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Abstract. Most descriptor-based keypoint recognition methods require
computationally expensive patch preprocessing to obtain insensitivity to
various kinds of deformations. This limits their applicability towards real-
time applications on low-powered devices such as mobile phones. In this
paper, we focus on descriptors which are relatively weak (i.e. sensitive
to scale and rotation), and present a classification-based approach to
improve their robustness and efficiency to achieve real-time matching.
We demonstrate our method by applying it to BRIEF [7] resulting in
comparable robustness to SIFT [4], while outperforming several state-of-
the-art descriptors like SURF [6], ORB [8], and FREAK [10].
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1 Introduction

Computer vision applications, including object recognition, image retrieval, vi-
sual odometry and Augmented Reality (AR), heavily rely on establishing corre-
spondences between similar real world points appearing in various images. The
most commonly accepted and widely used method for achieving this is based
on keypoint recognition, which comprises of two fundamental stages. The first
stage involves detecting keypoints in an image containing the object of interest.
The second stage comprises of feature extraction, whereby a feature is computed
to describe the region encompassing the keypoint. Correspondences can then be
found by matching the features from a source and query image.

Both stages have received a considerable amount of attention over the last few
decades, with recent algorithms being designed to be more robust against various
deformations while minimizing the processing time. State-of-the-art keypoint
detectors such as FAST [1], CenSurE [2], and AGAST [3] have been shown to
not only reliably detect keypoints, but perform exceptionally well on low-powered
devices [14, 15]. A variety of features derived from the local image intensities have
been proposed to yield robust descriptors with the most seminal contributions
coming from [4, 12, 13]. In general, feature descriptors can be categorized into
two broad classes: descriptor-based and classification-based [15].

A. Petrosino (Ed.): ICIAP 2013, Part II, LNCS 8157, pp. 288–298, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Training Binary Descriptors for Improved Robustness and Efficiency 289

Descriptor-based approaches rely on designing the feature to be as ro-
bust as possible against specific types of deformations. They typically require
fine scale selection, rotation correction, and intensity normalization. Some well-
known descriptor-based approaches include: SIFT [4], GLOH [5], and SURF [6].
The large computational requirements of these descriptors generally limit their
applicability towards real-time applications. Recent attempts have been made
to decrease the processing time: ORB [8], BRISK [9], and FREAK [10].

Classification-based approaches, by contrast, require an offline training
stage to learn feature sets from synthesized images (of the source object) allowing
us to achieve insensitivity to specific kinds of deformations. These approaches
are designed to transfer much of the computational burden to the training phase
in order to reduce the cost of online matching while increasing its robustness.
Prior work [12–15] that have been done on classification-based descriptors still
face drawbacks in terms of high training times and/or memory usage.

Some descriptor-based approaches, such as BRIEF [7], are designed to be very
fast to compute but are robust to a limited range of deformations only. In this
paper, we show how to extend the robustness of such descriptors by adopting a
classification-based approach. We present a model generation framework which
can be applied to any descriptor-based approach, allowing us to achieve real-
time matching. We strictly focus on objects which are planar, thus allowing us
to synthesize images of the object in order to capture the appearance of keypoint
patches under several perspectives [11–14].

This paper is structured as follows: In Sect. 2, we review the literature
on classification-based approaches and summarize our contributions. Section 3
presents the generic training framework. In Sect. 4, we discuss a novel concept
on verifying a feature’s stability. Section 5 presents our classification approach.
In Sect. 6 we describe three variants of the modified BRIEF descriptor using
our proposed training framework. Section 7 details the experimental setup and
presents the datasets that were collected for evaluation. Section 8 presents our
results obtained. Finally, Sect. 9 presents our conclusions.

2 Related Work

Lepetit et al. [11] revolutionized the keypoint matching problem by casting it as
a classification problem. Given an image of a target object, a feature set F̂ is
generated by combining the statistics of the set of warped patches, referred to as
a viewset, around each keypoint. Each detected keypoint denotes a distinct class.
Invariance to various deformations can be achieved by synthesizing a sufficient
amount of viewsets. PCA was applied in [11] to extract a compact description for
all the viewsets associated with each keypoint. At runtime, a nearest-neighbour
(NN) classifier was then employed to identify keypoints which are in F̂ .

Lepetit and Fua [12] further extended their initial approach in [11] by replac-
ing the NN classifier with a random forest. Image patches were recognized on the
basis of very simple, randomly chosen binary tests which were grouped into de-
cision trees which then recursively partitioned the space of all possible viewsets.
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The random forest classifier was later replaced by the naive Bayesian classifier
resulting in the well known Fern descriptor [13]. A major limitation to Fern is
that it requires large amounts of memory in order to represent the complicated
joint distributions for each feature for the Bayesian classifier.

Taylor et al. [14] presented another training-based keypoint recognition ap-
proach, which generates a feature set by computing coarse histograms of the
intensities of selected pixels around a keypoint for each viewset. They refer to
their method as Histogrammed Intensity Patches (HIP). Although the training
process is quite similar to that used in [12, 13], a slight modification is made
pertaining to the viewset generation process. For each keypoint, instead of clus-
tering all the viewsets into a single class, Taylor et al. [14] proposed organizing
them into separate viewpoint bins such that each each bin is characterized by
a similar set of deformations. Although fairly good matching robustness can
be achieved, the training method is computationally expensive as the authors
report that it takes at least 20 minutes to generate a model [14, 15].

2.1 Our Contributions

We have developed a generic framework which inherits from the classification-
based paradigm, in order to improve the robustness and efficiency of relatively
weak descriptor-based approaches. We integrate the key principles from [12–14],
and achieve more than 80% reduction in training time as compared to [14, 15].
Our reduction comes from the way we synthesize the viewset images. Instead of
applying the conventional affine transformation, we apply a perspective trans-
formation which allows us to sample the deformation space in a more controlled
way requiring less images per viewset. Furthermore, we also present a novel con-
cept of verifying a feature’s stability in order to generate a reliable model. Lastly,
using our framework, we propose three variants to the BRIEF descriptor and
demonstrate comparable performance to SIFT.

There are two factors which ultimately determine the system performance,
namely the repeatability of the keypoint detector and the “descriptiveness” of
the descriptor. Ideally, it is desired to have a fast keypoint detector, however,
such a detector generally compromises speed for repeatability. If similar real-
world points cannot be consistently detected, then even though we might have
extracted features for those points in our model database, those features may
never be matched. The descriptiveness of the descriptor is a significant con-
tributory factor which directly influences the overall success of our proposed
framework. Although our system is designed to increase the robustness of (rel-
atively weak) descriptors to various deformations such as rotation, scale and
perspective distortions; using an arbitrarily designed descriptor which does not
uniquely describe the local neighborhood of the keypoint results in more false
matches. Such a non-representative descriptor yields higher outlier ratios which
results in more processing time for estimating the pose.
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3 Model Generation Framework

Constructing a model, F̂ , comprises of three primary steps: viewset genera-
tion, keypoint detection & stable point identification, and feature extraction &
aggregation. These steps are performed in sequential order.

3.1 Viewset Generation

Multiple artificial views of the target image Î, are synthesized and grouped into
numerous viewpoint bins so that each bin shares a similar range of deformations.
To avoid the use of a priori information of camera intrinsics, most approaches
[11–15] apply the affine transformation to synthesize these images. We step away
from this convention and apply a perspective transformation instead. Since our
target application is for cameras on low powered devices such as mobile phones,
it is possible to use approximate camera calibration parameters that match well
with real world scenarios. This allows us to sample the deformation space in a
more representative, controlled way requiring less images per viewset to cover a
specified range of deformations. We therefore fixed the vertical field of view of
the camera at 30◦ and set our virtual plane at the distance such that the view
frustum has a width equal to the plane diagonal. This ensures that the plane will
remain entirely visible under an arbitrary rotation around any of the three axes.
We specify the viewpoint bin range in terms of the rotation angles around all
three axes, [Φx

min, Φ
x
max], [Φ

y
min, Φ

y
max],[Φ

z
min, Φ

z
max] and the scale, [Smin, Smax].

In a further attempt to simulate real world images, we also add Gaussian noise
after convoluting each synthesized image I with a Gaussian kernel modeling the
optical blur:

I = G ∗ V
(
Î
)
+N (0, σ) , (1)

where V() denotes the perspective transformation process, G is the Gaussian
convolution kernel, and N (0, σ) denotes the additive Gaussian noise with mean
0 and standard deviation σ. We commonly refer to Î as the reference image in
this paper. Each viewpoint bin comprises of M images synthesized using Eq. (1)
with random angle and scale distortions selected from the viewpoint bin range.
Each bin range is determined by a step ΔΦ computed as:

ΔΦx =
Φx
max − Φx

min

Bx
, (2)

where Bx is the number of bins along the x axis. The angle range for bin b is
specified by Φx

min+ bΔΦx ≤ φx < Φx
min +(b+1)ΔΦx. Similar equations hold for

the two other axes. Binning of the scale follows a multiplicative scheme:

γ = Bs−1

√
Smin

Smax
, (3)

with bin b including scales in the range γb+1Smax ≤ s ≤ γbSmax. When combined
together, the total number of viewpoint bins is N = BxByBzBs which gives a
total of M ×N virtual views to be generated. We denote the mth virtual image
from the nth viewpoint bin as Imn.
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3.2 Keypoint Detection and Stable Point Identification

Keypoints are detected from each viewpoint image (for the viewpoint bin under
consideration) using a fast interest point detector such as [1–3]. Before extracting
the descriptors for each keypoint, we first determine the Q most stable points.
A stable point comprises of two fundamental components: a point p̂r on the ref-
erence image, and a group of keypoints, Gnr, from the nth viewpoint bin which
map back to p̂r. Stability can be measured by the repeatability of keypoints de-
tected across various viewpoints in the bin. This is done as follows. The keypoints

from Imn are converted to a reference position on Î by computing Vmn

(
Î
)−1

,

which is the inverse mapping of Eq. (1). We then find groups of keypoints, Gnr,
which approximately map back to the same reference position p̂r. The number
of candidate stable points is therefore specified by the size of Gnr. The stable
points are then ranked according to the corresponding group size |Gnr | ≤ M .
The Q highly ranked stable points are then selected from Gnr, as these represent
the set of most stable keypoints for the nth viewpoint bin.

This strategy works exceptionally well for relatively large values of Q, where
we are allowed a large budget to select many stable points. However, for smaller
Q, we can run the risk of only selecting stable points from a dense high-scoring
region of the image, increasing the system’s vulnerability to occlusion. Hence, we
adopt a stratified sampling technique to select the stable points across the entire
image thereby improving the system’s robustness. There are two possible ways
of performing stratified sampling. The first way is to select stable points local
to the viewpoint bin under consideration. The second way is to pre-determine
the global stable points using a separate set of synthesized images representing a
broad spectrum of random deformations as in [12, 13]. In both cases, we tessellate
the reference image into W ×W subwindows and select the Q/W 2 highly ranked
stable points from each subwindow. In our experiments, we found that the first
strategy yielded in significantly better matching performances.

3.3 Feature Extraction and Aggregation

After the stable points have been identified, we then extract features for all the
keypoints associated with each stable point. We refer to the individual features as
partial features. The final feature which describes the stable point is obtained by
aggregating all the corresponding partial features. For most binary descriptors,
aggregation can be performed by a simple majority vote on each bit of the
descriptor set. For other binary descriptors which make use of histograms (such
as the HIP descriptor [14]), instead of a majority vote, a cut-off threshold can
be applied to identify rarely occupied bins. Floating-point descriptors can be
aggregated by computing the average of each feature dimension.

4 Feature Stability Verification

Being able to identify keypoints which are detectable across various deformations
does not necessarily imply that the associated features are reliable. Since we
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aggregate multiple partial features to obtain the final feature, a situation can
arise where the viewsets contain too much variation in appearances, resulting
in an unreliable, noisy feature. We propose computing a supplementary feature
vector, which we call the stability vector, Ω, in order to identify and reject such
random features.

For binary feature descriptors, Ω is determined as follows. For each stable
keypoint, we compute the entropy of each bit of the binary representation asso-
ciated with the group of keypoints from the different virtual views. This entropy
measure is based on the fraction of times a given bit has a value 1, which is
simply P (1), and similarly for P (0).

Entropy(Gnr) = −P (1) logP (1)− P (0) logP (0) . (4)

To be considered stable, the entropy of a bit must be lower than a given threshold
and the corresponding bit of Ω is set to 1. After all the bits of the feature have
been processed, we perform a bitcount on Ω and compare it to a threshold Ωs

(the stability threshold). If the number of stable bits is less than this threshold,
then the representation is considered unstable, and is rejected.

Furthermore, by storing the stability vector associated with each feature in
F̂ , we can exploit the knowledge of which elements of the feature are stable for
establishing reliable correspondences. Thus, when matching features, we only
compare the bits (for binary features) or dimensions (for floating point features)
that were deemed stable. This comes at the cost of doubling the descriptor size.

5 Keypoint Classification and Recognition

After generating the model F̂ , a classifier can be trained to learn the feature
space in order to recognize keypoints from query images. In this paper, we avoid
an additional classifier training stage by employing the nearest-neighbour clas-
sifier using a locality sensitive hashing (LSH) approach [16]. By representing F̂
in a compact binary representation comprising of hash values, we are able to
efficiently match features in real-time. We set our hash function according to
the 13-bit indexing scheme used in [14].

In situations where the query images are severely distorted by motion blur,
keypoint detection algorithms can fail to locate the query keypoints which are
also in F̂ . Instead of applying a computationally expensive scale-invariant key-
point detector, we advocate the use of downsampled query images to create a
pyramid of η levels. For efficient runtime performances, we downsample by a fac-
tor of 2. Our experiments indicate that η ≤ 3 yields sufficiently good localization
results. An added bonus of the pyramid is that it also facilitates the detection
of targets at multiple scales.

6 Modified BRIEF Feature Descriptor

BRIEF [7] is a recent feature descriptor, which, similar to [12, 13], makes use of
simple binary tests based on intensity differences between pixels in a smoothed
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image patch. The descriptor comprises of an n-bit string description of an image
patch constructed from a set of binary intensity tests. Calonder et al. [7] have
demonstrated the BRIEF descriptor to be highly discriminative and invariant to
changes in illumination, blur as well as partial perspective distortions. However,
BRIEF remains sensitive to both scale and rotation deformations. Hence, it
is a perfect candidate to be applied to our framework. We propose here three
variants to the BRIEF descriptor by extending the original algorithm using our
training framework, namely cBRIEF, sBRIEF, and s+BRIEF. They all operate
similarly, however, the latter two make use of the feature stability verification
process during training (sBRIEF) and matching (s+BRIEF). In this paper, we
set the descriptor length to 256 bits, and generated the binary test locations
according to the optimal distribution found in [7] for a 31× 31 patch.

7 Experimental Setup

In addition to the three modified BRIEF descriptors, we also implemented the
HIP feature descriptor as described in [14] using our model generation frame-
work. The HIP descriptor serves as a benchmark to compare against our BRIEF
descriptors, since Taylor et al. [14] have shown HIP to have similar robustness
to SIFT [4] and Ferns [13]. We applied the FAST detector [1] for keypoint detec-
tion and RANSAC for pose estimation. All the experiments in this paper were
performed on a 2.67 GHz processor running Ubuntu 12.04 (32-bit).

7.1 Dataset

We captured five sets of image sequences for five different types of targets (shown
in Fig. 1), with each sequence comprising of around 250 to 300 frames. The image
sequences were captured using an LG Optimus 2X smartphone camera with a
resolution of 480 × 480. The camera was rotated by approximately 45◦ in all
directions (i.e. 45◦ in- and out-of-plane rotation). The scale of the target varied
from full resolution (where the target fully occupies the frame) to one third
resolution (where the target occupies no more than a third of the frame). A
majority of the images suffer from further perspective distortions and severe
motion blur in some cases. The ground truth target locations were manually
obtained by identifying the four corners of the target in each image sequence.

7.2 Evaluation Metrics

For low-powered devices such as mobile phones, the overall system performance
in terms of accuracy, speed and memory consumption is of greatest concern.
The accuracy relates the ability to detect a target, whereas the precision (which
specifies the inlier ratio) provides important information with regard to the “de-
scriptiveness” of the descriptor. Furthermore, it is the precision metric which
directly influences the time required to estimate the pose. To this end, the fol-
lowing performance metrics were used in this paper: accuracy, precision, model
size (|F̂ |), file size (Fs), and training time.
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Fig. 1. 5 frames of the test sequences (from left to right): advertisement, book cover,
football photograph, printed map, and text-based image

The accuracy of a detection is determined by analyzing the maximum error
between the estimated target corner locations to the corresponding ground truth
corner location. The maximum error is obtained as follows:

E(C̃) = max
j

‖Cj − C̃j‖, 1 ≤ j ≤ 4 , (5)

where Cj and C̃j denotes the ground truth and estimated location of corner j.
The four corners are arranged in the following manner: top left (C1), top right
(C2), bottom right (C3), and bottom left (C4). The target is successfully detected
if E(C̃) ≤ δ. We set δ to 10 to allow for errors up-to 10 pixels in target localisation
to account for severely blurred images in the datasets. In these cases, it was
nearly impossible to precisely specify the ground truth corners. The precision
metric represents the inlier ratio which is computed as the fraction of correct
matches over the total number of matched points. We allow an error of up-to 5
pixels in identifying correct matches.

It is important to note that the choice of the accuracy and precision error
thresholds (currently chosen to be 10 and 5 pixels) are arbitrary in the sense that
they do not influence the relationship between the various descriptors evaluated.
Setting these thresholds to very high values provide too optimistic results, on
the contrary, stricter thresholds give rise to over pessimistic results. Nonetheless,
the ranking between the descriptors remains the same.

The model size metric specifies the average number of features contained in
the model, whereas the file size metric relates the actual size of the model on disk.
We store the x and y reference position of a feature using two 16-bit unsigned
integers. The file size (in bytes) is thus calculated as follows:

Fs = |F̂ | × (4 + λ) , (6)

where λ is the descriptor size in bytes. The training time metric quantifies the
time taken to generate the model and is measured in minutes.

8 Results

In order to establish the optimal set of values to use for the model genera-
tion framework, we have conducted an extensive empirical investigation. We
set Φx and Φy to range from [−30◦, 30◦] with ΔΦx = ΔΦy = 30◦, and Φz

to range from [−50◦, 50◦] with ΔΦz = {5◦, 10◦, 15◦, 20◦}. The scale parame-
ter was configured to the range S ∈ [ 13 , 1]× resolution of the reference im-
age, with γ = {0.7, 0.8, 0.9}. The tested values for the other parameters are
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Table 1. Evaluation results for HIP, cBRIEF, sBRIEF and s+BRIEF obtained with
the optimal configuration

Descriptor λ (bytes) Accuracy Precision |F̂ | Fs Time (min)

HIP 40 84.82% 38.43% 11936 513 KB 1.29

cBRIEF 32 84.93% 53.20% 11936 420 KB 2.00

sBRIEF 32 84.88% 53.22% 11746 413 KB 2.14

s+BRIEF 64 84.34% 61.33% 11746 780 KB 2.16

Smax = {600, 400, 200, 100}, M = {50, 100, 200}, Q = {50, 75, 100}, W =
{1, 2, 3, 4} and ΩS = {128, 192}. In search for the most accurate configuration
for each descriptor (i.e. the one with best target detection rate), we exhaustively
tested all possible combinations of parameters on our test video sequences, re-
sulting in 1728 configurations (twice this number for sBRIEF and s+BRIEF).
The overall best configuration was found to be ΔΦz = 20◦, M = 100, Q = 75,
W = 4, and Ωs = 128. With regard to the scale, we observed that γ = 0.9
produced optimal results, however, at the cost of relatively large models since
12 scale bins are required to cover the range S ∈ [ 13 , 1]. We observed a similar
performance (i.e. a drop of less than 1% in accuracy) by using γ = 0.85 (which
requires 8 scale bins). The evaluation results of all 4 descriptors using the optimal
configuration are presented in Table 1.

Note that we are able to match HIP in accuracy while obtaining a signifi-
cantly better precision (greater than 15%). cBRIEF and sBRIEF perform quite
similarly, with a slight advantage provided by sBRIEF in terms of a smaller
model and file size (as evident in Table 1). The advantage of applying the fea-
ture stability verification process, during model generation and runtime match-
ing, is demonstrated by the s+BRIEF descriptor. For the same configuration,
s+BRIEF boasts of a gain in precision of up to 8% greater than cBRIEF and
sBRIEF. However, the gain comes at the cost of an increased file size of the
model database, which is almost twice than that of cBRIEF and sBRIEF.

We also evaluated our improved BRIEF descriptors against the original BRIEF
[7] algorithm in addition to other well-known descriptor-based approaches, in-
cluding SIFT [4], SURF [6], ORB [8], and FREAK [10] as implemented in the
OpenCV library (version 2.4.3). We utilized the recommended default settings
for each descriptor. SIFT and SURF were matched with the FLANN matcher,
whereas a brute-force searchwas applied to BRIEF,ORB, and FREAK. For ORB,
we detected 2000 keypoints (instead of the default 500), and we applied a pyramid
scheme (with 8 levels) to achieve scale invariance. We rejected matches with dis-
tances larger than 3 × the best match. The accuracy and precision of the evalua-
tions are shown in Fig. 2(a). It is evident that our BRIEF descriptors are able to
achieve a similar performance to SIFT while significantly improving the accuracy
and precision of the original BRIEF descriptor by over 40%.

Fig. 2(b) presents a break-down of the time (per frame in milliseconds) re-
quired to perform keypoint detection, feature extraction, feature matching and
pose estimation for all the descriptors. Note that, for un-optimized implementa-
tions of our BRIEF descriptors, we are able to achieve a similar accuracy with
regard to an optimized SIFT implementation at a tenth of the processing time.
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Fig. 2. Comparison results. (a) Accuracy and Precision, (b) Time per frame (millisec-
onds) for the different components during matching, (c) Sample detection results using
cBRIEF. BF and FK stands for BRIEF and FREAK.

Interestingly, SIFT is more optimized than SURF in the current OpenCV im-
plementation, hence it yields smaller computational times compared to SURF.
Fig. 2(c) illustrates a sample of our detection results using cBRIEF.

9 Conclusion

We have developed a model generation framework to improve the robustness and
efficiency of relatively weak descriptor-based approaches. Our model generation
framework was successfully applied to the BRIEF descriptor resulting in signifi-
cant performance gains comparable to SIFT. The viewset images are synthesized
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by applying a perspective transformation, which enables us to sample the defor-
mation space in a more controlled way requiring less images per viewpoint bin
to cover a specified range of deformations. Hence, we do not require more than 3
minutes to generate a model as compared to the 20 minutes reported by Taylor
et al. [14]. Currently our framework is limited to planar targets, however, in the
future we would like extend our work to handle 3D targets as well.
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