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Abstract— The continuous rise in the amount of vehicles in 
circulation brings an increasing need for automatically and 
efficiently recognizing vehicle categories for multiple applications 
such as optimizing available parking spaces, balancing ferry load, 
planning infrastructure and managing traffic, or servicing 
vehicles. This paper describes the design and implementation of a 
vehicle classification system using a set of images collected from 6 
views. The proposed computational system combines human 
visual attention mechanisms to identify a set of salient 
discriminative features and a series of binary support vector 
machines to achieve fast automated classification. An average 
classification rate of 96% is achieved for 3 vehicle categories. An 
improvement to 99.13% is achieved by using additional 
measurement on the width and height of the vehicles.  

Keywords-visual attention; saliency; machine learning; support 
vector machines; vehicle classification.  

I.  INTRODUCTION  
The increase in population and economic prosperity has led 

to a huge increase in the number of vehicles. This reality 
brings a growing need for automated and efficient 
classification techniques for different vehicle categories for a 
multitude of applications such as optimizing available parking 
lots and spaces, balancing ferry loads, managing traffic and 
planning infrastructure or servicing vehicles. Vision systems 
are relatively cheap, easy to install and configure and offer 
direct visual feedback and flexibility in mounting. They are 
therefore an appropriate sensing solution for vehicle 
classification. However, the issue of vehicle classification 
from images is not trivial. Due to the ever increasing number 
of vehicle models and sizes and the aesthetic similarities 
between them, the main problem is the identification of a set 
of representative and discriminative features that allow for the 
best possible classification of the vehicle type.  

Taking inspiration from the significantly superior 
performance of humans to extract and interpret visual 
information, the exploitation of biological and psychological 
knowledge could contribute to improve artificial vision 
systems [1]. While still in their infancy, early cognitive vision-
inspired algorithms for object recognition have already 
reached performance comparable to the best computer vision 
systems [2]. Of particular interest is the role of attention. 
Computational models of visual attention have been shown to 
significantly improve the speed of scene understanding and 
object recognition [3] by attending only the regions of interest 

and distributing the resources where they are required. As 
well, it was proven that attention systems are especially well 
suited to detect discriminative features and that the 
repeatability of salient regions is higher than the repeatability 
of non-salient regions provided by classical feature descriptors 
such as corners or SIFT keypoints [4]. Therefore such 
attention models are a promising direction of research for 
identifying discriminative features to be used as basis for 
classification.  

This paper evaluates low-level features inspired from 
human visual attention for image-based vehicle classification. 
It proposes an original technique to identify the number of 
salient features to be considered for classification purposes. It 
also proposes and evaluates a viable design for a multiple 
camera system and the corresponding software solution for 
multi-view vehicle classification. 

II. RELATED WORK 
There are a few solutions for vehicle classification proposed 

in the literature. Yoshida et. al [5] use computer generated 
images of vehicles viewed from the top and their local features 
obtained by a corner detector to perform recognition of 4 
vehicle types: sedan, wagon, minivan, hatchback. They obtain 
a limited 54% classification rate. Petrovic and Cootes [6] 
classify vehicles into 77 distinct classes (based on vehicle 
make and model) using the principle of locating, extracting 
and recognizing normalized structure samples taken from a 
reference image patch on the front of the vehicle and obtain 
about 93% recognition rates using only frontal views of 
vehicles. In [7], a neural network takes as input a reduced 
wavelet transform of the image of a vehicle and outputs one 
single element of the feature set that is considered relevant for 
classification purposes. An overall 83% classification rate is 
obtained for 5 vehicle types: motorcycle, car, bus, trailer 1 and 
trailer 2 type. Ji et al. [8] report performances between 93% 
and 95% when using a partial Gabor filter bank to represent 
sedan, van, hatchback, bus and truck vehicle categories. In [9] 
edge points and modified SIFT descriptors are combined to 
obtain a rich representation for vehicle object classes. 
Classification rates of 98% are obtained for car vs. minivan 
and 96% for car vs. taxi.  

Regarding human visual attention, psychological studies 
have shown that there are two major categories of features that 
drive the deployment of attention: bottom-up features, derived 



directly from the visual scene, and top-down features detected 
by cognitive factors such as knowledge, expectation, or 
current goals. Most computational implementations are based 
on bottom-up features, that can capture attention during free 
viewing conditions. A measure that has been shown to be 
particularly relevant is the local image saliency, which 
corresponds to the degree of conspicuity between that location 
and its surround. In other words, the responsible feature needs 
to be sufficiently discriminative with respect to the 
surroundings in order to guide the deployment of attention. In 
spite on the fact that opinions on features that guide human 
visual attention are still controversial [10], the intensity, color, 
orientation and motion are undoubted attributed that guide the 
deployment of attention. A full survey on attention-based 
computational systems is presented in [11].  

Most of the proposed computational solutions have been 
tested mainly on indoor scenes or for a limited number of 
images. It is only in the latest years that attention-based 
computational systems started to be studied in practical 
applications dealing with real data. Frintrop and Jensfelt [4] use 
a sparse set of landmarks based on a biologically attention-
based feature-selection strategy and active gaze control to 
achieve simultaneous localization and mapping of a robot 
circulating in an office environment and in an atrium area. In a 
similar manner, Siagian and Itti [12, 13] use salient features 
derived from attention together with context information to 
build a system for mobile robotic applications that can 
differentiate outdoor scenes from various sites on a campus 
[12] and for localization of a robot [13]. In Rasolzadeh et al. 
[14], a stereoscopic vision system framework identifies 
attention-based features that are then utilized for robotic object 
grasping. Rotenstein et al. [15] propose the use of mechanisms 
of visual attention to be integrated in a smart wheelchair for 
disabled children to help in visual search tasks. 

In this work, salient features derived from the bottom-up 
computational model proposed by Itti et al. [16] are used as a 
basis to perform fast 3-category vehicle classification. 

III. COMPUTATIONAL SYSTEM FOR MULTI-VIEW VEHICLE 
CLASSIFICATION BASED ON VISION-ATTENTION SALIENT 

FEATURES 
 
In order to achieve multi-view classification, it is 

considered that images from 6 views, of each vehicle are 
available as illustrated in Fig. 1a. Fig. 1 shows the 6 cameras 
and the images collected by each, namely straight front and 
rear view (camera 1 and 2), driver and passenger side profiles 
(camera 3 and 4) and front and rear three quarter view (camera 
5 and 6), as well as examples from the dataset used for an 
initial experimentation that contains images of 122 cars from 
the following 3 categories [17]: sedan (Fig. 1b), sports car 
(Fig. 1c) and SUV (Fig. 1d). The size of each image is 99×150 
pixels. For each of the images, the Itti et al.’s computational 
model of visual attention [16] is employed to identify a feature 
set, containing a predetermined number of features for each 
view and therefore for each camera.  

The selection of the numbers of features is performed 
separately for the different views to cope with the differences 

in the number of salient features that might occur from a view 
to the other (e.g. more features might be required to 
discriminate vehicles from a view than from another view). 

 

 
a) 

  
b) 
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Figure 1.  Multi-view vehicle classification:  a) camera positioning and  
examples of vehicle categories in the dataset: b) sedan, c) sports car, d) SUV. 

The feature sets, denoted Feature Set 1 to Feature Set 6 in 
Fig. 2 can therefore have different sizes.  
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Figure 2.  Multi-view vehicle classification:  information flowchart.  

The automated selection for the number of salient features 
to represent each view will be discussed in further detail in the 
next sections. The set of features is then transformed into a 
vector for each image. A set of 6 support vector machine 
(SVM) classifiers, one per each view of a given category, is 



trained to perform a binary classification of vectors 
representing images of vehicles coming from a given camera, 
as illustrated in Fig. 2. This implies that the overall number of 
SVM classifiers equals 6 times the number of categories to be 
classified by the system (e.g. 18 in this work).  

The output result of each classifier is a 1 if the classifier 
recognizes the vehicle in the image, from a given viewpoint, 
as belonging to the category that the classifier has learnt and 0 
otherwise. For example a SVM that has been trained for the 
SUV class (e.g. SVM SUV 1) and that recognizes a vehicle in 
a test image coming from a given camera (e.g. camera 1) as a 
SUV, will prompt a 1 at the output. The results of the 6 
classifiers representing the 6 available viewpoints are 
composed into what is called a confidence measure by adding 
the decision of all 6 classifiers for a certain category from the 
different views. The minimum confidence is 0, when none of 
the classifiers identifies the vehicle in the image as belonging 
to the category that the respective classifier has been trained 
with, and the highest is 6 when all the classifiers recognize the 
vehicle in the test image as belonging to a certain category. 
Such confidence measures are built for all the categories of 
vehicles studied when a certain test image is presented to the 
system. For example in Fig. 2, the sedan classifiers do not 
recognize the vehicle being a sedan and therefore the 
confidence measure is 0, while all the SUV classifiers 
recognize the vehicle as being a SUV. In order to provide the 
final decision, a MAX voting is performed on the resulting 
confidence measures. The vehicle in the test image is 
recognized as belonging to the category that provided the 
highest confidence measure. In Fig. 2, the highest confidence 
comes from the SUV and therefore the vehicle is classified 
(correctly) as a SUV.  

When no decision can be produced because 2 or more 
categories provided the same confidence measure, an 
additional set of two SVM classifiers (denoted SVM W-H 1 
and SVM W-H 2 in Fig. 2), is used to provide a decision based 
on the width and height of the vehicle derived from the front 
view (SVM W-H 1) and the rear view (SVM W-H 2) 
respectively. In this case, the classifier receives at the input a 
vector composed of the width and height of a vehicle in each 
image, computed based on the feature set, as it will be 
described in the next sections, and maps it to a corresponding 
category (1 for sedan, 2 for sports, 3 for SUV). The decision 
produced by these SVMs is used only for those cases where an 
ambiguous decision is reached by the salient feature SVMs. 

IV. SALIENT FEATURE EXTRACTION 

A. Extraction of Visual-Attention Inspired Salient Features 
The main idea behind the bottom-up computational systems 

proposed in the literature in general, and for Itti et al.’s system 
in particular, is to compute several features derived from a 
color image provided as input and fuse their saliencies into a 
representation called saliency map [11, 16]. Initially, one or 
several image pyramids are created from the input image to 
enable the computation at different scales. Several features are 
then computed in parallel and feature-dependent saliencies are 
computed for each channel. Itti’s computational attention 
model considers as features the intensity (I = (R+G+B)/3 where 

R, G and B are the red, green and blue color channels 
respectively), color (color maps are represented by the RG and 
BY color opponency) and orientation (local orientation 
information is obtained from the intensity image I using 
oriented Gabor pyramids of different scales and different 
preferred orientations). Center-surround operations, modeled as 
a difference between fine and coarse scales, are applied on all 
features. Each set of features is stored in feature dependent 
saliency maps, called conspicuity maps in form of grayscale 
images where the intensity of each pixel is proportional to its 
saliency. After normalization, these maps are summed up 
linearly in the final saliency map. The full implementation 
details are available in [16].  

This computational attention model is employed in the 
context of this work to detect the salient features in each of the 
images in the dataset. The model described in [16] with 4 
orientation channels (0, 45, 90, and 135 degrees), a small blur 
radius of 0.01 and a single center scale (instead of the 9 in the 
original model) is used to compute the saliency map, SM. To 
remove the distortions due to the symmetrical Gabor filtering, 
the map is resized at the original size of the input image. 
Examples of saliency maps, SM,  are illustrated in Fig. 3 for the 
sedan in Fig. 1b. The images are presented as negatives to 
better visualize the results by showing the areas of highest 
saliency with darker shades. 

 
a) b) c) 

 
d) e) f) 

Figure 3.  Saliency maps for the sedan in Fig. 1b obtained using Itti et al.’s 
visual attention computational model: straight a) front and b) rear, c) driver 
side profile, d) passenger side profile, e) front three quarter view and f) rear 
three quarter view. 

B. Selection of the Number of Features for Classification  
In order to select automatically the number of salient 

features to be used for classification of all the images in a 
given dataset, a saliency threshold is defined as the ratio 
between the saliency contained in the most salient m points of 
an image as computed from the saliency map and the saliency 
of the whole image: 
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and m is the number of salient pixels to be considered, n is the 
total number of pixels in SM with SM being the saliency map 
as obtained in section IV.A, with m < n, and S is a list in 
decreasing order of saliency of all the pixels in SM from the 
most salient to the least salient.  

The number of salient features m to be used in the 
classification is selected such that all (at least 99.8% of) the 



images in a dataset reach a saliency threshold sT of at least 0.5. 
In other words, for all the images, the set of selected salient 
features represents at least 50% of the whole image saliency. 
To achieve this, values for m are increased gradually, initially 
with a step of 100. In each step, the first m values are selected 
from S. Eq. (1) is then used to compute the saliency threshold 
for each value of m for all the images in the dataset (in the 
context of this work, the images collected from a given 
viewpoint). The percentage of the number of images that have 
their saliency threshold sT larger than 0.5 with respect to the 
number of all images in the dataset is computed for each value 
of m. The procedure is repeated for larger values of m until the 
threshold of 95% is reached for the percentage computed. The 
step size for m is then decreased to 50 for a better tuning. The 
computation is stopped when for a given value of m, all the 
images (at least 99.8%) from the dataset have their saliency 
threshold sT at least 0.5. This value of m represents the optimal 
number of features to be selected for a given dataset and the 
set of salient features, Sm, is the set of the first m elements in 
the set S defined in eq. (2). 

Fig. 4 illustrates the number of salient features for the three 
quarter front side view dataset (e.g. images from camera 5). It 
can be observed that for 900 features, the percentage of 
images with the saliency threshold larger than 0.5 computed 
using eq. (1) is about 23% and that at 1300 features more than 
95% of images have the threshold larger than 0.5. For fine 
tuning, the step size is decreased to 50 and the computation is 
stopped when all images (99.8%) from the dataset contain at 
least 50% of their whole saliency, that is for m=1450 salient 
feature points in this case. 

 
 

Figure 4.  Saliency  thresholding to identify the optimal number of salient 
features for classification for the three quarter front view dataset. 

The same procedure is repeated for all the categories of 
vehicles being viewed from a given direction (e.g. front view, 
rear view, etc.) since some views might contain a higher 
number of discriminative features than others. This fine tuning 
for each view is possible in the context of this work because it 
is known that all the images from a given viewpoint are 
provided by a given camera and therefore the number of 
features identified can be used for all images coming from that 
camera. 

The number of points identified with the above mentioned 
procedure is 1250 salient features points for the front view 

image dataset, 1450 for the rear view and three quarter front 
view datasets, 1650 points for the lateral profiles (driver and 
passenger sides) and 1350 for the three quarter back view 
dataset. After the number of salient features is identified for 
each view of a vehicle, all the selected salient features Sm are 
replaced with 1s in SM and all the rest of the points with 0 to 
build a limited m-feature saliency map, SMl: 
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The limited saliency maps SMl with black pixels 
representing 1s, obtained for the 6 views of the sedan are 
shown in Fig. 5. They produce a sketched shape of the vehicle 
which provides rich inputs to the SVMs for classification. 
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Figure 5.  Salient regions used for classification for the sedan in Fig. 1b. 

V. TRAINING, TESTING AND EVALUATION OF SVM 
CLASSIFICATION 

A. SVM  Classification Based on Salient Features  
A binary SVM classifier is trained to recognize a specific 

type of vehicle from a given view against all the other types of 
vehicles viewed from the same direction. In order to build the 
training and the test sets, the limited m-feature saliency map 
SMl is downsampled to one third of the size (e.g. 30×50 
pixels) and transformed into a vector that is used as input in 
the classifier. The target set is built for each category by 
assigning 1 to all the vehicles representing that category 
(positive examples) and 0 to all vehicles belonging to other 
categories (negative examples). On the average, there about 40 
positive examples and 82 negative examples for each 
classifier. A 5-fold cross-validation procedure is used for 
building the classifier’s training and testing sets respectively. 
In the first fold, 80% of randomly selected input vectors built 
from all the images representing vehicles from a certain view 
and their corresponding targets are initially used for training 
and the rest of 20% for testing. In the next folds, the data used 
for testing is moved back into the training set and another 20% 
is selected for testing in order to ensure better performance 
evaluation.  

The set of vectors is classified using least-squares SVMs 
(LSSVM) [18] for each given viewpoint and the results are 
added to compute the confidence for a given category, as 
illustrated in Fig. 2. A LSSVM classifier with a Gaussian RBF 
kernel, the regularization parameter γ=10 and the squared 
bandwidth σ2=0.4 is used. The training for the 122 vehicles 
from a given viewpoint takes about 0.09 s. The testing per test 
image takes on average 0.03s. The classification rate is based 
on the confidence measure and computed as the number of test 
images correctly classified over the number of test images and 



averaged over the 5 folds. For each view, the classifier’s 
performance is reported in Table I. It can be observed that the 
average classification rate for every classifier is over 90%. The 
reason to use binary classifiers instead of a single multiclass 
classifier is that, during the experiments performed, the latter 
demonstrated lower performance, that is classification rates of 
about 75% were obtained. 

TABLE I.  AVERAGE CLASSIFICATION  RATES PER VIEW  

 Sedan Sports car SUV Per view 
View 1 86.9% 96.5% 93.9% 92.5%
View 2 88.7% 93.0% 94.8% 92.0%
View 3 90.4% 93.0% 89.6% 90.4%
View 4 90.4% 93.0% 93.0% 92.2%
View 5 91.3% 93.0% 96.5% 93.6%
View 6 87.8% 96.5% 98.3% 94.2%

 

To demonstrate that the correct number of salient features 
are selected, experiments are performed to show the increase 
in per view classification rate. Fig. 6 illustrates the change in 
the classification rate with the number of salient features for 
the three quarter front side view dataset. It can be observed 
that the classification rate increases up to 1450 salient features 
after which it starts to decrease. This conclusion is similar 
with the one derived in Fig. 4 where for 1450 saliency 
features, all images in the dataset contain at least 50% of their 
saliency. Similar results are obtained for all the other views, 
showing that the method for selecting the number of features 
to represent the vehicles is adequate. 

 
Figure 6.  Average classification rates for all vehicle categories for increasing 

number of saliency points for the three-quarter front view. 

To compute the final decision of the system, a MAX 
voting is performed on the results provided by the confidence 
scores of the multiple view classifiers for all the vehicle 
categories. The category that corresponds to the highest 
confidence classifier is the winner. An average result of 96% 
is achieved by considering all the views available for the 3 
vehicle categories. The improvement over the lower per view 
rates illustrated in Table I is obtained by taking advantage of 
decision based on multiple views. 

There is a limited set of situations when the system does 
not perform as expected, as illustrated in Fig. 7. Fig. 7a shows 
a sedan misclassified as an SUV, and cases where the system 
is not able to provide a decision based on the salient features 
are shown in Fig. 7b-7d. For example, for the sedan in Fig, 7b 
the confidence measures computed are 0 for all the 3 
categories, and for the sedan in Fig. 7c the measures of 

confidence provided by sedan equals the one provided by the 
sports cars. Finally, for the SUV in Fig. 7d, two of the 
confidence measures provided by the sedan and SUV are 
equal. 

 
a) b) c) d) 

Figure 7.  Sample cases where no decision is produced based on salient 
features.   

To cope with these situations, an additional set of two 
SVM classifiers is used to provide a decision based on the 
width and height of the vehicle derived from the front view 
and the rear view respectively. 

B. SVM Classification Based on Width and Height 
The saliency map obtained in section IV.A can be used at 

the same time to compute the width and height of the vehicle 
because it delimitates the contour of each vehicle. In order to 
compute the width and height, the image representing the 
saliency map, SM, is initially converted to binary and denoted 
SMbin. The vertical, W, and horizontal, H, projection vectors 
are built by summing all the columns of SMbin to obtain W and 
all the rows of SMbin to obtain H. The projection vectors are 
shown in Fig. 8. 

a) b) 

Figure 8.  a) Width and b) height projection vectors used to compute the 
vehicle’s width and height. 

The initial width w is set to the width of the initial image 
that is also equal to the one of the saliency map. Assuming a 
clean background of SMbin, the W vector is then searched 
starting from the left until a value different from 0 is identified 
(left vertical line in Fig. 8a). Each time a value of 0 (empty 
background) is found, the value of the w is decreased by 1. 
When the first value different from 0 is encountered, the 
search from the left side is stopped. The same procedure is 
used from the right side by decreasing the value of w until a 
value different than 0 (right vertical line in Fig. 8a) is found. 
In this way w will define the width of the car.  

A similar top and down search is performed on the H 
vector to compute the height h of the vehicle in the image. The 
vectors consisting of width and height [w h]  for each image in 
view 1 and view 2 respectively are associated with the 
corresponding vehicle type (1 for sedan, 2 for sports, 3 for 
SUV) and classified with SVM W-H 1 for the front view 
coming from camera 1 and SVM W-H 2 for the rear view 
coming from camera 2 respectively, as shown in Fig. 2. The 
best views for computing width and height are the front and 



rear views. The lateral profiles can be misleading because of a 
large variance in length within each class on one side and 
because length alone is not discriminative enough to allow the 
distinction between different categories on the other side. 

As in the previous case, a 5-fold cross validation procedure 
is applied for training and testing of the SVMs. A simple SVM 
with a Gaussian RBF kernel and the regularization parameter 
γ=10 and the squared bandwidth σ2=0.4 is used for each view 
to learn and then provide categories for the testing set. The 
average classification rate for all vehicle categories based on 
width and height information only is 93%. Correct 
classification cases are considered as those where the results 
provided by the two views are the same.   

C. Combined Classification Based on Salient Features and 
Width-Height Information 
The results when only the salient features are used for the 

6 views as in section V.A and when the results from the width-
height SVMs in section V.B are added are shown in Table II. 

TABLE II.  AVERAGE CLASSIFICATION RATES  FOR  ALL CATEGORIES  

Salient features  96%
Salient features + W-H information 99.13%

TABLE III.  STATISTICAL EVALUATION PER CATEGORY 

 Sedan Sports car  SUV 

 Sal. 
feat. 

Sal.+ 
W-H 

Sal. 
feat. 

Sal.+ 
W-H 

Sal. 
feat. 

Sal.+ 
W-H 

precision 0.68 0.97 1.00 1.00 0.96 0.98 
recall 0.90 0.97 1.00 1.00 1.00 1.00 

accuracy 0.82 0.98 1.00 1.00 0.98 0.99 
F1-score 0.77 0.97 1.00 1.00 0.98 0.99 

 

The average recognition rate is significantly higher when 
width and height information is used as well, reaching 
99.13%. The statistical evaluation of the results in terms of 
precision, recall, accuracy and F1-score, reported as an average 
over the 5-folds, is comparatively presented in Table III. A 
perfect classification is denoted by a value of F1-score equal to 
1. The values in Table III are very close to this value. The 
same improvement can be noticed when the width and height 
information is used in addition to the salient features for the 
sedan category. All the ambiguous cases illustrated in Fig. 7b-
d are correctly classified by the joint decision of SVM W-H 1 
and SVM W-H 2. The only misclassified vehicle that remains 
using the proposed combined classification is the one 
illustrated in Fig. 7a.  

It can be seen that the proposed classification technique 
obtains better results than the best solutions found in the 
literature [6, 8, 9] for a case where the discrimination between 
the classes is less clear. For example it is easier to differentiate 
between a sedan and a truck [7-9] than between a sedan, a 
sports car and an SUV.  

 
VI. CONCLUSION 

The work in this paper demonstrates that biologically-
inspired features derived from visual attention combined with 

series of binary support vector machines can achieve fast 
classification, with exceptional recognition rates for the task of 
multi-view vehicle classification. As future work, the system 
will be expanded to include more classes of vehicles into the 
categorization task and experiments will be performed to 
reduce the number of cameras used by identifying the 
viewpoints that make the most important contribution to the 
classification, in order to decrease the implementation cost 
while maintaining the high performance. 
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