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Abstract

This paper describes a method for image rectification of a trinocular
setup. The rectification method used is an extension of a recent approach
based on the fundamental matrix to generate the correcting homographies in
the case of a stereo pair. The extended method uses the fact that the triplet
of images can be treated as two pairs and that homographies are projections
of the different images planes onto new planes. Rectification thus becomes
a matter of deciding which plane will be the common one and what trans-
formation or homography is to be applied to each image.
Keywords: Image rectification, homography, image triplet, epipolar geome-
try.
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List of Captions:

1. Rectification for a “horizontal” stereo pair.

2. Rectification for a “vertical” stereo pair.

3. Rectification principle for a triplet of images.

4. Original triplet of images : horizontal configuration.

5. Rectified triplet of images : horizontal configuration.

6. Original “L”-triplet (courtesy of C. Sun).

7. Results obtained by C. Sun approach (courtesy of C. Sun)

8. Results obtained by homography-based approach.

9. Original triplet of images of the second example : L configuration.

10. Rectified triplet of images of the second example : L configuration.

2



List of Symbols:

• pi: homogenous coordinates of an image point

• F : fundamental matrix 3× 3

• H: homography matrix 3× 3

• A: affine matrix 3× 3

• eij: epipole of camera i with respec to camera j

• J(X): Jacobian of matrix X

• σi(X): ith simgular value of matrix X
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1 Introduction
The need for epipolar rectification is justified by the simplification it provides to
classical machine vision algorithms such as multi-view matching and 3D recon-
struction. The objective of epipolar rectification is to create a simplified config-
uration where the set of epipolar lines is transformed into a set of lines that are
either vertical or horizontal. Image rectification is mainly used in dense stereo
matching where it produces an efficient configuration in which identifying cor-
responding points in both images becomes simply a scanning problem along the
x and y directions. It can also be used for image stabilization in image-based
navigation systems. It constitutes also a preprocessing step in the production of
stereoscopic imagery (e.g. anaglyph images). It can also facilitate image regis-
tration and image matching tasks as it somewhat normalizes the transformation
between the images.

Many methods exist and have been implemented to solve the rectification
problem for stereo and trinocular vision. Hartley worked on finding the recti-
fying transformation from the fundamental matrix [4]. Loop et al. developed a
method to find the rectifying homographies and added some constraints to reduce
the distortion introduced by rectification [6]. Zhou and Li [13] find two homogra-
phies in order to virtually rotate both cameras to a standard stereo camera setup.
Their approach is based on assumptions concerning the calibration parameters
and on criteria derived from physical constraints. These methods are applicable to
un-calibrated cameras and, in the case of two views, are close in theory to an al-
gorithm presented by Mallon and Whelan [8]. The method they proposed follows
Hartley’s in principle but has its own original distortion reduction procedure. This
approach is the one that is used in this paper.

In the case of three views, Ayache et al. [2] developed a technique based on
the use of perspective projection matrices. The configuration of the epipolar lines
of the rectified pairs results in constraints that provide the rectifying transforma-
tions. An et al. presented a technique to rectify a triangular triplet of images using
also the perspective projection matrices (PPM) [1]. This technique uses camera
calibration and is therefore not suitable for un-calibrated environments. Zhang et
al. proposed a method to obtain the rectification homographies using the funda-
mental matrices, minimizing the distortion by adjusting 6 free parameters [11].
This method uses a set of three constraints on the triplet of images which allow
the recovery of the three rectifying homographies in a closed form. Sun presents
three methods that compute the projection matrices for the three images also using
pair wise fundamental matrices [9]. The projection matrix of the reference image
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is a composition of 4 transformations; the other two are derived from the latter.
In all these cases, the algorithm is designed for three views and uses three views
constraints to achieve its goals.

The method presented here to solve the three view case is close to the one used
in [11, 9] but is based on the method presented in [8]. This latter method uses the
fundamental matrix in a similar way as in [4] but the novel aspect is the distortion
reduction. It is a method developed for stereo. We therefore mainly describe how
this 2-view algorithm can be adapted to the three view case in conjunction with
an intermediate plane transfer by homography.

The paper is organized as follows. The next section summarizes the rectifica-
tion procedure described in [8, 4]. In Section 3, the application to a vertical pair is
presented. Section 4 describes the rectification of triplets of images in both hori-
zontal and “L” configurations. Results are shown in Section 5 for different sets of
images. Section 6 is a conclusion.

2 Projective rectification from the fundamental ma-
trix

The algorithm presented in this paper to solve the trinocular case is an extension
of the two-view method defined by Mallon and Whelan [8]. The objective of the
authors was to obtain homographies that will simply be applied to each image
to obtain its rectified counterpart, thus solving the stereo case. The rectification
process, which somewhat follows Hartley’s blueprint in [4], is summarized in the
following subsections.

2.1 Homographies
A homography H is a plane-to-plane transformation that could be anything from
a simple rotation to a combination of skew, scale and rotation. It is often used
to describe the relationship between two different projections of the same object
onto two different destination planes.

Points p2 on an image plane are related to the points p1 in another image plane
by a homography H such that:

(p2x , p2y , 1)T ≡ H(p1x , p1y , 1)T (1)
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The equality in equation (1) is up to a scale due to the use of homogenous
coordinates.

2.2 Fundamental matrix
First, one has to recover the fundamental matrix F using the 8 point algorithm
mentioned in [12]. Eight or more matches are enough to compute the fundamental
matrix. The Projective Vision Toolkit (PVT [10]) developed by Whitehead and
Roth could be used to automatically find matches for a pair of images. In it latest
version, it uses the Lowe’s SIFT feature detector which provides large numbers of
points [7]. The normalized DLT algorithm [3] is used to estimate F . Note however
that one additional step occurs before the de-normalization : for the estimated
normalized matrix F̃ , its least singular value is forced to 0 to respect the rank 2
constraint.

2.3 Epipoles
At this stage, the epipoles e12 (in left image or image 1) and e21 (in right image
or image 2) are extracted from an SVD decomposition of F . They are respec-
tively given as right and left singular vectors of F associated with the null or least
singular value.

2.4 “Left” Homography H1

From the epipoles, one can compute the rectifying homography H1 to be applied
on the left image by forcing the corresponding epipole to infinity in the horizontal
direction i.e from e12 = (e12x , e12y , 1)T to (e12x , 0, 0)T in projective coordinates.
H1 is given as:

H1 =




1 0 0
−e12y/e12x 1 0
−1/e12x 0 1


 (2)

So that :

H1e12 = (e12x , 0, 0)T (3)
This is the first condition to obtain a rectified pair of images. This homography

implies that all the epipolar lines corresponding to matches in the right image will
all be horizontal and this is partially what is needed.
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2.5 “Right” Homography H2

Once H1 is found, an additional constraint on the problem mentioned in [8] is
used to solve for H2. As a matter of fact, the fundamental matrix of the origi-
nal setup being F , the resulting rectified fundamental matrix should equal to the
trivial matrix Fh. [5] mentions this property when introducing the trivial stereo
configurations i.e both cameras differ only by a translation along the x axis. In
such a configuration, both epipoles are projected at infinity in the x direction forc-
ing the epipolar lines to be horizontal ultimately resulting in the fact that a point in
one image has its correspondent on the horizontal line of same y coordinate in the
other image. Therefore, based on [5], the expression of Fh for such a configuration
is the following:

Fh =




0 0 0
0 0 −1
0 1 0


 (4)

Expressing the rectification in terms of the homographies H1 and H2 leads to
the mathematical constraint:

HT
2 FhH1 = αF (5)

with α a scale factor. We know Fh and have computed F and H1. We want to
solve for H2 and α with :

H2 =




1 0 0
h1 h2 h3

h4 h5 h6


 (6)

Equation (5) is transformed into a system of the type AX = 0 where X stands
for elements hi of the homography H2 in a column with α as its last element
. The system is then solved by using the SVD solution. The steps described so
far (epipoles extraction, computation of H1 and H2) produce satisfying rectifying
homographies with the restricting condition that original epipoles e12 and e21 do
not appear within the left and right images respectively as noted by [8]. The last
step of the method summarized in the present section is the distortion reduction
introduced by [8]. It is an additional stage that improves the visual appearance of
rectified images often severely distorted by the fore-mentioned process.
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2.6 Distortion reduction
In general, projective transformations tend to introduce distortions in the rectified
images such as skewness or aspect ratio deformations. The distortion reduction
step proposed in [8] is not mandatory but it makes the images look more natural.
Essentially, the final transformations to be applied to each image of the pair are
noted Ki = AiHi with i = 1,2. The additional improving transformations Ai are
of the affine form :

Ai =




ai
1 ai

2 ai
3

0 1 0
0 0 1


 (7)

It is noted that the Jacobian of the transformation Ki = AiHi at a point pi de-
scribes “the creation and loss of pixels as a result of the application of K” [8]. In a
perfectly orthogonal transformation, the non zero singular values of this Jacobian
will be equal to one (pixels keep the same size after transformation). Therefore,
reducing the distortion effect correspond to constraint the singular values to be as
close as possible to one, which translates as the following function to be mini-
mized:

f(a1, a2) =
n∑

i=1

(σ1(J(Ki,pi))− 1)2

+(σ2(J(Ki,pi))− 1)2 (8)

The values of a1 and a2 are found by simplex minimization. The points pi are here
contained in a grid over the image plane and σ1 and σ2 are the singular values
of the Jacobian J. Note that the value of a3 is left to the user for flexibility in
centering the final image along the x axis since it only implies an horizontal offset.

An example of image rectification for a horizontal stereo pair is displayed in
Fig.1(c). The original images are shown in Fig.1(a) and the rectified versions
with no distortion reduction in Fig.1(b). The visual improvement as well as the
horizontal epipolar lines are easily observable.

This method was chosen for its simplicity and for the distortion reduction it
imposes. Indeed, the visual distortions often introduced by other methods can
affect the effectiveness of the subsequent matching and registration steps. In the
following sections, we present a simple extension of this latter method that ulti-
mately leads us to the proposed solution to the trinocular case.
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(a) Original horizontal pair

(b) Rectified pair with no distortion reduction

(c) Rectified pair after distortion reduction

Figure 1: Rectification for a “horizontal” stereo pair.
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3 Rectification of a “vertical” pair
The process of rectifying a “vertical” pair of images (that is the cameras of the
stereo system have their centers located one above the other) is easily deduced
from [8]. The differences in each step of the rectification are only due to the
difference of configuration. For the vertical case, the ideal fundamental matrix Fv

-and homolog of the previously introduced Fh in (4)- is given by [5]:

Fv =




0 0 1
0 0 0
−1 0 0


 (9)

The modified rectification algorithm follows:

a. Recover the fundamental matrix F

b. Recover the epipoles e12 and e21 of the top and bottom images.

c. Recover the homography H1 corresponding to the top image. Applying this
transformation to the image sends the epipole e12 to infinity in the vertical
direction : from e12 = (e12x , e12y , 1)T to e12 = (0, e12y , 0)T in projective
space). Thus :

H1 =




1 −e12x/e12y 0
0 1 0
0 −1/e12y 1


 (10)

d. Using the same type of constraint as in the horizontal case (Section 2.5), we
obtain a linear system that is solved the same way using the same formulas
but with H1 and Fh replaced respectively by H1 of equation (10) and Fv.
This allows us to recover H2 which in this case is of the form :

H2 =




h1 h2 h3

0 1 0
h4 h5 h6


 (11)

e. The distortion reduction step is exactly the same except the transformations
are of the type Ai:
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Ai =




1 0 0
ai

1 ai
2 ai

3

0 0 1


 (12)

This reflects the fact that the distortion and centering steps will affect the
vertical coordinate and the user-defined value of a3 corresponds to a trans-
lation along the vertical axis of the rectified image.

This modified version of the rectification procedure ensures that, provided
epipoles not within each image, a point in one image will have its correspon-
dent lying on the vertical line - its associated epipolar line - of same x coordinate
in the other image. Both presented stereo rectification algorithms solve the trivial
horizontal and vertical case for two images; they also help to solve some trivial
trinocular cases when used suitably as shown in the next sections.

Fig.2 shows an example of a rectified vertical pair.

4 Rectification of 3 views
The concept of 3-view rectification using homographies is illustrated in Figure
3. The triplet is processed pair by pair therefore producing 4 homographies. The
images are denoted 1,2 and 3. For 1 and 2, the rectification without the distortion
reduction step gives us H1 and H2. Similarly, for images 2 and 3 the rectifica-
tion without distortion reduction gives us H ′

2 and H3. The rectification does not
include the distortion since we want to stay consistent on the type of images we
are working on : they are all affected by the same type of effects. The distortion
reduction will therefore be the last phase of this process.

We know that, by definition, a rectified configuration that sends all epipoles to
infinity (i.e. where all epipolar lines are parallel) is one where all the image planes
are coplanar. The solution we are seeking is then based on an attempt to find a
common plane on which lie all rectified images. Homographies are projective
linear transformations that can be chained in order to project an image plane over
a new plane. We therefore want to build a homography-based solution that relies
on composing the plane transformations that will bring all images of the triplet
onto a common plane as illustrated in Fig.3.
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(a) Original vertical pair (b) Rectified vertical pair

Figure 2: Rectification for a “vertical” stereo pair.
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Figure 3: Rectification principle for a triplet of images.

4.1 Horizontal triplets
The middle image 2 is common to the two pairs so we have H2 and H ′

2. Each
of the computed homographies ’sends’ the image plane 2 on two different planes
containing respectively the rectified image 1 i.e P12 and the rectified image 3 i.e
P23 (see Figure 3).

Our goal here is to find a way to transfer the plane P23 to P12; as a matter of
fact we want to find the homography h between these two planes. This is done as
follows:

• Image 2 is transferred to plane P12 with H2

• Image 2 is transferred to plane P23 with H ′
2

• Image 3 is transferred to plane P23 with H3

• h between P12 and P23 is therefore given by h = H2H
′−1
2 : this is the

“unification” mentioned earlier. Using the projection of the middle image
in two different planes to deduct the relationship between both involved
planes.
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• Image 3 can therefore be transferred to plane P12 by transiting through P23

using H ′
3 given by :

H ′
3 = hH3 = H2H

′
2
−1H3 (13)

These steps essentially evaluate the homography H ′
3 that sends the rectified

version of image 3 to the plane containing the already rectified versions on image
1 and 2 by using the redundant data provided by the middle image. Finally, dis-
tortion reduction for the horizontal configuration is applied to each homography
H1, H2 and H ′

3 to insure that the y coordinates are left untouched.

4.2 “L-triplets”
The case of ’L’-shaped triplets is a combination of a vertical pair and a horizontal
pair. All steps in the horizontal triplet procedure are repeated except for what
follows:

• The pair 1, 2 is rectified using the vertical pair approach without the distor-
tion reduction procedure (Section 3).

• The distortion rectification step uses the vertical distortion reduction ap-
proach for the rectified images 1 and 2. For image 3, the distortion reduction
is also applied with the vertical approach described in section 2.6 to level
the images 2 and 3 along the vertical axis.

5 Results and Observations for image triplets
For triplets of images, we have an example of a horizontal rectified triplet in Fig.4
with the original images in Fig.5. A few epipolar lines are drawn across the 3
images to show the consistency in the rectification process.

For the sake of comparison, the first example of “L”-shaped triplet is the same
as the one processed in [9]. The original triplet is shown in Fig.6. The result
obtained in [9] are given in Fig.7. The result obtained using the homography-
based approach presented in this paper is given Fig.8. The desired epipolar lines
are obtained in both cases. The effect of the distortion reduction is however well
noticeable when comparing both results the set in Fig.8 looking less distorted and
closer to the original images than the set in Fig.7.
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Figure 4: Original triplet of images : horizontal configuration.

Figure 5: Rectified triplet of images : horizontal configuration.

Figure 6: Original “L”-triplet (courtesy of C. Sun [9])
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Figure 7: Results obtained by C. Sun approach (courtesy of C. Sun [9])

Figure 8: Results obtained by homography-based approach
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Figure 9: Original triplet of images of the second example : L configuration

Fig.9 and Fig.10 show another example of rectified “L”-shaped triplet of im-
ages.

5.1 Observations
An important observation mentioned earlier and in [8] is the fact that the recti-
fication is ineffective for images where the epipoles appear in the image plane;
suitable images are therefore to be used. This limitation concerning the capture
process is however not detrimental to stereo systems that usually use a quasi par-
allel setup for the image planes.

Another observation, that is rather obvious, is that a pair or triplet of images
has to be taken close to the ideal configuration before using the corresponding
rectification algorithm: i.e. it is impossible to rectify a vertical stereo pair of
images with the horizontal stereo rectification approach.

Finally an important source of error is clearly the fundamental matrix approx-
imation. For example note that well spread matches over the images help improve
radically the fundamental matrix which otherwise ends up being very localized
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Figure 10: Rectified triplet of images of the second example : L configuration

and valid only for a few points. It is therefore a very important step that should be
handled with care and carried out following one of the many existing techniques.
For a set of algorithms, we suggest the reader to refer to [12].

6 Conclusion
This paper presented a homography-based approach for the rectification of image
triplets. The method has the advantage of being suitable for uncalibrated environ-
ments as well as producing rectifying homographies with low distortion effects
using solely the fundamental matrix. The approach used a homography composi-
tion in order to rectify all images by projecting them on a common plane with the
constraint of epipoles at infinity in the destination image plane. This proved to be
a simple operation to carry out once the pair-wise rectifications were completed.
The cases of horizontal triplets and “L”-shaped triplets were both treated.

Results were obtained on different sets of images and these were further visu-
ally improved when the proper distortion reduction was applied as the final step.
A few observations were made as far as the performance of the basic stereo algo-
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rithm is concerned and the influence of matches and the fundamental matrix on
the overall process.
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