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Abstract.  There has been much work concentrated on creating accurate shot 
boundary detection algorithms in recent years.  However a truly accurate 
method of cut detection still eludes researchers in general.  In this work we pre-
sent a scheme based on stable feature tracking for inter frame differencing.  
Furthermore, we present a method to stabilize the differences and automatically 
detect a global threshold to achieve a high detection rate.  We compare our 
scheme against other cut detection techniques on a variety of data sources that 
have been specifically selected because of the difficulties they present due to 
quick motion, highly edited sequences and computer-generated effects.   

1. Introduction 

In 1965, Seyler developed a frame difference encoding technique for television 
signals [1]. The technique is based on the fact that only a few elements of any picture 
change in amplitude in consecutive frames. Since then much research has been de-
voted to video segmentation techniques based on the ideas of Seyler.  Cut detection is 
seemingly easily solved by an elementary statistical examination of inter-frame char-
acteristics; however a truly accurate and generalized cut detection algorithm still 
eludes researchers.   Reliable shot boundary detection forms the cornerstone for video 
segmentation applications as shots are considered to be the elementary building 
blocks that form complete video sequences.  Applications such as video abstraction, 
video retrieval and higher contextual segmentation all presuppose an accurate solution 
to the shot boundary detection problem [2,3,4,5,6]. Automatic recovery of these shot 
boundaries is an imperative primary step, and accuracy is essential. 

A hard cut produces a visual discontinuity in the video sequence.  Existing hard cut 
detection algorithms differ in the feature(s) used to measure the inter-frame differ-
ences and in the classification technique used to determine whether or not a disconti-
nuity has occurred. However, they almost all define hard cuts as isolated peaks in the 
features time series.  In [7, 10] complete surveys are given on techniques to compute 
inter-frame differences and classify the types of transition.  A variety of metrics have 
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been suggested to work on either raw or compressed video forming the basis of our 
comparisons.  Figure 1 outlines our proposed method. 

 

Fig. 1. Diagram of proposed system to compute cuts 

This paper is structured as follows: Section 2 details our method for quantifying in-
ter-frame differences by using a stable feature tracking mechanism.  Section 3 details 
our method of automatic threshold selection by examining the density properties of 
the inter-frame differences.  Section 4 performs a variety of experiments.  Section 5 
outlines areas that present difficulties for the proposed method; we summarize the 
results and draw some conclusions.  In this work we concentrate on the detection of 
cuts as they represent instantaneous frame pair changes in time.  The method is easily 
expandable to allow inferences over several frames in time.  i.e. Computing the dis-
placement vectors of tracked features yields object and camera motion information. 

2. Quantifying Interframe Differences  

We propose a new approach that uses feature tracking as a metric for dissimilarity.  
Furthermore we propose a methodology to automatically determine a threshold value 
by performing density estimation on the squared per-frame lost feature count.  It has 
been reported that the core problem with all motion-based features used to detect cuts 
is due to the fact that reliable motion estimation is far more difficult than detecting 
visual discontinuity, and thus less reliable [7].  Effectively, a simple differencing 
technique is replaced with a more complex one.  Experimentally we have found that 
the proposed feature tracking method performs flawlessly on all simple1 examples 
where pixel and histogram based methods did not achieve such perfect results.  We 
continue by outlining the feature tracking method, a pruning algorithm and a signal 

                                                           
1 Here we define simple to be cases of clearly obvious cuts, which were well separated over 

time and space. 
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separation methodology.  We follow up in the next section with a method to dynami-
cally select a global threshold.  Each block within Figure 1 is detailed in this section 
and the next.  

2.1 Feature Tracking 

Previous feature based algorithms [8,9] rely on course-grained features such as 
edges and do not track edge locations from frame to frame.  Rather they rely on suffi-
cient overlap of a dilated edge map and search a very small local area around the 
original edge locations.  In contrast, the proposed method of tracking fine-grained 
features (corners and texture) on a frame-by-frame basis using a pyramid approach is 
less constrained by the original feature location.  Furthermore, the edge based method 
could only achieve frame rates of 2 frames per second [10], while our proposed 
method achieves over 10 frames per second on standard video dimensions.  These 
reasons allow our proposed method to be more robust to object and camera motions 
yet remain practical.  Cuts are detected by examining the number of features success-
fully tracked in adjacent frames, refreshing the feature list for each comparison. 

The feature tracker we use is based on the work of Lucas and Kanade [11].  Space 
constraints prevent full disclosure of the work in [11], but briefly, features are located 
by examining the minimum eigenvalues of a 2x2 image gradient matrix. The features 
are tracked using a Newton-Raphson method of minimizing the difference between 
the two windows around the feature points.  Due to the close proximity of frames in 
video sequences, there is no need to perform affine window warping, which greatly 
reduces the running time requirements.  The displacement vector is computed using a 
pyramid of resolutions because processing a high resolution image is computationally 
intense.  A multi-resolution pyramid within the feature tracker reduces the resolution 
of the entire image and tracking occurs by locating a features general area in the low-
est resolution and upgrading the search for the exact location as it progresses up the 
pyramid to the highest resolution. 

2.2 Pruning False Tracking 

In the case of a cut at frame i, all features should be lost between frames i and i+1.  
However, there are cases where the pixel areas in the new frame coincidentally match 
features that were being tracked.  In order to prune these coincidental matches, we 
examine the minimum spanning tree of the tracked and lost feature sets.  We can see 
from Figure 2 (b), in the case of a cut, that a very small percentage of features are 
tracked.  These tracked features are, in fact, erroneous.  We can remove some of these 
erroneous matches by examining properties of the minimum spanning tree (MST) of 
the tracked and lost feature sets.  By severing edges that link tracked features to lost 
features we end up with several disconnected components within the graph (MST).  
Any node in the graph that becomes a singleton has its status changed from tracked to 
lost, and is subsequently included in the lost feature count.  The property we are ex-
ploiting here the fact that erroneously tracked features will be minimal and sur-
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rounded by lost features.  Clusters of tracked (or lost) features therefore have local-
ized support that we use to lend weight to our assessment of erroneous tracking. 

  
(a) (b) 

Fig. 2. Minimum spanning trees for two consecutive frames (+) are tracked features, (X) are 
lost features. (a) high proportion of successfully tracked features from previous frame (b) fea-
tures cannot be found in high proportion, indicating a cut.  The circle shows erroneous tracking. 

Our inter-frame difference metric is the percentage of lost features from frames i to 
i+1.  This corresponds to changes in the minimum spanning tree, but is computation-
ally efficient.  Because we are looking to automatically define a linear discriminator 
between the cut set and the non-cut set, it is advantageous to separate these point sets 
as much as possible.  In order to further separate the cut set from the non-cut set, we 
square the percent feature loss which falls in the range [0..1].  This has a beneficial 
property of ensuring the densities of the cut set and the non-cut set are further sepa-
rated and thus ease the computation of a discriminating threshold.  The idea here is 
that in the case of optimal feature tracking, non-cut frame pairs score 1 (all features 
tracked) and cut frame pairs score 0, no features tracked.  Squaring, in the optimal 
case, has no effect as we are already maximally separated. However, in practice, 
squaring forces the normalized values for non-cut frame pairs closer to zero.  Figure 3 
shows this stretching of the inter-frame differences and how cuts and non-cuts are 
well separated.  Now that we have determined interframe differences, we continue by 
discussing the classifier. 

 

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181

Frame Number

%
 L

os
t F

ea
tu

re
s

 
Fig. 3. Cuts expose themselves as high inter-frame feature loss. 
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3 Automatically Determining a Linear Discriminator 

There is no common threshold that works for all types of video.  Having a differ-
ence metric and a method to further separate the cut set from the non-cut set, we can 
now compute the linear discriminator for the two sets.  There are two classes of frame 
differences, cuts and non-cuts; and our goal is to find the best linear discriminator that 
maximizes the overall accuracy of the system.   

The cut set and the non-cut set can be considered to be two separate distributions 
that should not overlap, however, in practice they often do.  When the two distribu-
tions overlap, a single threshold will result in false positives and false negatives.  An 
optimal differencing metric would ensure that these two distributions do not overlap; 
in such a case the discriminating function is obvious and accuracy is perfect.  Figure 4 
demonstrates this.  The quality of the difference metric directly affects the degree to 
which the two distributions overlap, if any; and until an optimal difference metric is 
proposed, the problem of optimal determination of the discriminator must be consid-
ered. 

We have opted to examine the density of the squared inter-frame difference values 
for an entire sequence.  The idea here is that there should be two distinct high-density 
areas, those where tracking succeeded (Low feature loss) and those where tracking 
failed (high feature loss).  In practice, this situation appeared about 50% of the time in 
our data set.  We will introduce the idea of a candidate set in section 3.2, which is the 
set of features that can be discriminated by zero crossings of the probability density 
function that characterizes the densities of the inter-frame differences.  It needs to be 
noted here that while we examine the density for the entire sequence to determine a 
global threshold, it is possible to apply the method outlined next in a windowed man-
ner to determine localized thresholds.    

3.1 Density Estimation 

In order to auto-select a threshold, we examine the frequency of high and low fea-
ture loss.  We are looking to exploit the fact that the ratio of non-cuts to cuts will be 
high, and therefore the ratio of low feature loss frame pairs to high feature loss frame 
pairs will also be high.  As the frame to frame tracking of features is independent of 
all other video frames, we have n independent observations from an n+1 frame video 
sequence.  The extrema of the probability density function (PDF) can be used to de-
termine the threshold to use.  We can use the statistical foundations of density estima-
tion to estimate this function. 

The kernel density estimator for the estimation of the density value f(x) at point x 
is defined as  

1

1ˆ ( )h

n
i

i

x x
f x K

nh h=

− =  
 

∑  (1) 

Where K(●) is the so-called kernel function, h is the window size, and n is the number 
of frames.  Through a series of experiments, the triangular kernel (K(α) = 1- |α|) was 
selected because it did not over-smooth locally, making the determination of extrema 
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easiest.   Kernel widths of 7 have provided good results in our experiments.  The PDF 
can be estimated in linear time because we have a small histogram with only 101 bins. 

3.2 The Candidate Sets  

Non-overlapping sets of distributions are very easily determined by looking for a 
large plateau of zero density as in Figure 4(a).  The first appearance of a large plateau 
of zero density indicates the range of the separation point.  Selecting the extreme end 
point (closest to the cut set) for the threshold has yielded the correct result on all cases 
of non-overlapping distributions in our test suite.  In practice, the problem is not so 
simple.  We next introduce the ideas around what we term the candidate sets.   

 
Fig. 4. (a) Non-overlapping distributions of cuts/non-cuts, error free discrimination  

(b) Overlapping distribution of cuts and non-cuts.  Error region outlined in gray, and 
maximum Recall, Precision and F1 score thresholds pointed out. 

 

We define 3 candidate sets, where each set contains the frames that maximize the 
precision, F1 and recall rates.  Precision is the portion of the declared cuts that were 
correct and is maximized when the non-cut distribution ends.  Recall is portion of the 
cuts that were declared correctly and is maximized when the cut distribution ends.  
The F1 is a combination of precision and recall and is maximized at the intersection 
of the two distributions.  Figure 4(b) shows the overlapping distributions and the 
position of the candidate set thresholds.  Depending on user need, precision, recall or 
best overall performance (F1), thresholds for these candidate sets can be determined.  
The candidate sets are the 3 thresholds that for convenience we will call the precision 
set (P), the F1 set (F) and the recall set (R).   The candidate sets are determined by 
examining zero crossings of the first derivative of the computed probability density 
function.  There are often many consecutive zero crossings of the function over time, 
so we use a modified function G(x) to make the large changes in density more appar-
ent.   G(x) is defined using the following rules:   
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The zero crossings are determined by starting from 100 percent feature loss and 
examining G(x) as x (% feature loss) decreases.   

  

• (P) is the first zero crossing  
• (F) The position of the minimum of PDF corresponding to the plateau of G(x) 

given: 
o If the next zero crossing has opposing direction as the first and is part of 

the plateau of first zero crossing use this plateau (i.e. is u or n shaped), 
otherwise use the next plateau. 

• (R) The next subsequent zero crossing 

The arrows in Figure 5(b) point to the zero crossings computed using the rules.  
The first zero crossing is at 98 (P) and because the next zero crossing at 93 is also an 
upwards direction (u shaped), we skip to the next plateau to determine F.  The next 
zero crossing (not on the plateau) is used for R. 
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5 Experimental Results 

In the experiment that follows, a selection of video clips that represent a variety of 
different video genres are used.  The data set was specifically selected based on char-
acteristics that cause difficulties with known methods.  In particular, we selected clips 
with fast moving objects, camera motions, highly edited and various digitization 
qualities and lighting conditions.   We compare the results of the proposed method 
against a pixel-based method with relative localization information and a histogram 
based method [12].  For the proposed method, we ran each sample through the system 
once and computed the F1 candidate set threshold as outlined in Section 4.   For the 
two comparison methods, we preformed binary search to find the maximum F1 score. 

Table 1. Results on data set. 

 

Proposed feature 
tracking method 

Pixel Based 
method with local-

ization 

Histogram 
MethodCut Det 

(MOCA) 

D
ata 

Source 

P
recision 

R
ecall 

F
1 

P
recision 

R
ecall 

F
1 

P
recision 

R
ecall 

F
1 

A 1 1 1 1 1 1 1 1 1 
B 1 1 1 .825 .825 .825 1 .375 .545 
C .595 .870 .707 .764 .778 .771 .936 .536 .682 
D 1 1 1 1 1 1 1 .941 .969 
E .938 1 .968 .867 .867 .867 .955 .700 .808 
F 1 1 1 0 0 0 1 1 1 
G .810 .944 .872 .708 .994 .809 1 .667 .800 
H .895 .895 .895 .927 1 .962 .971 .895 .932 
I 1 1 1 1 1 1 1 .500 .667 
J .497 .897 .637 .623 .540 .591 .850 .395 .540 

AVG .874 .961 .908 .774 .800 .783 .971 .701 .794 
VAR .034 .003 .018 .090 .101 .093 .002 .060 .036 
DEV .185 .054 .134 .301 .318 .304 .048 .246 .190 

 

In Table 1, we present the results of running the 3 methods on the dataset.  The 
proposed method outperforms both the histogram-based method and the pixel based 
methods.  In most cases (8 of 10) the proposed method provides the best achievable 
F1 score.  A simple statistical analysis of the overall capabilities is given at the end of 
Table 1.  The average, variance and standard deviation for the 10 samples were com-
puted.  On average, the proposed method significantly outperforms the other two 
methods.  The variance and the standard deviation show that the results offered by the 
proposed method are also more stable across a variety of different video genre.   It is 
not surprising that ‘cutdet’ out performs the proposed system in H, because the ab-
stract was created by the MOCA project, however it is surprising that the pixel based 
method outperformed both.  In examples C and J, the F1 score was not maximized as 
the heuristic to determine the F1 candidate set threshold did not achieve the best 
value, rather a good value.  Within the range of the F1 candidate set threshold plateau, 
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maximum F1 was achievable.  For all the experiments we tracked 100 features with a 
minimum feature disparity of five pixels.  The processing time for a frame pair is 
slightly less than 70 ms on a 2.2 GHz Intel processor on frames sized 320x240 pixels.   

6 Conclusions 

We have presented a feature-based method for video segmentation, specifically cut 
detection.  By utilizing feature tracking and an automatic threshold computation tech-
nique, we were able to achieve F1, recall and precision rates that generally match or 
exceed current methods for detecting cuts.  The method provides significant im-
provement in speed over other feature-based methods and significant improvement in 
classification capabilities over other methods.   The application of feature tracking to 
video segmentation is a novel approach to detecting cuts.  We have also introduced 
the concept of candidate sets that allow the user to prejudice the system towards re-
sults meeting their individual needs.  This kind of thresholding is a novel approach to 
handling the overlapping region of two distributions, namely the cut set and the non-
cut set in video segmentation.  Space constraints prevented the complete description 
and further information is available in a full and complete technical report.  Please 
contact the authors to access the technical report. 

References 

1. A. Seyler: Probability distribution of television frame difference, Proc. Institute of Radio 
Electronic Engineers of Australia 26(11), pp 355-366, 1965 

2. J. Lee and B. Dickinson: Multiresolution video indexing for subband coded video databases, 
in Proc. Conference on Storage and Retrieval for  Image and Video Databases, 1994. 

3.  R. Lienhart: Dynamic Video Summarization of Home Video, SPIE Storage and Retrieval for 
Media Databases 2000,. 3972, pp. 378-389, Jan. 2000. 

4. R. Lienhart, S. Pfeiffer, and W. Effelsberg: Video Abstracting. Communications of the 
ACM, Vol. 40, No. 12, pp. 55-62, Dec. 1997. 

5. M. M. Yeung and B.-L. Yeo: Video Visualization for Compact Presentation and Fast Brows-
ing of Pictorial Content.  IEEE Trans. on Circuits and Systems for Video Technology, 
Vol.7, No. 5, pp. 771-785,  Oct. 1997. 

6. A. Hampapur, R. Jain, and T. E. Weymouth: Production Model Based Digital Video Seg-
mentation. Multimedia Tools and Applications, Vol.1, pp. 9-45, 1995. 

7. R. Lienhart: Reliable Transition Detection In Videos: A Survey and Practitioner's Guide. 
International Journal of Image and Graphics (IJIG), Vol. 1, No. 3, pp. 469-486, 2001. 

8. R Zabih, J. Miller, and K. Mai: A Feature-Based Algorithm for Detecting and Classifying 
Scene Breaks, Proc. ACM Multimedia, pp. 189-200, 1995 

9. R Zabih, J. Miller, and K. Mai: A Feature Based Algorithm for detecting and Classifying 
Production Effects, Multimedia Systems, Vol 7, p 119-128, 1999. 

10. A Smeaton et al.: An Evaluation of Alternative Techniques for Automatic Detection of Shot 
      Boundaries in Digital Video, in Proc. Irish Machine Vision and Image Processing, 1999. 
11. B. Lucas and T. Kanade: An Iterative Image Registration Technique with an Application    
      to Stereo Vision,  Int. Joint Conference On Artificial Intelligence. pp 674-679, 1981. 
12. S. Pfeiffer, R.Lienhart, G. Kühne, W. Effelsberg: The MoCA Project - Movie Content   
      Analysis Research at the University of Mannheim,  Informatik '98, pp. 329-338, 1998. 


