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Abstract

This paper introduces a high efficient local spatio-
temporal descriptor, called gradient boundary histograms
(GBH). The proposed GBH descriptor is built on simple
spatio-temporal gradients, which are fast to compute. We
demonstrate that it can better represent local structure and
motion than other gradient-based descriptors, and signifi-
cantly outperforms them on large realistic datasets. A com-
prehensive evaluation shows that the recognition accuracy
is preserved while the spatial resolution is greatly reduced,
which yields both high efficiency and low memory usage.

1. Introduction
Recent studies in human action recognition have

achieved remarkable performance. Over the years, the
progress has shown almost perfect results on atomic actions
captured under controlled settings. As a result, the research
community now focuses on realistic datasets with relatively
large number of classes, and very good results are reported
[14, 26, 22]. However, much effort has been invested in im-
proving the recognition accuracy with less consideration in
efficiency. For example, the state-of-the-art approach [22]
combines both SURF feature matches and dense matches
from optical flows to estimate the homography for camera
motion compensation. To further improve the robustness, it
also uses a sophisticated human detector as well as human
tracking to remove matches from the foreground human re-
gions. All these techniques add more complexity to the al-
ready high cost trajectories-based method, which is built on
dense optical flow.

The low-level local spatio-temporal features and bag-
of-features(BoF) [14, 15, 21] representation or alternative
Fisher vector encoding [22, 11] can achieve good perfor-
mance for action recognition on realistic datasets. A key
factor for high performance is the local descriptors, which
should include both local structure and motion information.
Among all descriptors, MBH outperforms other descriptors
by encoding motion boundary and suppressing camera mo-

tion. However, to build up MBH, dense optical flows are
computed for consecutive frames. Dense optical flow is ex-
pensive to compute considering the large amount of video
data to be processed. In addition, it includes two descrip-
tors, MBHx and MBHy, which add to the dimensionality
and complexity for codeword quantization. Therefore, it is
desirable to develop high efficient descriptors, especially for
real-time applications, such as intelligent surveillance sys-
tem with multiple cameras, human-machine interaction and
video games.

Gradient-based descriptors, on the other hand, are fast
to compute. However, they often show suboptimal perfor-
mance and high feature dimensionality. Built on oriented
gradient, the HOG descriptor was originally introduced by
Dalal and Triggs in [2] for human detection. It only con-
tains local structure information and shows low recognition
accuracy on action recognition due to lack of motion in-
formation. For better performance, it is often combined
with HOF descriptor [9], which requires the computation
of dense optical flow.

Kläser [7] extended HOG descriptor from 2D image to
spatio-temporal HOG3D descriptor with 3D oriented gradi-
ents. The spatio-temporal gradients ( ∂I∂x ,

∂I
∂y ,

∂I
∂t ) are com-

puted for each pixel over the video, and saved in three in-
tegral videos. Three gradient components of a ST patch
can be computed efficiently from the integral videos. The
mean 3D gradient vector from a local cell is quantized us-
ing a regular polyhedron. The 3D histograms of oriented
gradients for the 3D patch are formed by concatenating gra-
dient histograms of all cells. Although it is very efficient
to compute gradients, the quantization with polyhedron for
each sub-blocks is expensive considering the large number
of patches sampled. The 3D quantization also results in
high feature dimension. In addition, using regular polyhe-
dron with congruent faces to quantize the ST gradients may
not be an optimal option because the units of spatial gra-
dients and temporal gradients in a video are different and
should not be treated interchangeably.

Scovanner et al. [13] extended 2D SIFT descriptor [10]
to represent spatio-temporal patches, called 3D SIFT. Once
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gradient magnitude and orientation computed in 3D, each
pixel has two values (θ, φ) which represent the direction
of the gradient in three dimensions. For orientation quan-
tization, the gradients in spherical coordinates (θ, φ) are
divided into equally sized bins, which are represented by
an 8 × 4 histogram. Such representation leads to singular-
ity problems as bins get progressively smaller at the poles.
Similar to HOG3D, it also has increased dimensionality,
and treats spatial and temporal gradients as similar quan-
tities.

In this paper, we focus on developing an efficient method
for action recognition on realistic videos. Our method is
based on pure spatio-temporal gradients. However, our ob-
jectives are both to improve the performance and to avoid
high dimensionality of common 3D gradient-based descrip-
tors, such as HOG3D and 3D SIFT. In addition, we also
aim at reducing the memory usage. To this end, we made
following main contributions:

• We propose a new spatio-temporal descriptor, called
GBH, which significantly outperforms other gradient-
based descriptors both in performance and speed.

• In an in-depth experimental evaluation, we demon-
strate that the recognition accuracy is preserved while
the spatial resolution is greatly reduced, which yields
to both high efficiency and low memory usage.

• We rigorously show that the proposed descriptor and
its Fisher vector representation can achieve real-time
activity analysis with potential application in mobile
computation.

• We experimentally show that the GBH descriptor can
improve recognition performance significantly when
combined with HOF or MBH descriptor.

The paper is organized as follows: The next section in-
troduces the proposed GBH descriptor. Section 3 details
the methods we use. Section 4 summarizes the evalua-
tion methodology as well as the datasets. In section 5, we
present some experimental results and analysis. we also
provide the comparison of our methods with the state-of-
the-art. The paper is completed with a brief conclusion.

2. Gradient boundary histograms (GBH) de-
scriptor

In this paper, we propose a new local spatio-temporal
descriptor. Our object is to avoid the expensive dense opti-
cal flow computation. We also intend to encode both lo-
cal static appearance and motion information. However,
we want to avoid using three gradient components as 3D
SIFT and HOG3D descriptor which lead to high dimension-
ality and relatively expensive quantization cost. Instead, we

adopt compact HOG-like descriptor with two gradient com-
ponents.

For each frame in a video, we first compute image gradi-
ents using simple 1-D [-1,0,1] Sobel masks on both x and y
directions. Then, we apply a [-1, 1] temporal filter over two
consecutive gradient images. Thus, for each pixel, we have:

It,x =
∂

∂t
(
∂I

∂x
), It,y =

∂

∂t
(
∂I

∂y
) (1)

Now the gradient magnitude and orientation for each pixel
are defined as follows:

r(x, y) =
√
I2t,x + I2t,y, θ(x, y) = arctan(

It,y
It,x

) (2)

Our new descriptor uses a histogram of orientation
method, voting with θ and r as in SIFT and HOG de-
scriptors. However, instead of using image gradients, we
use time-derivatives of image gradients, which emphasize
moving edge boundaries. We call this descriptor gradient
boundary histograms (GBH). Figure 1 illustrates the com-
parison of image gradients and gradient boundaries. We
have two important observations here. First, the subtraction
of two consecutive image gradients results in the removal
of the backgrounds of the video sequences. The two gra-
dient images in the centre show a lot of background noise,
while the gradient boundary images on the right show clear
human shapes with far less background noise. More impor-
tant, gradient boundaries encode the moving human shapes.
As demonstrated by the red bounding boxes in the figure,
the double edges at various distances are proportional to
the moving speed of the human body parts. For example,
the distance between the leg double edges is larger than the
head double edges, because the leg moves faster than the
head of the other person in the upper right image.

It seems that the simple gradient subtraction works well
only when the camera and background are largely static.
However, our in-depth experimental evaluations show that
it also achieves good performance on realistic HMDB51
dataset, which contains a lot of camera motions and dy-
namic backgrounds. One possible explanation may be that
the changes of the human gradient boundary (as shown in
Figure 1) reflect the speed of the moving body parts. Be-
cause the camera motion for two consecutive frames is often
constant, the subtraction of two consecutive gradient im-
ages results in a constant gradient offset. Therefore, the
computed human gradient boundaries include the absolute
gradient displacements of human moving body plus a con-
stant gradient displacement. Such constant gradient dis-
placement from the camera motion has little performance
impact.



Figure 1. Illustration of gradients and gradient boundaries for a “fall floor” action. Compared to image gradients, gradient boundaries have
less background noise. More important, gradient boundaries encode motion information. The areas inside red bounding boxes show the
double edges at distances proportional to the speed of the moving body parts.

3. Video representation

To demonstrate the performance of the proposed GBH
descriptor, we apply an efficient random sampling scheme
to extract the features, and use the state-of-the-art local part
model (LPM) [15] to represent them. We finally use im-
proved fisher vector [12] to encode features, followed by a
linear SVM for classification.

3.1. Review of LPM algorithm

Local part model was introduced by Shi et al. in [16].
Their original purpose was to address the orderless issue of
the bag-of-features representation by introducing overlap-
ping local “parts” in the same spirit as bi-gram (n-Grams)
[19]. In addition to having the overlapping local part
patches, the method also includes a coarse primitive level
“root” patch which encodes local global information. To
improve the efficiency of LPM computation, two integral
videos are computed, one for the root at half resolution, and
another one for the parts at full resolution. The descriptor
of a 3D patch can then be computed very efficiently through
7 additions multiplied by the total number of root and parts.

Later, Shi et al. [15] improved the efficiency by combin-
ing random sampling method with local part model. Ran-
dom sampling does not require feature detection, which
greatly improves processing speed. In this work, the root

and 8 parts are processed as two separate channels. For
each channel, a standard Fisher vector encoding is applied.
The resulting Fisher vectors from root and parts are con-
catenated into one histogram for SVM classification.

The main challenge of applying FV encoding on the fea-
tures of LPM is the high dimensionality. The part chan-
nel in LPM contains a group of overlapping patches, and
their histograms are concatenated into a high dimensional
vector. Therefore, as discussed in next section, we reduce
the descriptor dimensionality by using Principal Compo-
nent Analysis (PCA) on the purpose of better fitting FV
encoding. In our experiments, the dimensions of root de-
scriptor and part descriptor are reduced by 1/2 and 1/8, re-
spectively.

3.2. Fisher vector encoding

Recent studies [22, 11, 18] show that Fisher vector
[5] can improve performance over standard bag-of-features
methods on action recognition. FV extends the bag-of-
features by encoding high-order statistics between the de-
scriptors and a Gaussian Mixture Model. Since more in-
formation is encoded per visual word, fewer visual words
are required than BoF, which makes FV more efficient to
compute.

As indicated in [5], it is favourable to apply PCA dimen-
sionality reduction on feature vectors before FV encoding.



Moreover, for a D dimension descriptor, the FV signature
with K words has an increased dimension of 2DK. In
the case of local part model, the concatenated histograms
of part patches result in 8 times the dimension of the used
descriptor. Therefore we apply PCA on the computed LPM
features. Our experimental evaluation shows that the feature
dimensions can be reduced by 7/8 while preserving high ac-
curacy.

4. Experimental setup

In this section, we introduce implementation details of
our evaluation methodology. We will also present the
datasets and experimental parameters.

4.1. Evaluation methodology

As discussed in Section 3, we use random sampling for
feature extraction and local part model to represent the fea-
tures. We strictly follow the experimental settings as those
in [15]. However, we use Fisher vector encoding instead of
bag-of-features.

We randomly choose 10000 features for each video with
maximal video length of 160 frames. For those clips with
more than 160 frames, we simply divide them into several
segments, and sample features at same rate for each of them.

The sampled 3D patches are represented by GBH de-
scriptor. Under the LPM representation, each feature in-
cludes a root patch and a group of part patches (8 in our ex-
periments). LetD0 be the feature dimension of the GBH de-
scriptor. One LPM feature has two channels, with 1 root at
dimension dr = D0 and 8 parts of dimension dp = 8×D0.

For colour images, we simply choose the channel with
largest gradient values, which improves the accuracy by
0.2-0.5%.

For Fisher vector encoding, we use improved fisher vec-
tor [12] by applying the signed square-rooting followed by
L2 normalization, which significantly improves the perfor-
mance when combined with a linear classifier. We set the
number of visual words to K = 128 and randomly sam-
ple 150,000 features from the training set to estimate the
GMM and learn PCA projection matrix. For Fisher vector
encoding, we first apply PCA to reduce root vectors to d′r =
1
2dr = 1

2D0 and part vectors to d′p = 1
8dp = D0. Each

video is, then, represented by a 2d′rK + 2d′pK = 3D0K
dimensional Fisher vector.

The resulting Fisher vectors are fed into a linear SVM
implemented by LIBSVM [1] with C = 32.5. For multi-
class SVM, we use one-against-rest approach. To combine
root and part channels of LPM representation, we simply
concatenate the computed FVs from the respective chan-
nels. The same strategy is used to combine multiple chan-
nels from different descriptors.

4.2. Datasets

To demonstrate the performance and efficiency of the
proposed descriptor, we evaluate our method on two large-
scale realistic action benchmarks, the UCF101 [17] and the
HMDB51 [8] datasets.

The UCF101 dataset [17] is by far the largest human ac-
tion dataset. It has 101 classes and 13320 realistic video
clips extracted from YouTube. All clips are encoded at a
resolution of 320 × 240 and at a frame rate of 25 FPS.
The clips of one action class are divided into 25 groups.
The dataset is very large and relatively challenging. We re-
port average accuracy over three distinct training and test-
ing splits as proposed in [17]. For split 1, split 2 and split 3,
clips from groups 1-7, groups 8-14 and groups 15-21 are se-
lected respectively as testing samples, and the rest for train-
ing.

The HMDB51 dataset [8] contains 51 action categories,
with a total of 6,766 video clips extracted from various
sources, such as Movies, the Prelinger archive, Internet,
Youtube and Google videos. It is perhaps the most chal-
lenging dataset with realistic settings. The videos have dif-
ferent aspect ratio, but with a fixed height of 240 pixels. The
clips have various video quality, and the minimum quality
standard is at 60 pixels in height for the main actor. We use
the original non-stabilized videos with the same three train-
test splits [8], and report the average accuracy over the three
splits in all experiments.

4.3. Parameters

In this section, we present our parameter settings, which
determine the features’ dimension. We test and compare our
GBH descriptor with other descriptors. However, we use
the simplified HOG3D, HOG and MBH descriptors with
reduced dimensionality, mainly by controlling the number
of cells per ST patch.

Notation: we define the sampling grid at half the spatial
resolution of the processed video. The root patches are ran-
domly chosen from this half size video, and we will refer to
it as “root video”. The part patches are sampled from the
processed video at full spatial resolution, which is referred
to as “part video” or “processed video”, interchangeably.
We also use “original video” to represent the original spa-
tial resolution of the clips from the datasets.

Random sampling. In order to provide comparable re-
sults, we strictly follow the sampling parameter settings as
those in [15]. We first define a very dense sampling grid
over the root video. A 3D video patch centred at (x , y , t)
is sampled with a patch size determined by the multi-scale
factor (σ, τ). The consecutive scales are computed by mul-
tiplying σ and τ by a factor of

√
2. In our experiments, we

set minimal temporal size to 14 frames, and choose the op-
timal minimal spatial size based on the descriptors and the



Smoothing HMDB51 UCF101
HOG HOG3D GBH HOG HOG3D GBH

Yes 29.4%±0.6 37.8%±0.6 44.4%±0.3 60.6%±0.2 64.5%±0.9 74.6%±0.3
No 30.0%±0.3 38.2%±0.3 40.2%±0.7 61.2%±0.5 64.7%±0.4 73.0%±0.6

Table 1. The performance impact of Gaussian smoothing on different descriptors. The experiments are performed on the video at original
resolution.

Resolution HMDB51 UCF101
HOG HOG3D GBH HOG HOG3D GBH

(avg.)364 x 240 30.0%±0.3 38.2%±0.3 44.4%±0.3 61.2%±0.5 64.7%±0.4 74.6%±0.3
182 x 120 27.5%±0.5 36.5%±0.2 44.7%±0.3 55.4%±0.4 63.6%±0.2 74.2%±0.4

91 x 60 23.7%±0.4 33.0%±0.7 45.3%±2.4 50.5%±0.4 56.6%±0.7 73.6%±0.9
Table 2. The performance comparison of three gradient-based descriptors at different spatial resolutions.

size of the processed video. The sampling step size is de-
termined by multiplying patch size by a factor of 0.2. With
a total of 8 spatial scales and 2 temporal scales, we sample
a video 16 times.

We randomly sample 10000 root patches from the root
video. For each root patch, we sample 8 (2 × 2 × 2) over-
lapping part patches from the part video.The histograms of
1 root patch and 8 part patches are treated as two separate
channels.

GBH, HOF, MBHx and MBHy. Each patch is sub-
divided into a grid of 2 × 2 × 2 cells, with no sub-block
division. 8 bins are used for quantization, which leads to
a feature dimension of 64. Thus, a LPM feature has a root
channel of dimension 64 and a part channel of dimension
512.

We evaluate GBH descriptor on the processed video with
different spatial resolutions. When the processed video has
same size as original video, the initial patch size is 28 ×
28 × 14. We use minimal patch size of 20 × 20 × 14 and
10×10×14, respectively, for the part video size at half and
one quarter.

HOG. For HOG, we use same parameters as GBH in
most cases. However, for original video size, the optimal
minimal patch size is 24×24×14, and each patch is subdi-
vided into a grid of 2×2×2 cells, with 2×2×2 sub-block
divisions. With 8 bins quantization, It has same feature di-
mension as GBH.

HOG3D. The HOG3D parameters are: number of his-
togram cells M = 2, N = 2; number of sub-blocks
1× 1× 3; and polyhedron type dodecahedron(12) with full
orientation. The optimal minimal patch size is 24×24×14
for original video size. With one HOG3D descriptor at di-
mension of 96 (2×2×2×12), our local part model feature
has a dimension of 96 for the root channel and 768 for the
part channel.

5. Experimental results
In this section, we evaluate performance of the proposed

GBH descriptor for action classification on two realistic

datasets. Due to the random sampling, we repeat the ex-
periments 3 times, and report mean accuracy and standard
deviation over 3 runs.

5.1. Influence of Gaussian smoothing

We first evaluate the impact of the Gaussian smoothing.
The results are show in Table 1. All the experiments are
performed on original video at full resolution. If smoothing
is “Yes”, a Gaussian filter is applied on all frames before
computing the gradients.

For HOG and HOG3D descriptors, we observe slight
performance drops on all cases when applying Gaussian fil-
ter before computing gradients. Similar performance drop
is reported on HOG on human detection [2] with smoothing.
The performance of GBH, on the other hand, increases sig-
nificantly by pre-smoothing, with 4.2% on HMDB51 and
1.6% on UCF101. Such a performance increase may be
explained by the fact that the second order derivatives are
more sensitive to noise. In addition, applying Gaussian
smoothing before gradient subtraction results in the sup-
pression of certain background gradients, such as tree leaves
and grass textures (as shown in Figure 1). Such background
textures are often a huge challenge to optical flow estima-
tion.

5.2. Evaluation of GBH descriptor

Table 2 shows the performance comparison of three
gradient-based descriptors in different spatial resolutions.
For HOG and HOG3D descriptors, the performance is con-
sistently and significantly decreased for both HMDB51 and
UCF101 when the spatial resolution is reduced. Such re-
sults are consistent with observations in [23] on Holly-
wood2 dataset. As resolution is reduced, the background
gradients interfere with the gradients associated with human
subjects.

For GBH descriptor, one very important observation is
that the accuracy is preserved on HMDB51 and with little
(1%) loss on UCF101 when the spatial resolution is reduced



Dataset GBH HOG HOG3D HOF MBH HOG+HOF HOF+GBH MBH+GBH
HMDB51 44.7% 30.0% 38.2% 39.9% 54.7% 45.6% 51.3% 58.8%
UCF101 74.2% 61.2% 64.7% 65.9% 81.0% 75.4% 78.0% 84.0%

Table 3. Performance comparison of the proposed GBH descriptor and other local descriptors.

by a factor of λ = 4. This leads to huge benefits in effi-
ciency considering that the sub-sampling in resolution by λ
results in a reduction by a factor of λ2 on both number of
processed pixels and memory usage. Kläser et al. [7] ob-
served, in a HOG3D approach, that using integral video can
result in a reduction factor of 21 in memory usage when
compare to spatio-temporal “pyramids”. Our method uses
even less memory when processing video at low resolution.

When processing video at a very low resolution, we ob-
serve a relatively high standard deviation on performance
for both HMDB51 (2.4) and UCF101 (0.9). This is prob-
ably due to the fact that the sampling is performed on the
very low resolution video. At such low resolution, a sam-
pled ST patch could have large differences even for a one
pixel displacement. At this point, it is unclear why the GBH
descriptor performs better at very low spatial resolution (91
x 60) on HMDB51 than on UCF101. Our hypothesis is that
high sampling density on clips with fewer frames may in-
clude more information, which could provide bias benefits
for the short clips of HMDB51. Moreover, the HMDB51
has a quality standard of a minimum of 60 pixels in height
for the main actor, which may improve the robustness when
the spatial resolution is greatly reduced.

5.3. Comparison of GBH and other descriptors

We perform a number of experiments to evaluate our
proposed GBH descriptor. Table 3 shows the performance
comparison of the GBH descriptor and other local descrip-
tors. The evaluation is performed under a common experi-
mental setup. The HOG and HOG3D descriptors are com-
puted at full resolution, and other descriptors are computed
at half the resolution. We use the default parameters as in
Section 4.3, and randomly choose 10K features (that is 10K
root patches + 80K part patches) from each clip with up to
160 frames. The dense optical flow for HOF and MBH de-
scriptors is computed using efficient Farnebäck’s approach
[3].

The GBH descriptor gives surprisingly good results by
itself, with 44.7% on HMDB51 and 74.2% on UCF101. It
outperforms HOG, HOG3D and HOF descriptors on both
datasets. However, the MBH descriptor outperforms all
other descriptors by a large margin. When combined with
flow-based HOF or MBH descriptor, we observe significant
performance improvements.

Method HMDB51 UCF101
HMDB51 [8] 23.2% –
UCF101 [17] – 43.9%
Efficient OF [6] 46.7%∗ –
DCS [4] 52.1%∗ –
FV coding[11] 54.8%∗ –
Trajectories [22] 57.2%∗ 85.9%∗

O
ur

s

GBH 44.7%±0.3 74.2%±0.4
MBH1 54.7%±0.2 81.0%±0.2
MBH2 58.9%±0.3 84.7%±0.1
GBH+MBH1 58.8%±0.2∗ 84.0%±0.2∗
GBH+MBH2 62.0%±0.2∗ 86.6%±0.2∗

Table 4. Comparison of average accuracy on HMDB51 and
UCF101 with state-of-the-art methods. Those marked with ∗ are
results with multiple descriptors. The MBH1 is based on the
Farnebäck’s optical flow method [3], and MBH2 uses duality-
based TV L1 approach [25].

5.4. Comparison to state-of-the-art

Table 4 shows the comparison of our method with the
state-of-the-art. We set the part video at the half the spatial
resolution of original video, and use the parameters listed in
Section 4.3. Most state-of-the-art methods use multiple de-
scriptors and apply some feature encoding algorithms to im-
prove the performance. For example, Jain et al. [4] combine
five compensated descriptors and apply VLAD representa-
tion. Wang and Schmid [22] use four descriptors and Fisher
Vector encoding. They also improve the performance with
human detection and extensive camera motion compensa-
tion.

On HMDB51, our method achieves 62.0% when com-
bining GBH with MBH descriptors, which outperforms the
state-of-the-art result (57.2% [22]) by 5%. With MBH com-
puted from efficient Farnebäck optical flow method, we ob-
tain 58.8% on the two descriptors (MBH+GBH), which also
exceeds state-of-the-art results. Note that our results are ob-
tained from two descriptors combined with Fisher vector.
Since we have both root and part channels, we set K = 128
for FV encoding. Thus, our resulting FV features have same
dimensionality as those in [22], which usesK = 256. In the
case of K = 256, we achieve 63.2%.

On UCF101, we report 86.6% with two descriptors. It
slightly outperform the state-of-the-art result [22] (85.9%),
which is obtained with four descriptors and Fisher Vector
encoding as well as extensive camera motion estimation.



Dataset Resolution
Speed (frames per second)

Mean accuracy
Integral video Sampling FV encoding Total fps

HMDB51
364 x 240 120.5 249.5 151.7 52.8 44.4%
182 x 120 302.9 261.4 150.5 72.5 44.7%

91 x 60 437.5 294.4 156.8 82.7 45.3%

UCF101
320 x 240 132.8 356.7 220.2 67.2 74.6%
160 x 120 362.9 384.7 223.7 101.8 74.2%

80 x 60 596.2 422.2 228.5 118.5 73.6%

Table 5. Average computation speed with single core at different stages in frames per second. K = 128 codewords per channel is used for
FV encoding, and 10K features are sampled in the experiment. The dimensionality reduction process is included in FV encoding. Note
that the classification stage is not included.

Sampling # Resolution
Speed (frames per second)

Accuracy
Integral video Sampling FV encoding Total fps

4K 182 x 120 52.7 267.6 89.3 29.0 43.3%

10K 182 x 120 52.9 108.4 37.5 18.3 44.7%

Table 6. Average computation speed on a Toshiba Netbook with an AMD-E350 cpu and 2GB memory. The experiments are performed
on HMDB51 dataset. K = 128 codewords per channel is used for FV encoding. 4K and 10K features are sampled in two different
experiments. The dimensionality reduction process is included in the FV encoding.

5.5. Computational efficiency

We perform a number of experiments to evaluate the ef-
ficiency of GBH descriptor. We use VLFeat library [20]
for Fisher vector encoding. The runtime is estimated on an
Intel i7-3770K PC with 8GB memory. The prototype is im-
plemented in C++. In order to avoid built-in multi-core pro-
cessing of VLFeat library and OpenCV library, we set only
one core active @ 3.5Ghz in Bios, and disable both Hyper-
threading and Turbo-boost. For all experiments, K = 128
visual words per channel are used for Fisher vector encod-
ing.

Table 5 compares the computational speed under differ-
ent spatial resolutions. For all cases, GBH achieves high
processing speed, reported in frames per second. Using
low resolution results in an impressive total fps at only lit-
tle performance cost. There is little speed difference be-
tween HMDB51 and UCF101, mainly because on average
we sample 10K features per 95 frames on HMDB51, but per
160 frames on UCF101.

Table 6 lists average computation speed on an AMD-
E350 CPU, which also shows a high processing frame rate.
This proves the high efficiency of GBH descriptor, and
demonstrates its potential for real-time applications as well
as mobile recognition.

6. Discussion

The GBH descriptor shows good performance with high
efficiency. One possible application is action recognition
for surveillance system with multiple static cameras. The
efficient action detection, which involves the evaluation of
multiple detection windows, can also benefit from the ap-
proach. GBH could also be used to improve the HOG

performance on human detection from the video. To fur-
ther improve performance, we can also explore deeper part
hierarchies (i.e. parts with parts). Since the GBH perfor-
mance is preserved when using low resolution, we could
add another layer of parts on full resolution videos. Our
preliminary experiments on GBH descriptor with FV show
that adding another level of parts improves the performance
from 44.7% to 46.0% on HMDB51, and from 74.2% to
76.1% on UCF101.

We have shown that GBH can be combined with flow-
based HOF or MBH descriptors to improve its performance.
The dense optical flow on which HOF and MBH rely is rel-
atively expensive to compute. However, this optical flow
can be estimated very efficiently in compressed domain
[24]. Recent progress in hardware and network technolo-
gies leads to motion-encoded videos, such as those ob-
tained from internet protocol (IP) cameras in security and
surveillance video systems. A recent study [6] also demon-
strates the efficiency of extracting optical flow in com-
pressed video, and achieves results similar to our GBH
descriptor (45.4% on HMDB51 with MBH). Nevertheless,
such approaches could be combined with our GBH descrip-
tor to achieve state-of-the-art performance with high effi-
ciency.

We have demonstrated that GBH outperforms other
gradient-based HOG, HOG3D descriptors and flow-based
HOF descriptors. Also, the GBH descriptor works well not
only on static videos but also on non-static-camera videos,
such as HMDB51. The performance may be further im-
proved by explicitly estimating camera motion [22] or com-
bining it with efficient MBH descriptor [6]. The main pur-
pose of the GBH descriptor is to improve efficiency as well
as to provide rich motion information. An efficient descrip-



tor with high performance can find many different applica-
tions in video analysis.

The main challenge in using FV is the resulting high di-
mensionality, which is expensive in classification stage even
by using linear SVM. In comparison with BoF (often with
4K words), the FV representation is not much as a “Com-
pact Feature Set” as the claim made in [11]. The original
FV approach [5], however, reduces the high dimensional
FV into a compact low dimensional vector and observes im-
proved performance on image search. Considering its high
dimensionality, it is desirable to improve the performance
of individual descriptor, and combine fewer descriptors for
high accuracy.

7. Conclusions
This paper introduces a spatio-temporal descriptor for

action recognition. The proposed descriptor is based on ST
gradients, and outperforms other gradient-based descrip-
tors. We demonstrate its benefits in combination with Fisher
vector representation. We experimentally show that the per-
formance is preserved even when the spatial resolution is
greatly reduced. Compared with existing methods, a major
strength of our method is its very high computational effi-
ciency, with potential for mobile applications.
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