
Real-Time Virtual Viewpoint Generation on the GPU for Scene Navigation

Shanat Kolhatkar, Robert Laganière
School of Information Technology and Engineering (SITE),

University of Ottawa
800 King Edward, P.O. Box 450, Stn A

Ottawa, Ontario, Canada, K1N 6N5
shanat.kolhatkar@gmail.com, laganier@site.uottawa.ca

Abstract

In this paper we present a method for achieving real-
time view interpolation in a virtual navigation application
that uses a collection of pre-captured panoramic views as
a representation of the environment. In this context, view-
point interpolation is essential to achieve smooth and real-
istic viewpoint transition while the user is moving from one
panorama to another. In this proposed approach, view in-
terpolation is achieved by first computing the optical flow
field between a pair of adjacent panoramas. This flow field
can then be used by the view morphing algorithm to gener-
ate, on-the-fly, virtual viewpoints in-between existing views.
Realistic interpolation is obtained by taking into account
both scene geometry and color information. To achieve
real-time viewpoint interpolation, a GPU implementation
of the viewpoint interpolation algorithm has been devel-
oped. We ran our algorithm on multiple interior and ex-
terior scenes and we were able to produce smooth and real-
istic viewpoint transitions by generating virtual views at a
rate of more than 300 panoramas per second.

1. Introduction

There has been a lot of interest from the computer graph-
ics and the computer vision fields towards image-based
modeling and rendering methods [2]. Virtual navigation
is one important application of such research, including vir-
tual tours of tourist places, museums, as well as real-estate
virtual visits. Any kind of application where achieving pho-
torealism is a goal can actually benefit from advances in this
field.

Recent virtual navigation applications use collections of
images in order to allow users to remotely explore a given
existing environment. The Google Street View system is a
good example of a large-scale image-based model of city
landscape. The system by Furukawa et al. [14] is another

example of virtual navigation system; this one focusing on
virtual tours of indoor spaces. In order to improve the qual-
ity of the virtual exploration experience in an image-based
model, several aspects could be improved. Exploration can
be made more immersive by improving the overall qual-
ity of the images shown to the user. Using very large dis-
play (e.g. CAVE) or head-mounted display is a solution of
choice when these are available. The recourse to panoramic
imagery rather than regular limited field-of-view images
also greatly contribute to the quality of the experience. Vir-
tual exploration also implies the possibility of moving in-
side the environment. A multitude of points of view must
then be available; too often these are limited to a linear path
that the user is forced to follow during his exploration of
the site. In order to visit the scene, users have to hop from
one panorama to another through a series of mouse clicks.
Such saccadic motion is unavoidable when the panoramas
are far from each other and this greatly reduces the quality
of the immersion and can make the user loose his sense of
direction in the environment. To alleviate both problems,
the user should be able to see the motion that took place to
transition between viewpoints. This is a difficult problem
since the relative position of the panoramas might not be
known and no depth or geometrical information about the
scene is generally available. Because of this, it is difficult
to create realistic transitions between pairs of views, espe-
cially since the movement of the scene objects depends on
their relative distance to the point of view.

Several methods have been developed to solve the prob-
lem of smooth and realistic viewpoint transition. These
are based on video transitions, interpolated views and/or
3D modeling. In the simplest case, videos from one view-
point to another are taken during the capture of the scene.
This allows for transitions of good quality, but brings many
other problems, such as the space required to store such
videos, the limitation imposed on the ways a user can tran-
sit from one location to another and finally the necessity to
re-acquire every possible transitions from a given view to



a newly added view. Interpolation between pairs of views
can be done using different schemes. Using simple linear
interpolation of pixel intensities to generate view transitions
is a straightforward solution but to produce realistic transi-
tions, more sophisticated approaches are required. Finally,
3D modeling approach aims at fully reconstructing the envi-
ronment, either manually or automatically, such that view-
point interpolation becomes a 3D scene re-projection task.
Creating dense 3D models of natural scenes is however very
costly; consequently this is not a practical approach.

In this paper we focus on the second type of approach
to solving the transition problem, i.e. using view morphing
to obtain realistic virtual views without explicit 3D recon-
struction. In addition, an essential requirement of our vir-
tual navigation application was to come up with a fast view
interpolation process such that views can be interpolated at
frame rate. Users will then be able to realistically transit
from one panorama to any adjacent one. 360∘ panoramas
are used in this application in order to give to the user a
higher quality immersive experience.

The scene is assumed to be static (i.e. does not contain
moving objects) and the pre-captured panoramas are taken
at a relatively short distance from each other. No 3D infor-
mation about the scene or the motion is available.

Section 2 presents the previous work relevant to our
method. Section 3 introduces the optical flow calculation
between a pair of images and Section 4 discusses the exten-
sion to cubic panoramas. Section 5 describes the view in-
terpolation algorithm. Section 6 provides some implemen-
tation details required to achieve real-time calculation of the
transitions. Section 7 presents some results and Section 8 is
a conclusion.

2. Related Work

2.1. View Morphing and View Interpolation

There are a few different approaches to texture morphing
that have been developed over the last few years amongst
which are [5] and [7]. The first paper depends heavily on
user input, and only works for textures that are composed
of repeated similar patterns (for example cells of the inte-
rior of a bee hive). The second paper represents, to the au-
thors’ knowledge, the state of the art in the field of texture
morphing, and combines linear color interpolation and mo-
tion compensation to generate the composite texture. This
paper is at the basis of our interpolation algorithm. It has
the advantages of not depending much on user input and
of working with a wide variety of textures while still pro-
ducing high quality results. However, this method needs to
have features of similar sizes in both origin and target tex-
tures. Also, this method cannot morph smoothly between
highly different textures.

One of the base paper in the field of view interpolation
is [10]. This paper focuses on creating the transition views
to move between pairs of images, which are not necessarily
parallel. To create the transition images, the method pre-
warps two input images to fit them on parallel planes. It then
applies a morphing procedure to obtain an intermediate im-
age and postwarps that intermediate image to obtain the re-
sulting transition image. Both prewarping and postwarping
transformations are done using projective transformations.
A downpoint of this approach is that it cannot handle com-
plex scenes. It was designed to handle pairs of images of
single objects taken in different poses. This makes this ap-
proach difficult to generalize to arbitrary viewpoints. Other
papers regarding view morphing also attack the subject of
view interpolation, such as [4], [13]. Both approaches
triangulate the images using a certain set of points in the
images, which can be chosen manually or automatically us-
ing for example [12]. Once the triangulation is done, the
triangles of the images are warped and the colors are in-
terpolated to get a transition image. Another paper related
to the topic of view interpolation is [11], which uses a ray-
tracing approach to synthesize new views from an input pair
of cubic panoramas. A downside of this approach is that
it is time consuming and the resulting interpolated images
present many artifacts.

A good example of 3D reconstruction can be seen in [9].
Their approach aims at reconstructing the scene in 3D us-
ing a high number of images. The approach however works
only on simple scenes. A good advantage of this approach
is that it allows the user to freely navigate the scene by al-
lowing 3D movement instead of being limited to a unique
path as in the other approaches.

In our approach, fluid view transitions are generated
on the fly for the whole panorama. The addition of new
panoramas requires only the computation of new optical
flow fields. The transition panoramas at intermediate view-
points are then automatically generated which allows the
user to continuously look around the scene while moving.

2.2. Optical Flow

Many approaches to evaluate the optical flow between
pairs of images have been proposed. Some classic methods
are [3], [6], [1]. These methods are based on match-
ing the pixel neighborhoods of the origin image with dif-
ferent candidate neighborhoods of the target image in order
to determine the best possible match. Another more recent
approach to calculating the optical flow is [8]. It focuses
on calculating a goodness measure for each of the pixels,
which relies on how similar the displaced origin pixels are
to the ones of the target image. This algorithm requires the
user to define an interval, and all possible displacements
will be tested to find the best solution. No optical flow meth-



ods gives perfect results, partly due to the fact that there
are no infallible way to compare neighborhoods in a truly
viewpoint invariant way. The neighborhood of a same pixel
changes depending on how far it is from the view point, and
this makes predicting the deformation of the neighborhood
very difficult.

3. Optical Flow Estimation

As we mentioned before, our virtual view point gener-
ation system uses the optical flow field between reference
images as input to the interpolation process. In this section
we will briefly describe the optical flow algorithm that we
use in our approach.

3.1. Basic Algorithm Description

Our view interpolation approach is based on the compu-
tation of the optical flow field between the reference images.
We use the method presented in [8] and for which an im-
plementation is publicly available1. The user needs to input
an interval for the possible values of the displacement vec-
tor in x and y axis, and all possible combinations of these
values will be tested by the algorithm in order to find the
best displacement vector for each pixel. For each of these
shifts, the algorithm computes a goodness fonction for each
pixel of the image. The goodness function is calculated as
the sum of two one-dimensional functions: one that is cal-
culated on the line parallel to the displacement vector, and
the other on the line orthogonal to it. The goodness value
for a pixel p = (x, y) can be interpreted as the number of
pixels connected to p′ = (x + dx, y + dy) that have an in-
tensity similar to the ones in the target image, with (dx, dy)
being the candidate displacement. Once the goodness func-
tion has been calculated, the best match is selected to decide
which displacement applies best to p. To achieve a contrast-
invariant matching, the goodness function locally compares
pixels according to the phase difference between the two
images: the closest the phase difference is to 0, the more
similar the pixels are. The phase difference information is
obtained by using multiple Gabor filters of different scales,
spatial frequencies and orientations on both images, which
are then combined and averaged to get the final comparison
value. The measure is used for local matching because, ac-
cording to the authors of the methods, it helps detect depth
discontinuities more accurately. For more detailed informa-
tion on the goodness function evaluation and the contrast-
invariant matching measure, see [8].

We selected this algorithm because it generally gives
good results. It handles well occlusions, and it uses a match-
ing measure that is contrast-invariant. This is an important

1http://www.cs.umd.edu/ ogale/download/code.html

Figure 1. Example of a cubic panoramas, dis-
played in an unfolded form

feature for outdoors scenes where the lighting conditions
of the scene changes between the different views. Another
point that influenced our decision is the fact that this algo-
rithm can identify slanted surfaces and consistently com-
pute the corresponding optical flow. This is a particularly
interesting feature in the case of urban scenes where planar
building facades are frequently observed.

4. Estimating the optical flow on panoramic
images

Our approach would work on standard imagery, but to
enhance the sense of immersion of the user and the realism
of the scene rendering, we have chosen to use 360∘ panora-
mas. Different representations are available to manipulate
the panoramas: cubic, spherical or cylindrical panoramas.
In cubic panoramas (see Figure 1), all 6 faces are identical;
each face of the cubic panorama is a regular limited field
of view image. Therefore, standard optical flow algorithm
designed to work with such images will be directly applica-
ble to these panoramas. Also, cylindrical and spherical rep-
resentations tend to introduce non-linear deformations that
complicate the comparison of panoramas which is not the
case with the planar geometry of the cubic representation.

4.1. Extended cubic representation

Classical optical flow field estimation methods have been
designed to work on regular planar limited field-of-view im-
ages. The main advantage of the cubic representation is
that it allows to decompose the global 360∘ panorama into
6 regular limited field-of-view cameras. However the in-
dependent computation of the optical flow on the 6 cube
faces would cause annoying artifacts at the boundary of
each face. We have solved this problem by simply extend-
ing each face such that it becomes possible to correctly es-



Figure 2. Example of our extended cubic
panoramas, displayed in an unfolded form.

timate the displacement of a visual point moving from one
face to another. One such extended cube is shown in Figure
2 where it can be seen that some elements on one face are
repeated on adjacent faces. Faces are extended such that
image points close to the cube edges that would change
face in a normal cubic representation, will end up inside
the replicated area of the extended cube. This allows us to
ensure that flow calculation can be done on each face in-
dependently, and still correctly estimate the motion of the
pixels at each face boundaries. Note that, when proceed-
ing this way, it happens that some displacement vectors are
computed twice (Figure 4), because they appear on each
extended portion of two adjacent faces (Figure 3). To en-
sure consistency of the results across the faces, we need to
check which of these two solutions gives the best result by
comparing the color neighborhood in both images accord-
ing to the L2-norm. The one with the greatest distance is
then replaced by the other one.

4.2. Smoothing the flow vectors

Since our objective is to obtain realistic viewpoint tran-
sition, we observed that it is generally beneficial to smooth
the optical flow field before using it for view interpolation.
This additional step removes potential outliers that could
introduce annoying visual artefact in the interpolated view-
points.

As said earlier, we assume that no scene objects are mov-
ing in the scene and that there is only few abrupt depth
discontinuities. It follows then that for each flow vector
in the image, its neighbors should have a similar direction
and orientation. Based on this observation, the smooth-
ing step works as follows: for each pixel o = (ox, oy)
in the image I1, we get its n × n color neighborhood N
and its m × m displacement vectors neighborhood F . For
each of these possible displacement value d in F , we cal-

Figure 3. This figure shows an interpo-
lated frame computed from a normal cubic
panorama (top) and from an extended cubic
panorama (bottom) at the same view posi-
tion. Both are unfolded view of 256x256 face
images. Some mistakes can be seen in the
interpolation from normal cubes that are not
present in the extended cubic representation
(e.g. the fluorescent on the ceilling).

culate the displaced coordinate o′ = (ox + dx, oy + dy).
We then get the n × n color neighborhood N ′ of o′ in I2.
We then compare N and N ′ using the L2 norm. If N ′

gives us the best possible match for pixel o in I2, we se-
lect its corresponding displacement vector d as the actual
displacement vector for o. To take into account a possi-
ble different displacement for o compared to p, we check
the candidate displacement d with a certain offset. So in-
stead of having o′ = (ox + dx, oy + dy) we actually use
o′ = (ox + dx + offsetx, oy + dy + offsety), where
offsetx ranges from [i, j] and offsety ranges from [k, l],
where i ≤ j, k ≤ l, i, k ≤ 0, j, l ≥ 0. We summarized
this step with the following pseudocode, using the same no-



Figure 4. This figure illustrates the geometry
of the extended cubic representation drawn
in 2D. A’ is the projection of A on a differ-
ent faces, and the red and blue vectors are
their respective flow vectors on each face. In
this case, only the best displacement vector
is kept. The green vector is one that does
not have a corresponding displacement vec-
tor on the other face and does not require ad-
ditional processing.

tations as previously:

Get N, the nxn color neighborhood of o in I1
forall p in N do

Find corresponding displacement d of p
for offsetx = i to j do

for offsety = k to l do
Get displaced pixel p’ in I2, p’ =
(ox + dx + offsetx, oy + dy + offsety)
Get N’, nxn color neighborhood of p’ in I2
comp = Compare N and N’ using the L2
norm
if comp is a better match than current
value then

use the current displacement value as
the displacement for the current pixel

end
end

end
end

The goal of this step is to smooth the flow field, in or-
der to remove ”rogue” vectors that have been mismatched
or/and are oriented in a completely different direction than
their neighbors. These sparse outliers in the displacement
field can cause very annoying effects. This is illustrated in
Figure 5.

Figure 5. The images are selected parts of
a two interpolated images with interpolation
coefficient 0.5. On the top interpolated with-
out smoothing and on the bottom we applied
the smoothing step. We can see that without
smoothing the scene looks blurry and has
many artefacts, whereas it keeps its sharp-
ness and shape when using the smoothing
step.

5. View Interpolation

Our view interpolation is based on the algorithm devel-
oped in [7]. This algorithm was designed to work on single
planar textures in order to create new textures by combining
already existing ones taken from a given database. Using
this approach, textures can be morphed by moving along a
defined visual path.

Our algorithm is designed to work on cubic panoramas,
on a per face basis. We are using real-life images, that are
taken close to each other, in a given city/environment. The
first step of our algorithm is to compute the dense flow field
between both images using the method described previ-
ously. Once this dense correspondence between all pixels in
both panoramas has been established, we can proceed to in-
terpolation at intermediate viewpoints. The straightforward
approach would be to use linear blending. The problems
with this type of blending, is that it creates a lot of artifacts,
and the quality of the results can be unpredictable and un-
realistic, especially because this approach doesn’t take into
account the geometry of the scene. We alleviate these short-
comings by including the dense displacement maps into our
morphing algorithm. Instead of only interpolating the col-
ors of the scenes, we also interpolate the displacement vec-



tors. The morphing between pairs of images uses the fol-
lowing equation:

It(x, y) = (1− c)I0(x0, y0) + cI1(x1, y1) (1)

where It(x, y) is the pixel of coordinate (x, y) in the tran-
sition image, I0(x0, y0) and I1(x1, y1) are the pixels of
image I0 and I1 respectively. We also define (x0, y0) =
(x+ dx, y + dy) and (x0, y0) = (x+ d′x, y + d′y): the dis-
placed coordinates for pixel (x, y) in I0 and I1 respectively.
We set d = (dx, dy) = (wW01(x, y)), d′ = (d′x, d′y) =
((1 − w)W10(x, y)), with W01(x, y) and W10(x, y) being
the displacement vector from images I0 to I1 and I1 to I0 re-
spectively for pixel (x, y). W01(x, y) and W10(x, y) are ob-
tained from the optical flow calculation with W01(x, y) =
−W10(x, y). Finally c and w are the weights applied to
the color and displacement respectively, and depend on our
position between both images. In our experiments, we set
w = c, because we want the color and the geometry of the
scene to be interpolated in a similar fashion in order to give
the impression of movement between the views.

6. Real-Time Implementation

Real-time navigation requires the preprocessing of the
optical flow, data buffering, multi-threading and the imple-
mentation of the interpolation algorithm on the GPU. We
show in this section how these are implemented to achieve
our goal.

The computation of the optical flow is the most time
consuming step but as it can be precalculated, its estima-
tion time does not affect the rendering performance. Dur-
ing navigation, the reference images and the corresponding
computed optical flow field are loaded into memory. Since
we have many viewpoints for each scene, we will need to
access the hard drive hundreds of times when navigating the
scene in order to retrieve the different panoramas and dis-
placement fields. These operations will greatly slow down
the application because accessing the hard drive is one of
the most time consuming operation to be undertaken on a
computer. We therefore need to define an efficient strat-
egy to retrieve that data and thus minimizing this loss of
time. To do so, we have decided to buffer the required
data that will be the most likely to be accessed within the
next few steps of our navigation. If we are currently view-
ing panorama Ci, then we are going to load the n closest
panoramas to Ci using a breath first search: that is we will
first get the neighbors that would require one hop to get to
from Ci, and if our buffer size permits, we load the ones
requiring two then three steps and so on until our buffer is
full. As soon as the panorama viewed changes to Cj , we
will need to check which panoramas are now too far from
Cj , and which ones are now closer and need to be loaded, so

that we release them and load them to memory respectively.
The same process applies to the displacement fields.

For the buffering of the necessary data to be efficient and
useful, we need the application to be multi-threaded. We
use one thread to handle the graphics calls (in our architec-
ture, the OpenGL calls), and another one to load the data
from the hard drive, and finally the last thread, which is ac-
tually ran on the GPU, to calculate the interpolated images.
This scheme allows us to constantly have a thread in the
background checking for the necessary data and loading it,
without the user noticing any downtime.

The GPU implementation is the last part of our process-
ing chain. Since we have already precalculated the flow,
the interpolation of each pixel value is independent from
the rest of the image which makes it a perfect candidate
for parallel implementation on the GPU. The GPUs on the
other hand are much faster than CPUs and are designed to
handle intensive graphics calculations, and allows us to do
these calculations while the CPU is handling other kinds of
operations (graphics calls and hard drive calls in our case).
In addition to the panoramas and the displacement fields
needed by the interpolation, we also need to pass the opti-
cal flow window boundaries that we used in the optical flow
calculation algorithm as well as the texture sizes in order
to be able to calculate the origin and target pixel coordi-
nates of each of the interpolated image pixels directly on
the GPU accurately. We describe the GPU code in the fol-
lowing pseudo-code, inspired from GLSL code:

uniform sampler2D: OriTex, TarTex, FFX, FFY;
uniform floats: fDispIC, fColorIC, fDispLgthX,
fDispLgthY, fTexSz;
TEXCOORD: pixCoord
vec2 iP ixCoord = pixCoord ∗ fTextureSize;
vec2 offset = vec2(0.0f, 0.0f);
offsetx =(texture2D(FFX, pixCoord)-0.5);
offsetx *= fDispLgthX;
offsety =(texture2D(FFY, pixCoord)-0.5);
offsety *= fDisplacementIntervalLengthY;
vec2 texcoordOrigin =
(iP ixCoord− fDispIC ∗ offset)/fTexSz;
vec2 texcoordTarget =
(iP ixCoord+(1.0f−fDispIC)∗offset)/fTexSz;
//Interpolate the colors
glF ragColor = (1.0f − fColorIC) ∗
texture2D(OriTex, texcoordOrigin) +
fColorIC ∗ texture2D(TarTex, texcoordTarget);

7. Results

We captured our scenes using a Ladybug camera, which
uses 6 cameras of resolution 1024x768 to create panoramic
images in a single shot (5 on the sides, and 1 at the top).



We mounted the Ladybug camera on an electric scooter
equipped with a computer and a GPS device. The images
captured from the Ladybug are saved and converted to a cu-
bic texture format. We are using extended cube faces of size
320x320 pixels each, while the normal cubes have faces of
size 256x256.

The optical flow calculation and correction took up to an
hour on a 320x320 image on an Athlon 64 X2 6000+/3GHz.
We ran the optical flow calculation with an interval for both
x and y of [-40; 40] and we set the size of all the neigh-
borhoods in the correction pass to 11. The time needed to
do these calculations is not constraining because these are
done during a preprocessing stage.

To evaluate the computational load of the interpolation
process, we ran another 2 rounds of calculations on the
same set of panoramas of resolution 320x320, one using
only the CPU and the other using our GPU implementa-
tion. To achieve a smooth transition between images, we
need to calculate at least 20 interpolated frames between
each pair of images. On the CPU, we created 20 transition
images in 3 seconds. With our GPU based interpolation
scheme, we could generate up to 1000 images in 3 seconds,
with identical quality. Our GPU implementation only re-
quires a graphics card supporting the shader model 1.0 and
higher. Since the arrival of Windows Vista, most computers
now come with an on-board graphics chipset that supports
shader programming which makes this approach is acces-
sible to a wide range of computers. We ran our tests on
a Pentium M 1.7Ghz with a Radeon Mobility X700; more
recent computer will perform even better.

It is difficult from only the origin and target image to as-
sess the accuracy of the generated intermediate, especially
regarding the position of the objects. In order to evaluate
the quality of the interpolated images, we ran the following
test: we captured a sequence of panoramas and then we cal-
culated the flow between the odd panoramas only, ignoring
the even panoramas, these ones being used for comparison
purposes. We then evaluated the displacement field and in-
terpolated between each one of them using our scheme. To
compare our interpolated panoramas with the stored panora-
mas, we assumed that all our panoramas are at equal dis-
tance from each other (our scooter was moving at constant
speed). Using this assumption, we tested few the interpo-
lation weights around c = 0.5 and w = 0.5 and kept the
value giving the best result to interpolate between In and
In+2. Comparing the two gives a good estimate of the qual-
ity of the interpolation scheme. The results for one of our
sequence are shown in Figure 6. It can be seen that the
quality of the interpolated image’s geometry is very similar
to the corresponding reference panorama with few artifacts
visible. One important point is that since this interpolation
is built for real-time navigation and the user will not be stop-
ping at an interpolation image, so the smallest of artifacts

will go unnoticed. Obviously, improved optical flow algo-
rithms would enhance the quality of these results.

In Figure 6, we show the interpolated images with the
interpolation coefficient that best correspond to the real
(ground truth) panorama captured at interpolation location.
In Figure 7, we compare the interpolated extended cube
panoramas with the ground truth image from the same se-
quence as Figure 6. We compare the images pixel by pixel
and set to black all pixels that are similar to the reference
panorama. For each of the images, we get a root mean
square of 22.61, 21.49, 17.55, 14.02, 14.05 when compar-
ing the ground truth image with: the origin image; the tar-
get image; the linearly interpolated image; the interpolated
image using uncorrected flow; and finally the interpolated
image using the smoothed flow. These results show that
our interpolated images are much similar to the actual im-
age that the linearly interpolated image. The interpolated
images using the uncorrected flow and the smoothed flow
are very close to each other, even though the smoothed ver-
sion might give images with slightly more artefacts, visu-
ally, they are much less noticeable than the ones we have
in the uncorrected version. And the gain of the images ob-
tained with the smoothed field becomes much more obvious
in dynamic cases than on static images, which is what we
aimed for.

8. Conclusion and Future Work

In this paper, we have presented a new way of interpolat-
ing between pairs of panoramas in real-time using the GPU,
which allows us to navigate inside a scene and achieve a
high degree of realism. Our main contribution concern the
interpolation of intermediate viewpoints of a scene in real-
time using computed optical flow field. Except for a few ar-
tifacts, our results are of good quality, as long as the panora-
mas were taken at reasonable distances from each other.

Some possible future works would be to improve the
quality of the flow field and make it faster to compute. An-
other enhancement of great interest would be the ability to
achieve real-time navigation not only on a selected path, but
in the whole space where the view have been taken. If this
was achieved, the sense of immersion of the user would be
improved and this one would be able to freely move inside
the scene.

References

[1] J.-Y. Bouguet. Pyramidal implementation of the lucas
kanade feature tracker. 2002.

[2] S. K. H-Y Shum. A review of image-based rendering tech-
niques. 4067:2–13, June 2000.

[3] B. K. Horn and B. G. Schunck. Determining optical flow.
artificial intelligence. 17:185–203, 1981.



Figure 6. Going from the top to bottom image,
we have: the origin image; the linearly inter-
polated image; the uncorrected flow interpo-
lated image; the interpolated image using a
smoothed flow; the real image captured at
the interpolated location (ground truth); and
the destination image. All interpolation uses
the best matching parameter c = 0.45.

[4] M. Lhuilliier and L. Quan. Image interpolation by joint view
triangulation. 2, 1999.

[5] Z. Liu, C. Liu, H.-Y. Shum, and Y. Yu. Pattern-based texture
metamorphosis. 0:184–191, 2002.

[6] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. 17:674–679,
1981.

[7] W. Matusik, M. Zwicker, and F. Durant. Texture design us-
ing a simplicial complex of morphable textures. 4:124–125,
2005.

[8] A. S. Ogale and Y. Aloimonos. A roadmap to the integration
of early visual modules. 72:9–25, April 2007.

[9] S. M. Seitz. Toward interactive scene walkthroughs from
images. 1998.

[10] S. M. Seitz and C. R. Dyer. View morphing. 1996.

Figure 7. Going from top to bottom image,
we have the comparison images of the real
panorama captured at interpolation location
with: the origin image; the linearly interpo-
lated image; the interpolated image using un-
corrected flow; the interpolated image using
the smoothed flow; and finally with the tar-
get image. All interpolated images use the
best matching parameter c = 0.45. This is the
same sequence as the one in Figure 6

[11] F. Shi, R. Laganiere, E. Dubois, and F. Labrosse. On the
use of ray-tracing for viewpoint interpolation in panoramic
imagery. 2009.

[12] J. Shi and C. Tomasi. Good features to track. 1994.
[13] X. Sun and E. Dubois. View morphing and interpolation

through triangulation. 2005.
[14] S. M. S. Yasutaka Furukawa, Brian Curless and R. Szeliski.

Reconstructing building interiors from images. 2009.


