
Noname manuscript No.
(will be inserted by the editor)

Interactive Scene Navigation using the GPU

Shanat Kolhatkar ⋅ Robert Laganière

Received: date / Accepted: date

Abstract In this paper we present a component of the

NAVIRE Viewer, which is an application to allow a user

to virtually navigate in a remote scene in real-time from

a collection of pre-captured panoramic views. The work

presented in this paper concerns viewpoint interpola-

tion which is essential to achieve smooth and realistic

viewpoint transition while the user is moving from one

panorama to another. Our viewer achieves real-time in-

terpolation between panoramas by using a precalculate

flow field between a pair of images, and by applying a

view morphing algorithm to generate virtual viewpoints

in-between existing views. A GPU implementation of

the viewpoint interpolation algorithm has been devel-

opped allowing to generate virtual viewpoints at a rate

of up to 300 panoramas per seconds.

Keywords View Interpolation ⋅ View Morphing ⋅
Image-Based navigation ⋅ Optical Flow

1 Introduction

This work was developped within the scope of the NAVIRE

project (virtual NAVigation in Image-based represen-

tations of Real world Environment). The objective is

to achieve real-time navigation in image-based rendi-

tions of real environments. The project covers all as-

pects of the image-based environment representation

and navigation problem. There are multiple aspects to

This work is supported by the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) under the NAVIRE
Strategic Project Grant.

Shanat Kolhatkar
E-mail: shanat.kolhatkar@gmail.com

Robert Laganière
laganier@site.uottawa.ca

this project such as the acquisition and storage of high

quality panoramas, the estimation of the pose between

panoramas, the interpolation of views and the render-

ing and navigation tools to name a few. Our goal is

to provide the user with an intuitive software to nav-

igate any given environment in real-time, and provide

the highest degree of realism and immersion possible.

Image-based modeling and rendering methods [2]

has attracted a lot of attention from both the com-

puter vision and the computer graphics communities,

and in recent years, we have seen the appearance of ap-

plications using collections of images in order to allow

users to remotely explore a given existing environment.

Such systems include the Google Street View system for

city landsapes and the Furukawa et al. [13] for indoor

spaces.

A multitude of improvements can be added to these

applications, aimed especially at enhancing the quality

of the immersive experience. One can, for instance, im-

prove the quality of the viewing conditions by increas-

ing the quality of the images by using very large dis-

play (e.g. CAVE) or head mounted device if available.

In most image-based navigation applications, the move-

ment of the user is limited to a linear path. This could

be improved by allowing the user to move freely inside

of the environment; this would require the availability

of a multitude of points of view distributed over the

environment. Also, when virtually visiting a scene, the

user has to hop from one panorama to another; these

unnatural saccadic displacements often confuse the user

who may lose his orientation. This could be alleviated

by generating realistic transitions between panoramas

to let the user see the path taken. However this is a dif-

ficult task because most of the time the 3D geometry

of the scene is not known and the movement generated



2

between images depends on the distance between the

view points and scene elements.

In this paper we interpolate views between 360∘

panoramic images to obtain realistic virtual views and

use an optical flow algorithm to produce realistic view

morphing during the transitions. An important feature

of navigation softwares is interactivity, and thus we

have designed our algorithm to achieve the view in-

terpolation process at frame rate. Our method allows

users to realistically transit from one panorama to any

adjacent one. The scene is assumed to be static (i.e.

does not contain moving objects) and the pre-captured

panoramas are taken at a relatively short distance from

each other. No 3D information about the scene or the

motion is used.

Section 2 presents the previous work relevant to our

method. Section 3 presents an overview of the method

used to achieve the interpolation of view as well as the

necessary elements to achieve real-time navigation. Sec-

tion 4 presents some results and Section 5 is a conclu-

sion.

2 Related Work

There are a few different approaches to texture morph-

ing that have been developed over the last few years.

The work in [9] depends heavily on user input, and only

works for textures that are composed of repeated sim-

ilar patterns (for example cells of the interior of a bee

hive). The method presented in [3] represents, to the

authors’ knowledge, the state of the art in the field of

texture morphing, and combines linear color interpola-

tion and motion compensation to generate the compos-

ite texture. This paper is at the basis of our interpola-

tion algorithm. It has the advantages of not depending

much on user input and of working with a wide variety

of textures while still producing high quality results.

However, this method needs to have features of simi-

lar sizes in both origin and target textures. Also, this

method cannot morph smoothly between highly differ-

ent textures.

One of the fundamental paper in the field of view

interpolation is [5]. This paper focuses on creating the

transition views to move between pairs of images, which

are not necessarily parallel. To create the transition im-

ages, the method prewarps two input images to fit them

on parallel planes. It then applies a morphing proce-

dure to obtain an intermediate image and postwarps

that intermediate image to obtain the resulting tran-

sition image. Both prewarping and postwarping trans-

formations are done using projective transformations.

A downpoint of this approach is that it cannot han-

dle complex scenes. It was designed to handle pairs of

images of single objects taken in different poses. This

makes this approach difficult to generalize to arbitrary

viewpoints. Other papers regarding view morphing also

attack the subject of view interpolation, such as [6], [8].

Both approaches triangulate the images using a certain

set of points in the images, which can be chosen man-

ually or automatically using for example [1]. Once the

triangulation is done, the triangles of the images are

warped and the colors are interpolated to get a transi-

tion image. Another paper related to the topic of view

interpolation is [7], which uses a ray-tracing approach

to synthesize new views from an input pair of cubic

panoramas. A downside of this approach is that it is

time consuming and the resulting interpolated images

present many artifacts.

In our approach, fluid view transitions are generated

on the fly for the whole panorama. The addition of new

panoramas requires only the computation of new opti-

cal flow fields. Many approaches to evaluate the optical

flow between pairs of images have been proposed. Some

classic methods are [10], [11], [12]. Another more re-

cent approach to calculating the optical flow is [4] , in

which all possible combinations of displacement values

are tested by the algorithm in order to find the best

displacement vector for each pixel. For each of these

shifts the algorithm computes a goodness fonction for

each pixel of the image. This algorithm also handles

slanted surfaces and uses a contrast-invariant matching

measure which is perfect for real environments where

building facades are frequently observed and where the

lighting condition can be different between viewpoints.

3 Approach to Interpolating Panoramas in

Real-Time

In this section we will describe the approach that was

taken to achieve the navigation of an environment in

real-time. We will be using the optical flow algorithm

[4] for which an implementation is publicly available1.

Our approach would work on standard imagery, but

to enhance the sense of immersion of the user and the

realism of the scene rendering, we have chosen to use

360∘ panoramas. Different representations are available

to manipulate the panoramas: cubic, spherical or cylin-

drical panoramas; in our application we have chosen to

use the cubic representation. (Figure 1)

The main advantage of the cubic representation is

that it allows to decompose the global 360∘ panorama

into 6 regular limited field-of-view cameras, where each

face is a planar image. Since classical optical flow esti-

mation methods were designed for this type of images,

1 http://www.cs.umd.edu/ ogale/download/code.html



3

Fig. 1 Example of a cubic panoramas, displayed in an unfolded
form

these can be applied on each face of the cubic represen-

tation. However each face cannot be considered inde-

pendently from the others because pixels at the border

of a face will end up on an adjacent face. To solve this

problem, we create an extended cubic panorama repre-

sentation, which simply extend each face in every di-

rection. Displacements going from one face to another

can then be captured while considering each face in-

dependently during the optical flow calculation. Note

that, when proceeding this way, it happens that some

displacement vectors are computed twice, because they

appear on each extended portion of two adjacent faces

To ensure consistency of the results across the faces, we

need to check which one gives the best result by com-

paring the color neighborhood in both images according

to the L2-norm. The one with the greatest distance is

then replaced by the other one.

3.1 View Interpolation

Our view interpolation is based on the algorithm de-

veloped in [3] which we adapted to cubic panoramas

of real environments. The computed optical flow algo-

rithms can fairly accurately evaluate the dispacement

between images. Our algorithm works on a per face ba-

sis. Our panoramas are taken close to each other, in

a given city/environment. To generate transition view-

points, the straightforward approach would be to use

linear blending. However, this blending, even though

easy to implement, produces blurry images with a lot

of artifacts, especially because this approach doesn’t

take into consideration the geometry of the scene. We

create more realistic transitions by including the dense

displacement maps into our morphing algorithm. Fol-

lowing the approach in [3], the morphing between pairs

of images is given by:

Î(x, y) = (1 − w)I0(wW01(x, y)
−1

) +

wI1((1 − w)W10(x, y)
−1

) (1)

with the following definition:

– I0, I1 and Î are the origin, destination and transition

images respectively.

– Wij is the dense displacement field from image Ii to

Ij . According to the optical flow algorithm that we

use, Wij(x, y) = −Wji(x, y).

– w is the weight applied to the color and the dis-

placement.

3.2 Real-Time Implementation

Real-time navigation is based on four elements: pre-

processing of the optical flow, data buffering, multi-

threading and the implementation of the interpolation

algorithm on the GPU.

The computation of the optical flow is the most time

consuming step but as it can be precalculated, its esti-

mation time does not affect the rendering performance.

During navigation, the reference images and the cor-

responding computed optical flow field are loaded into

memory.

During the navigation of a scene, hard drive accesses

might occur hundreds of time. Thus we need to access

this data smoothly and continuously. To do so, our ap-

plication needs to be multi-threaded: we will need to

have at least one thread to continuously load the data

and another to deal with the display of our scene and

the interpolation. Next this data needs to be stored in a

small buffer, which will contain the panoramas that are

the most likely to be accessed next by our application.

Thinking of our scene as a graph where the panoramas

are nodes and the possible movement are represented

as edges, we determine which panorama to put in the

buffer using a breath first approach.

The GPU implementation is the last part of our pro-

cessing chain. Since we have already precalculated the

flow, the interpolation of each pixel value is indepen-

dent from the rest of the image which makes it a perfect

candidate for parallel implementation on the GPU. The

GPUs on the other hand are much faster than CPUs

and are designed to handle intensive graphics calcula-

tions, and allows us to do these calculations while the

CPU is handling other kinds of operations (graphics

calls and hard drive calls in our case). In addition to

the panoramas and the displacement fields needed by

the interpolation, we also need to pass the optical flow

window boundaries that we used in the optical flow cal-

culation algorithm as well as the texture sizes in order

to be able to calculate the origin and target pixel coor-

dinates of each of the interpolated image pixels directly

on the GPU accurately.



4

4 Results

We captured our scenes using a Ladybug camera, which

can capture 6 images of resolution 1024x768 to create

panoramic images in a single shot (5 on the sides, and

1 at the top). We are using extended cube faces of

size 320x320 pixels each, each extended cube created

in about 3 minutes. The precalculation and correction

of the optical flow and correction took up to an hour

on a 320x320 image with a [-40; 40] interval on both x

and y, on an Athlon 64 X2 6000+/3GHz. We were able

to synthesize 20 images per second on the CPU using

our interpolation algorithm, and went up to synthesiz-

ing 333 images per second on a Radeon Mobility X700

GPU.

According to our results, the quality of the inter-

polated images’ geometry is very similar to the corre-

sponding reference panorama with few artifacts visible.

Comparing our interpolated images with few real imags

captured at the same location with obtained a RMS er-

ror of 15.2 in average. These results show that our in-

terpolated images are much similar to the actual image

that the linearly interpolated image.

One important thing to remember is that since this

interpolation is built for real-time naviguation and the

user will not be stopping on an interpolation image,

such that many artifacts will go unnoticed. Figure 2

present some of our results on a pair of panoramas taken

outdoors. Even though some artifacts are noticeable,

the quality of the results are very realistic.

5 Conclusion and Future Work

This paper presented a new way of interactively navi-

gating an environment by computing the transition im-

ages on the GPU. Our contributions concern especially

the ability to interpolate intermediate viewpoints of a

scene in real-time. Using panoramas that were taken at

reasonable distances from each other, we achieved good

quality results, except for a few artifacts.

Some future works possibilities include improving

the quality of the dense flow field and enhancing its

evaluation speed. It would also be interesting to in-

crease the flexibility and accessibility of our approach

by generating panoramas from images acquired from

any kind of handheld camera.

References

1. J. Shi and C. Tomasi, Good features to track., CVPR (1994)

2. H-Y Shum, SB Kang, A Review of Image-based Rendering

Techniques, Proceedings of IEEE/SPIE, 4067, 11 (2000)

Fig. 2 An outside sequence. Top and bottom images are the

captured origin and destination. The other images are (from top
to bottom) are interpolated images with c=0.2, 0.4, 0.6 and 0.8.

3. Wojciech Matusik and Matthias Zwicker and Fredo Durant,
Texture Design Using a Simplicial Complex of Morphable Tex-

tures, ACM Transactions on Graphics , 24, 787 - 794 (2005)
4. A. S. Ogale and Y. Aloimonos, A roadmap to the integration

of early visual modules, International Journal of Computer Vi-

sion, 72, 9–25 (2007)
5. Steven M. Seitz and Charles R. Dyer, View Morphing, SIG-

GRAPH (1996)
6. Maxime Lhuilliier and Long Quan, Image Interpolation by

Joint View Triangulation, CVPR (1999)
7. Feng Shi and Robert Laganiere and Eric Dubois and Frederic

Labrosse, On the use of Ray-tracing for Viewpoint Interpola-
tion in Panoramic Imagery, CRV (2009)

8. Xiaoyong Sun and Eric Dubois, View morphing and interpo-
lation through triangulation, IVCP(2005)

9. Ziqiang Liu and Ce Liu and Heung-Yeung Shum and Yizhou
Yu, Pattern-based Texture Metamorphosis, PG’02: Proceed-
ings of the 10th Pacific Conference on Computer Graphics and

Applications, 184–191 (2002)
10. Berthold K.P. Horn and Brian G. Schunck, Determining Op-

tical Flow, Artificial Intelligence, 17, 185–203 (1981)
11. Lucas, B., and Kanade, T., An Iterative Image Registration

Technique with an Application to Stereo Vision, Proc. of 7th
International Joint Conference on Artificial Intelligence, 674–

679 (1981)
12. Jean-Yves Bouguet, Pyramidal Implementation of the Lucas

Kanade Feature Tracker (2002)
13. Yasutaka Furukawa, Brian Curless, Steven M. Seitz and

Richard Szeliski, Reconstructing Building Interiors from Im-

ages, ICCV (2009)


