images of the later view, such that it is as aligned as possible with the earlier view.

In a first approach, we will aim at minimizing the angle between theY-axes of two
views by applying a rotation around theZ-axis of the second view. Let us state the result:

Let r i j be the element(i, j) of the rotation matrix linking the viewN with the viewM,
RN/M. If r10sin(arctan(− r10

r11
)) < r11cos(arctan(− r10

r11
)), then:

αY = arctan(− r10

r11
) (18)

else:
αY = arctan(− r10

r11
)+π (19)

Proof: The rotation component of a reference system built with a pure rotationα around
theZ-axis of the second reference system is:

RN/MR(α,0,0) =


r00cos(α)+ r01sin(α) −r00sin(α)+ r01cos(α) r02

r10cos(α)+ r11sin(α) −r10sin(α)+ r11cos(α) r12

r20cos(α)+ r21sin(α) −r20sin(α)+ r21cos(α) r22


 (20)



A unit vector, oriented along theY-axis of the cameraN will be expressed, in the reference
frame of camera 1:

ĵN|M = RN/MR(α ,0,0)




0
1
0


 (21)

(20)
=



−r00sin(α)+ r01cos(α)
−r10sin(α)+ r11cos(α)
−r20sin(α)+ r21cos(α)


 (22)

We aim at maximizing the scalar product between theY-axes of the two cameras:

ĵN|M · ĵM|M = ĵN|M ·



0
1
0




= −r10sin(α)+ r11cos(α) (23)

To maximize the scalar product (23), we pose its first derivative with respect toα equal
to 0 and we pose its second derivative negative:

∂
∂α

( ĵN|M · ĵM|M) =
∂

∂α
(−r10sin(α)+ r11cos(α))

= −r10cos(α)− r11sin(α) = 0 (24)

∂ 2

∂α2 ( ĵN|M · ĵM|M) =
∂

∂α
(−r10cos(α)− r11sin(α))

= r10sin(α)− r11cos(α) < 0 (25)

Together, constraints (24) and (25) yield to (18) and (19).
Alternatively, one can aim at minimizing the angle between theX-axes of the two

cameras by applying a rotationαX around theZ-axis of the later view. It can be shown
that, in the case where theZ-axes are perfectly aligned, the two anglesαY andαX are
equal (the two reference frames can be made to coincide). In the general case where
the Z-axes are not perfectly parallel, the optimal anglesαY and αX will not be equal.
The optimal angleαX that will minimize the angle between theX-axes is given by the
following relations: If−r00cos(arctan( r01

r00
)) < r01sin(arctan( r01

r00
)), then:

αX = arctan(
r01

r00
) (26)

else:
αX = arctan(

r01

r00
)+π (27)

The proof is similar to the one given forαY.
Since there is noa priori reason to believe that it is more important to align theX-

axes nor theY-axes, we will use a rotation angle that is the average value ofαX andαY.
The center of the rotation that must be applied to the image is the principal point of the
camera. Figure 3 shows an example where the described image rectification scheme is
applied on an image pair in order to make it similar to a previously captured pair. This
result is further discussed in Section 6.



Figure 3: (a) Initial left image; (b) Initial right image; (c) Left image after 17 registrations;
(d) Right image after 17 registrations; (e) Optimally rotated left image; (f) Optimally
rotated right image. These two transformed images can now be matched with images (a)
and (b).

5 Accumulated Error Correction

Let us assume the viewN has been identified as being close to the earlier viewM. Then
it is possible to compute a correction matrix that can be premultiplied to the initially
computed location of the viewN.

Q′
N(corrected) ≡Qcorrection,NQN (28)

The problem we would like to address now is how to correct the intermediate views.
We assume there is a high level of confidence in the knowledge of the location of the view
M (and therefore in the corrected location of viewN). The goal is therefore to correct the
intermediate views usingQcorrection,N.

Let us assume the drift in the calculated location of the views was uniformly dis-
tributed over all the registration steps. Furthermore, let us assume the individual regis-
tration steps along with the error in the registration had small rotation components. Let
us model the uniform error in the following way, rewriting (14) with the introduction of
Qerror, the unit error transformation matrix that happened at every registration:

Qn = QerrorQn,n−1Qn−1



=

(
M

∏
i=n−1

QerrorQi

)
QM (29)

with (M < n < N). Under the assumption of small rotation components of{Qi} and
Qerror, we can commute the matrices in such a way that we gather the error matrices to
the left and take them out of the product, that is:

Qn = Qn−M
error

(
M

∏
i=n−1

Qi

)
QM (30)

The correction matrix is assumed to annihilate the error of the viewN. Therefore

Qcorrection,N = (QN−M
error )−1 = QM−N

error (31)

Qerror = Q
1

M−N
correction,N (32)

The correction matrix at viewn will have to annihilate the error at viewn, i.e.

Qcorrection,n = (Qn−M
error)

−1 = QM−n
error

(32)
= Q

M−n
M−N
correction,N

= Q
n−M
N−M
correction,N (33)

Equation (33) gives the correction matrix that must be premultiplied to the calcu-
lated location of a camera at viewn, given the correction matrix at viewN, under the
assumption of uniform distribution of the error along the registration steps, and under the
assumption of small rotation components of both the registration matrices and the error
transformation matrix.

It should be noted that the uniform distribution of the correction can be extended to
the case of non-uniform distribution of the error. One can have some information about
which registration steps contributed most to the overall error, according to somesuspicion
level. In this scheme, the ration−M

N−M in equation (33) would be replaced by some factor
α. This factor would increase monotonously between 0 (for view M) and 1 (for view
N) according to the suspicion level of each registration step. For instance, the number
of 3D pairs of points that were used in the robust registration procedure could be used
as a measure of the suspicion level (a high number of 3D pairs corresponding to a low
suspicion level). In all cases, the correction matrix takes care of the average component
of the error.

6 Experimental validation of the Error Correction
Scheme

In a first experiment, the movement of a Russian headstock was recorded by the stereo
setup. Four images of this sequence have been presented in Figure 3.

The projection matrices of the cameras at each position have been computed by the
matching, tracking and 3D registration of reconstructed points. The estimated angles
between theZ-axes and distances between the centers of projection, with respect to the



first capture, have been plotted in Figure 4. The minimum angle and distance happens
at Capture 19 for the left camera. For the right camera, the minimum distance happens
at Capture 15, while the minimum angle happens at Capture 16. For the sake of the
illustration, we will correct the error at Capture 18, but it probably could have been done
for Captures 16 to 19.

(a) (b)

Figure 4: (a) Angle and distance of the left camera, with respect to the first capture (b)
Angle and distance of the right camera, with respect to the first capture.

The rotation angles around theZ-axes of the left and right cameras were estimated
to be -1.54 rad and -1.49 rad respectively. Figure 3 shows the first pair of views of a
sequence, the18th pair of views and the rotated18th images such that tracking is possible
with the first images. The error was corrected at view 18 through tracking of matched
points from the initial views to the rotated18th views. The error correction matrices were
then uniformly distributed along the sequence. Figure 5 shows theRussian Headstock
sequence, augmented with an attached reference frame projected on each image after
recorrection of the camera positions. The natural movement of the augmented reference
frame confirms the validity of the corrected projection matrices.

The second set of experiments tries to evaluate the quality of the 3D information
obtained. To this end, a bundle adjustment program was used. Bundle adjustment is an
iterative method of computing the camera pose and the 3D location of feature points,
given a set of matches from different cameras and the intrinsic calibration parameters
of the cameras. The problem is to minimize the sum of the Euclidian squared distance
between the reprojection of the 3D points and their corresponding image points[26],[27]
by varying the cameras and the 3D points locations:

min[∑
i

∑
j
||x j

i −PiX i ||2] (34)

wherePi are the projection matrices,x j
i is the image ofj− th point at viewi.

Bundle adjustment is difficult to automate since it is very sensitive to false matches
and initial camera pose estimates. But, when it converges correctly, bundle adjustment
gives an optimal solution, i.e. the 3D configuration that best explains the observations.
For this reason, the bundle adjustment solution will be used here to generate the ‘ground
truth’ in our experiments in order to validate our error correction scheme.

Most commercial implementations of bundle adjustment rely on manual selection of



Figure 5: Russian headstock sequence recorded by the right camera augmented with an
attached reference frame (after recorrection).

matches. PhotoModeler1 is a commercial software that implements bundle adjustment
from a set of manually identified matches in a set of images; it has been used to process a
subset of theDucksequence (see Figure 6). Fourteen images were manually matched with
68 feature points. The returned camera positions are displayed in Figure 7, along with the
3D location of the selected feature points. Because a good match set was used and the
bundle software was run with judiciously chosen optimization parameters, we were able
to obtain a small reprojection error. This solution can therefore be safely considered to be
accurate.

The camera path forms two loops: 360o in theX−Y plane and a half-turn under the
duck. These loops allow us to apply our error correction scheme. Following the procedure
defined in Section 4, frames 1 and 40 were detected as the two extreme views of a looping
sequence (and similarly for 17 and 64). These were then matched and their 3D point sets
registered.

Figure 8(a) and (b) shows the disagreement (in the position and the orientation of
the cameras) between PhotoModeler and the proposed method, without error correction.
The position disagreement is the distance between the computed centers of projection.
The orientation disagreement is the angle between theZ−axes of the camera reference
frames. As expected, the magnitude of the disagreement increases with the number of
registrations, as the proposed method accumulates error. The PhotoModeler project had
matches between the first and the last image, allowing for a closed loop configuration and

1EOS Systems Technology (www.photomodeler.com)



Figure 6: Some images of the Duck sequence recorded by the left camera (frames 1, 11,
17, 24, 32, 40, 49, 59, 64).

thus preventing error accumulation.
It is worth noticing the fact that, as opposed to the proposed method, bundle adjust-

ment does not grant any special status to the first capture. It can be adjusted, like every
other camera position. In contrast, the proposed method gives a higher level of confidence
in the earlier captures. The discrepancy between the two methods at the first capture is
most probably related to errors in the bundle adjustment solution.

Figure 8(c) and (d) shows the disagreement between PhotoModeler and the proposed
method after the two passes of error correction through uniform distribution of the correc-
tion matrix. It can be seen that the disagreement magnitude increases a lot more slowly
with the number of registrations, as compared with Figure 8(a) and (b), indicating that the
error correction provided an improvement in the projection matrices.

The computed locations of the cameras can be used to build a volumetric representa-
tion of the object, through shape-from-silhouette [12]. Figure 9 shows the model obtained
by silhouette intersection of 82 images. The model contains approximately 12600 voxels,
each having dimensions of 5 mm× 5 mm× 5 mm. The presence of the hand in the
images did not pose a problem here since view registration is robustly computed. Indeed,
matches on the hand surface were filtered out, as their reconstructions were not moving
rigidly with respect to the surface of the object. As can be seen, our error correction
scheme gave object pose information of sufficient accuracy to obtain a model of relatively
good accuracy. Rapid object modelling is therefore achieved in a very convenient way by
simply moving an object in front a stereo setup in a totally unconstrained manner.



Figure 7: Positions of the left camera in the Duck sequence, as computed by PhotoMod-
eler.

7 Conclusion

In this paper, we addressed the problem of 3D registration of a rigid object moving in
front of two cameras, which is equivalent to the problem of camera pose estimation. We
used a calibrated stereoscopic vision setup to track the camera positions along sequences
of a moving rigid object. We proposed a robust 3D registration procedure that exploits the
rigidity of the scene to automatically filter out the reconstructed points originating from
false matches and errors in feature tracking. An error correction scheme was introduced,
which takes advantage of loops in the movement of the cameras to compensate for the
accumulated error. Through experimental results, we showed the validity of the obtained
projection matrices and that their accuracy was sufficient for tasks such as model building
or scene augmentation.
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