A Simple but Effective Approach to Video Copy Detection

Gerhard Roth, Robert Laganiere, Patrick Lambert, Ilias Lakhmiri, and Tarik Janati
gerhardroth@rogers.com, laganier @site.uottawa.ca, patrick.lambert @univ-savoie.fr

University of Ottawa, School of Information Technology and Engineering
Ottawa, K1N 6N5, Canada

Abstract

Video copy detection is an important task with many ap-
plications, especially since detecting copies is an alterna-
tive to watermarking. In this paper we describe a simple,
but efficient approach that is easy to parallelize, works well,
and has low storage requirements. We represent each video
frame by a count of the number of SURF interest points in
each of 4 by 4 quadrants, a total of 16 bytes per frame. This
representation is tolerant of the typical transformations that
exist in video, but is still computationally efficient and com-
pact. The approach was tested on the TRECVID copy de-
tection task, for which approximately 15 different groups
submitted a solution. Performance was among the best for
localization, and was approximately equal to the median
with regards to the false positive/negative rate. However,
performance varies significantly with the video transforma-
tion. We believe that the change in gamma, and decrease in
video quality transformations are the most common in prac-
tice. For these two transformations our method works well.

1. Introduction

A copy is a segment of a video derived from another
video, usually by means of various transformations. De-
tecting copies is an important and new topic that provides
an alternative to watermarking for copyright control and
other applications. There are many possible solutions to this
problem, so it is necessary to provide an evaluation frame-
work. Below we list some features that we believe should
be part of any successful copy detection system.

Every copy detection system will execute an indexing
stage to extract search information from a video database,
and then the search stage will use this information to match
against a given video query. Since the indexing stage is
done off-line, it can be complex and time consuming. How-
ever, given the rapidly increasing amount of video data that
is being created, the amount of index information saved per

video database entry should be as small as possible. By
contrast to indexing, the search process should be as fast
as possible since it is done on-line. In practice a copy de-
tection system will need to run on parallel hardware, such
as multiple CPUs or even GPUs. Therefore the search pro-
cess should be scalable and easy to parallelize. In summary,
a system that satisfies these criteria is what we call effi-
cient. It goes without saying that any copy detection system
should perform well and be effective, but how can this be
quantified? To be effective the system should be tolerant to
the typical transformations that occur in video, such as the
quantization due to rencoding, or the insertion of station lo-
gos and identifiers. It is not an easy task for a copy detection
system to be both efficient and effective.

Keeping these two criteria in mind, we will look at the
current set of solutions to the problem. In general, they
can be divided into two groups; those that use global fea-
tures and those that use local features. Typical global fea-
tures, such as moments, or image statistics, can be extracted
quickly and efficiently, and they provide compact index in-
formation [5, 6]. While they are also efficient in terms of
search, they are not discriminatory enough to provide good
performance since they cannot deal with many common
video transformations. Given the success of local features
such as SIFT in image matching and search, it is natural to
attempt to use these features in video copy detection [4, 3].
Their extraction is usually slow, which is not a problem,
since this is done off-line. Local features are indeed dis-
criminatory enough to be effective because of their invari-
ance to different image transformations. This means they
are also tolerant to many types of video transformations
(such as quantization), but not to all global transformations
(such as image flip). However, they require a considerable
amount of storage per image frame, since there is a high
dimensional descriptor associated with each local feature
point. This means that systems based on local features are
typically not efficient, because of the size of the index file,
and the difficulty of parallelizing the search process.

2. Local Index Feature Count

Looking at the past solutions we have come to the con-
clusion that a combination of local and global features is
the best way to solve the problem. In our approach we first
extract a set of SURF feature points in each video frame
in the database. The SURF algorithm is a modern scale
invariant feature detector [2], similar to the well known
SIFT features. The SURF features extracted from a typi-
cal single video frame are shown in Figure 1 (marked by
a cross). Now as is usual for such local features, there
is a high dimensional feature vector associated with each
of these feature points (most often, 64 integers per inter-
est point). We do not use these feature vectors since this
would be too much information to store, and a feature-based
comparison across all frames would be prohibitive in terms
of computational load. Instead our descriptor for a single
frame is simply a count of the number of SURF points in
each of sixteen (four by four) equal quadrants. Since there
are rarely more than 255 SURF features in a quadrant, we
store only sixteen bytes for each video frame (in the rare
cases where more than 255 features are detected, we fix the
value at 255). Experiments with different image partition-
ing methods showed that this sixteen byte descriptor is sur-
prisingly discriminatory and therefore tolerant to different
video transformations. One reason is the actual number of
SUREF feature points changes with the characteristics of the
image, another is that the descriptors for a number of con-
secutive image frames must agree for a valid match. Finally,
the SURF features themselves have a certain invariance to
image transformations due to their nature.

To summarize, we use a combination of local (SURF)
and global (16 counts) features, which is both compact and
discriminatory. This descriptor is inherently invariant to
resizing (up to a certain extent) and can be made invari-
ant to flipping and mirroring just by changing the order of
the count vector. SURF features are also quite resistant to
image deterioration and coding artefacts. For each video
database entry we create an associated index file of size
sixteen bytes times the number of frames. This is a very
compact representation as Gigs of video data can be repre-
sented by just a few Mb of feature count data. For example,
if there are 25 frames per second, then one hour of video
data with 90,000 frames requires only 1.4 MBytes of index
information. A video index file is created in an off-line,
pre-processing phase for every video file in the database, at
approximately three to five times the video frame rate.

2.1 Video Similarity Measurement

Assume we have a database of videos that have been pre-
processed in this fashion to create a set of index files, and
that we are given a query video. Once we have computed

Figure 1. The features (SURF points) in a
single frame. Our descriptor is simply the
number of feature points in each quadrant
[3,7,...,3]

the index feature counts for the query video by the same pre-
processing, the question is how to find the best match with
the feature counts of the video database. This requires us
to compare the SURF counts of a video query to the SURF
counts for each entry in the video database. Now to actually
compare a video query to a database entry we must com-
pare their sequences of SURF feature counts for all possible
matching video frames. This is shown diagrammatically in
Figure 2 for a given video database entry. First we build a
cross table where we compute the normalized L1 difference
between the vector of 16 SURF feature counts for every
query frame and every frame in the database video. When
comparing two feature count vectors the normalization pro-
cess divides their L1 difference by the sum of the feature
counts for the two vectors, and scales the result to be be-
tween O and 255. If there are K frames in the query video,
and N video frames in the database video, then this takes
O(K N) time. However, we subsample the database frames
by a factor of at least ten (since typically N >> K), so the
time to compute each normalized difference is very small.
It is also clear that the process of creating this crosstable of
normalized differences of the SURF feature counts can be
easily parallelized.

We use this crosstable to find the longest matching frame
subsequence between the query video and database video.
‘We must search for matching subsequences because it is not
necessary that an entire query be contained in the database
video, a match for any sub-part of the query video is accept-
able. To do this we first threshold each of these difference

Query Data Base

||

—|z|o|n|m|o|o|

16

> (I 1[1']-A[i]|)

i=1

Figure 2. Measuring video similarity. Each
frame of the query is compared with each
frame of the input video. A cross-table of
comparison of the vector of SURF counts is
created; the similarity measure corresponds
to the longest diagonal with a distance score
less than a given threshold.

scores in the crosstable to transform this table into a binary
form. We found that the exact value of this threshold is not
too critical in the detection of a similar video segment, and
we use the same threshold value for all our experiments.
Then as shown in Figure 1 we find the longest non-zero di-
agonal sequence in the thresholded crosstable, which is the
longest sub-sequence match between the query video and
that particular database video. However, as shown in Ta-
ble 1, we allow for dropped frames and outlier frames by
skipping over a small number of matches in the diagonal
sequence which do not pass the threshold test. In this way
a small number of badly matched frames does not cause an
otherwise long matching video sequence to be ignored.

The best match produces a length (number of matched
frames) and an average frame difference for each overlap-
ping frame (the normalized L1 difference of the vector of
16 SURF counts). The match length along with the starting
and ending frames in both the query and match video are
also known. It is possible to use only the match length as
the decision criteria to reject or accept a match. However,
this does not deal with the fact that some good matches have
a very short match length, but also have a very low aver-
age frame difference. To deal with this we boost the match
length artificially when the average frame difference for a
match is low. This process is explained in more detail in the
Experimental Results section.

2.2 Dealing with Video Transformations

A key issue in copy detection is in dealing with the
transformations that occur in video as it is transmitted and

A B C D E F
125 307 243 124 311 245
56 121 212 125 325 215
107 61 154 115 299 184
245 130 58 321 287 183
102 177 236 125 145 243
225 317 253 115 43 322

DN b W =0

Table 1. Measuring video similarity. Each
frame of the query is compared with each
frame of the input video. A cross-table of
comparison of the vector of SURF counts is
created; the similarity measure corresponds
to the longest diagonal with a distance score
less than a given threshold. Here with a
threshold of 70, a copy is found between
query frame 1-5 and database video frame B-
F; note the non-matching frames 4,D (possi-
ble dropped frames) accepted in the diagonal
sequence.

stored. Obvious transformations are quantization and the
embedding of logos (called insertion of patterns). One of
the first systematic approaches to the performance evalua-
tion of copy detection was the Muscle database [1]. Our
first approach to copy detection used the PACT representa-
tion [8]. However, it did not perform well on the standard
transformations in the Muscle database. We mention this
because the PACT representation has shown itself discrim-
inatory enough to be successful in place recognition tasks,
but it did not succeed in dealing with the typical copy de-
tection transformations. For this reason, we came up with
our new representation, the count of SURF features, whose
performance in copy detection was much superior.

Since copy detection is an important task, NIST has
added it to the TRECVID family of performance evalua-
tion databases [7]. The Muscle database [1] was the basis
of the current TRECVID copy detection database, which is
a much expanded version. Since matching untransformed
video is relatively simple, the TRECVID copy detection
task takes each query video and transforms it in a number
of different ways. The TRECVID transformations include
picture-in-picture, insertion of patterns, rencoding, change
in gamma, decreasing the quality, post production transfor-
mations, and combination of everything. We show a num-
ber of these transformations in Figure 3. The decrease in
quality, and post-production transformations are actually a
combination of the individual transformations, of which up
to 3 can be applied simultaneously. The combination of ev-
erything transformation allows for up to 5 of the other possi-
ble transformations simultaneously. The idea is to simulate
all the changes that might occur in a query video when it

is broadcast, since the transformed version is what must be
matched to the database. It is clear that the most difficult
task is dealing with these different types of transformations,
especially since a query video can have more than one trans-
formation applied to it.

Figure 3. A number of transformations: Pic-
ture in Picture, pattern insertion, rencoding,
and compression

The transformations which simply modify the image
without inserting or deleting any content (such as blur, ren-
coding, gamma noise) are dealt with automatically by the
invariance of the SURF feature point detection process, so
they do not require any other specific processing. However,
transformations that actually change the video by inserting
or detecting part of each frame must be dealt with explic-
itly. This is done by a preprocessing step which is applied
to every query in which a mask image is calculated. This
mask image consists of the thresholded variance for each

frame pixel over the entire video. The image regions in the
mask file that have low variance are often not part of the
video. For example, they may be inserted patterns (such as
a logo) or even black areas (due to a shift, crop or letterbox
transformation). The process of creating the mask image
is shown in Figure 4, where this image is displayed for a
given query video. The SURF counts for image quadrants
which are masked are then adjusted during the search pro-
cess so that the masked regions are ignored. Different types
of mask images for text insertion, crop and shift are shown
in Figure 5. This process is applied to each video query,
to produce a mask image that is used to adjust the SURF
counts during the search process. Of course, if there are no
masked pixels then there is no impact on the search.

When o =0 draw the pixels as white

2 (z,—p)?
PR, yn
=1

Otherwise draw the pixels as black

Figure 4. The mask creation process for a sin-
dle query video.

Pcilytech'Savoie

£cole d'ingéniours

Palytech'Savaie

Figure 5. The masks for image and text inser-
tion, along with a shift.

The pre-processing necessary to deal with an inserted
video is more complex; here we attempt to detect whether
the query video is imbedded inside another video. If so, we

need to extract the query video and process it separately.
In practice, the success rate for dealing with insertion of
video is very low. It should be noted that this is differ-
ent than the insertion of still pictures or patterns, which
can be dealt with by the mask image. For this reason, in
our experiments we do not show any results for the inserted
video transformation since we consider it to be uncommon.
One of the more difficult of the simple transformations is
an image flip (sometimes called a mirror flip). The method
used to deal with an image flip (a post production trans-
formation) is shown in Figure 6. With our representation
we can simply mirror the SURF count descriptor for each
video frame of the query. There is also specific process-
ing for the ratio and shift transformations (members of the
decrease in quality and post-production transformations),
since these require an adjustment of the region sizes when
comparing the image descriptors. An important transfor-
mation that is a member of the decrease in quality set is
dropping frames, which simulates error in the transmission
or storage of video. As we have mentioned in our section on
Video Similarity Measurement, this is dealt with implicitly
by the matching process which skips over a small number
of frames in a longer matching video subsequence that do
not pass the match threshold test.

1 2 3 4 4 3 2 il
5 6 i 8 5 8 7 6 5
9 10 11 12 12 1, 10 9
13 14 15 16 16 15 14 13

Figure 6. The processing for dealing with im-
age flips

3. Experimental Results

We will now describe our results when processing the
TRECVID database for a certain set of transformations.
However, first we will revisit the issue of using both the
match length and average match value as the decision crite-
ria. The match length is the number of matched frames, and

the average match value is the normalized average frame
difference between the SURF counts over that match. The
difficulty is that simply using the number of matched frames
to decide on whether there is a match is sometimes not suf-
ficient. This is because for a certain percentage of good
matches the matching frame count is low, so using only the
match length as an evaluation criteria would eliminate many
true positives. However, we hypothesized that in many of
these cases the average match value was also low. In other
words, there are sometimes short sequences that are very
good matches. To validate this hypothesis, we computed
the match length, and the average match value for a small
number of videos (approximately 100). These were then
visually classified as a positive or negative detection, as
shown in Figure 7. In this figure the triangles are the incor-
rect matches (false positives) and the rectangles the correct
matches (true positives) as obtained by manual inspection.
It is clear that our hypothesis is correct, and that simply us-
ing the match length (which would be a vertical line) would
eliminate many true positives. Possibly a function such as
the exponential curve drawn in the figure could be used as
the decision criteria, but for now we use a simpler approach.

We would like our decision threshold to be a function
of both the match length and the average match value score.
Our current approach is to simply boost the match length ar-
tificially when the average match value is low. Specifically,
if the average match value is less than 40, the match length
is boosted by 500, if it is 60 or higher there is no boost,
and between 40 and 60 the match length is boosted propor-
tionally. What this means is that matches that are shorter in
length will be accepted if they have a lower average match
value score. In our experiments this simple boosted scoring
method performed better than non-boosted approach for ev-
ery TRECVID transformation.

We now provide more details on the TRECVID method-
ology. TRECVID provides a test collection of about 500
hours of video and a non-test collection of about 200 hours,
which have no overlap. From the test collection a set of
about 140 queries are randomly selected, with a length
of between one/half to five minutes. About half of these
queries are embedded in a randomly selected video from
the non-test collection which is of similar length. Finally,
about 60 videos of length one/half to five minutes are ran-
domly selected from the non-test collection, which by defi-
nition do not occur in the test collection. So one third of the
queries have no match, one third are a complete match, and
one third are a partial match.

Given a query video the copy detection task should find
the sub-part of that video which matches a section of any of
the test videos. The fact that one third of the query videos do
not have any match in the test collection makes the problem
more difficult, and means that the copy detection process
must also return “no-match” in certain cases. If a match is

found, the copy detection process should specify the match
location and length in the query video, and in the test video
collection. It should be pointed that we cannot assume that
there is at most one match to the query video in the test
video collection, since this test video collection many con-
tain duplicates. It is therefore important for the copy detec-
tion process to find all the matches for a given query video,
if they exist, and not just the best match.

In TRECVID the search is made more difficult by taking
each of the original 200 query videos and transforming each
query by the 7 different transformations. We show the re-
sults when these transformations are picture-in-picture, in-
sertion of patterns, strong rencoding, change of gamma, de-
crease of quality, post production alterations, and combina-
tion of everything. This produces a total of 1400 queries
that are to be matched. This is the final set of queries used
in the video only search component of TRECVID. While
TRECVID has an audio component to the search, and a
combined audio/video component, in this paper we will dis-
cuss only the video component of the search process.

There are a number of performance measures used in
TRECVID, one of which is localization error. Given that a
copy has been detected, how accurately is the position and
length of the query localized in the test video? Our video
matching approach performs well in terms of the localiza-
tion error, which is a consequence of the construction of the
algorithm. In fact, it is one of the best TRECVID submis-
sions in terms of the localization error. Since a frame is rep-
resented with only 16 bytes, it is possible to compare each
frame of the query with each frame of the video database,
so if we get a match we know the location very accurately.

The next performance measure used in TRECVID is the
speed of the copy detection which is difficult to evaluate in
an objective fashion. Our system is slower than the me-
dian TRECVID submission in terms of execution speed,
and takes a few minutes to search 400 hours of video for
a typical query. However, any practical copy detection sys-
tem will need to run on parallel hardware. The fastest ap-
proaches in TRECVID use complex data structures (such as
K-D trees) to speed up their search process, but the use of
these global data structures makes parallelization more dif-
ficult. The reason is that once such a data structure has been
created for a given set of videos in the test database then this
is an implicit level of granularity for any parallelization. If
the copy detection process then needs to be redistributed to
a different number of processors, then this global data struc-
ture must be recomputed. By contrast, our search algorithm
is very simple, and operates independently for every pair of
query/test videos that must be processed. So it is very easy
to run this search process in a distributed fashion, and also
to distribute the index creation process.

The last performance measure used in TRECVID is the
false positive/negative rate. In fact, TRECIVD uses various

profiles that quantify the cost of a false positive relative to a
false negative. The details of these different profiles are dis-
cussed in [7]. In this paper we will use the results from the
TRECVID video only evaluation (where the ground truth is
known), but we will display these results using the standard
response (ROC) curve. In this type of 2D plot the X axis
is the probability of a false positive (saying the query is a
copy when it is not), and the Y axis is the probability of a
true positive (saying the query is a copy when it truly is).
Every point in this 2D plot represents an operating point,
which is the false positive/true positive probability of de-
tection that results for using a particular decision threshold
to classify the queries.

In our case the decision threshold is the boosted matched
length, which is used to classify a query as a copy, or not.
For every set of query/test video pairs the copy detection
process produces a decision value. If this decision value is
above a given threshold, then this query is labelled as being
a copy that exists in that particular test video. Every point
on the ROC curve represents the set of query results for a
given value of the decision threshold. The copy detection
process is free to use any decision process it deems appro-
priate, but it is expected that the higher the decision value
for a given query/test video pair, the more likely it is that
the query is a copy. The ROC curve shows the system per-
formance clearly, and leaves the actual decision threshold
that will be used open. The closer the ROC curve to a step
function, the better the performance. For copy detection in-
creasing this threshold makes it more likely that there are
fewer false alarms but also decreases the chance of a true
positive, that is of finding a copy. The value of the decision
threshold that is appropriate is therefore always a trade-off.

In Figure 8 we see the ROC curve for transformation
6, which is a decrease in quality plotted with and without
boosting. Here we see the effect of using a decision thresh-
old which is a combination of match length, and average
match value, relative to a threshold that uses only match
length. From this graph we see that the using both criteria
produces a curve which is higher on the graph, which means
that the performance using boosting is superior. This supe-
riority was clear over all the TRECVID transformations, so
from now we will show only boosted results.

In Figure 9 we see the ROC curve for all seven trans-
formations. The results vary, but it should be kept in mind
that many of these transformations are very extreme, and
unlikely to occur in practice. In our opinion the most likely
transformations to occur in practice are number five (change
in gamma), and especially number six (decrease in quality)
that was shown in the previous graph. As video is trans-
ferred and rencoded it often decreases in quality so we will
focus our discussions on these transformations. We note
that for these two transformations it is easy to find a deci-
sion threshold that results in a 70 percent detection rate, and

about a 20 percent false alarm rate. While this may not seem
like good performance, in practice the decrease in quality
transformations used in TRECVID are more dramatic than
what is found in most applications. So these performance
curves are actually a lower bound on the performance of our
system, which is more than sufficient in practice.

4. Conclusion

In terms of performance our method ranked in the middle
of the TRECIVD submissions for copy detection. However,
on the more common transformations (gamma and image
quality change) it performs well. In terms of the localiza-
tion our approach is one of the best, as would be expected
from a system that compares the video sequences for over-
lap. More importantly, we believe that this method satisfies
many of our design goals.

We are working on a number of improvements; imple-
menting the process on GPU hardware, having a dynamic
frame subsampling strategy, improving the decision scoring
by a better combination of match length and average match
value, and using simpler features (such as Harris or Fast
corners).

References

[1] http://www-rocq.inria.fr/imedia/civr-bench/data.html.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. J. V. Gool. Speeded-up
robust features (surf). Computer Vision and Image Under-
standing, 110(3):346-359, 2008.

[3] M. Hertier and S. Foucher. Video copy detection using latent
aspect modeling over sift matches. In CRIM Notebook Paper
- TRECVID, 2008.

[4] Y. Ke and R. Sukthankar. An efficient parts-based near-
duplicate and sub-image retrieval system. In /EEE Transac-
tions on Audio, Speech and Language Processing, volume 16,
pages 396-407, 2008.

[5] C. Kim and B. Vasudev. Spatiotemporal sequence matching
for efficient video copy detection. In [EEE Trans. Circuits
Syst. Video Technology, volume 15, pages 127-132, 2005.

[6] A.Kimura and K. Kashino. A quick search method for audio
signals based on a piecewise linear representation of feature
trajectories. In Proceedings of the 12th annual ACM interna-
tional conference on Multimedia, pages 869-876, 2004.

[7]1 A.F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns
and trecvid. In MIR "06: Proceedings of the 8th ACM Interna-
tional Workshop on Multimedia Information Retrieval, pages
321-330, New York, NY, USA, 2006. ACM Press.

[8] J. Wu and M. Rehg. Where am i:place instance and category
recognition using spatial pact. In Computer Vision and Pat-
tern Recognition, 2008.

* Mo
L

axpdd
200

lenght

Figure 7. The thresholding criteria, based on match length and average match score.

Correct Detection Probability

04 %x' Decrease in Quality transformation with boosting —+—
X Decrease in Quality transformation, no boosting ---x---
X
03 g
,XX/
02 [~ //
- %X
//”Xxx
0.1 ' L l L
0 0.2 0.4 0.6 0.8

False Alarm Probability

Figure 8. The ROC curve for decrease in quality transformation, with and without boosting.

Correct Detection Probability

0.9

0.8

0.7

0.6

0.5

0.4

0.3

.
.l
Ili
!
- |
)
n =l
o e 2 i in Pi 7
K o? Picture in Picture —+—
*i LI Insertion of Patterns ---x---
X ..‘ X Strong Rencoding ------
a8 X o Change of Gamma &~ T
TR % : Decrease in Quality —-—=-

Post Production Transform ---G---
Combination of Everything -- -e-- -

0.2 0.4 0.6 0.8
False Alarm Probability

Figure 9. The boosted ROC curve for all seven transformations.

