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ABSTRACT 
Numerous methods are currently available for motion detection 
using background modeling and subtraction. However, there are 
still many challenges to take into account such as moving 
shadows, illumination changes, moving background, relocation of 
background objects, and initialization with moving objects. This 
paper provides a new background subtraction algorithm that 
aggregates the classification results of several foreground 
extraction techniques based on UV color deviations, probabilistic 
gradient information and vector deviations, in order to produce a 
single decision that is more robust to those challenges.    

Categories and Subject Descriptors 
 I.4 [Image processing and computer vision]: Segmentation - pixel 
classification. 

General Terms: Algorithms, Measurement. 

Keywords: Visual surveillance, background subtraction. 

1. INTRODUCTION 
In video surveillance systems, moving object detection is an 
essential factor to monitor activities in indoor or outdoor 
environments. Detection is often achieved by using background 
subtraction methods. However background subtraction is just the 
first stage in a video surveillance system. The results obtained 
from this stage are used for further processing, such as target 
tracking. Background subtraction methods build a model of the 
background scene from the video signal of a fixed camera. For 
each pixel in the received image, the methods detect deviations of 
pixel values from the model to classify the pixel as belonging 
either to the background or the foreground scene. The foreground 
scene consists of transient objects passing through the scene or 
motion involving the observed objects. The proposed background 
subtraction algorithm combines different detection techniques to 
proceed to foreground/background classification. 

2. ALGORITHM 
The entire algorithm is based on the YUV color space. It allows 
the separation of the color information (i.e. chroma channel blue, 

),( jiI t
U , and the chroma channel red, ),( jiI t

V ) from the 

luminance component, ),( jiI t
Y , for a given pixel ),( jiI t  at time 

instant t. The background is modeled statistically on a pixel-by-

pixel basis. Each background pixel is modeled by 4 statistical 
parameters: the mean luminance value, ),( jiB t

Y , the variance of 

the luminance value, ),(,2 jit
Yσ , and the mean of the blue and red 

chroma channels, ),( jiBt
U , ),( jiBt

V . The luminance component 
of each background pixel is modeled by a Gaussian distribution. 
Indeed, in a completely static scene under fixed lighting, the pixel 
intensity over time can be rationally modeled with a Gaussian 
distribution N(µ,σ2), given the acquisition of the image noise (for 
example: camera noise) over time which could typically be 
modeled by a zero mean Gaussian distribution N(0,σ2). However, 
the Gaussian distribution model has not been applied to the color 
components since their variances are negligible compared to the 
variance of the luminance component. Under illumination 
variations, the color components are less affected in comparison 
to the luminance component; only the means of the color values, 

),( jiBt
U and ),( jiBt

V , are used.   

2.1 Detection based on UV color deviations 
For the first detection technique, the Euclidean distance between 
each incoming pixel color component and the corresponding 
background pixel mean component, is calculated to classify each 
pixel as a foreground, FG, or a background pixel, BG, i.e.: 
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The threshold TC represents the magnitude of the color deviation 
from the background model. The subscripts for FG1 and BG1 
indicate that ),( jiI t  has been classified by the selected 

technique (i.e. technique #1 for this case).  Before applying this 
technique, the saturation value for each incoming pixel and 
corresponding background pixel should be evaluated. If both 
saturation values are low, the detection technique using (1) is not 
applicable because the color information obtained from the U and 
V channels is irrelevant. The saturation value, SV, for a given 
background pixel could be evaluated as follows: 
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where WU and WV correspond to the U and V color channel values 
of reference white. The same equation is used to evaluate the 
saturation value for the incoming pixel by replacing ),( jiBt

U  with 

),( jiI t
U  and ),( jiBt

V  with ),( jiI t
V , respectively. If both 

saturation values are below a selected threshold, TS, a valid 
decision cannot be made, and the current pixel, ),( jiI t , is then 
classified as undetermined (DKN1).  

2.2 Detection based on gradient deviations 
The second detection technique uses the gradient information. It 
creates a statistical model of gradient distributions for each pixel 
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of the background model. A Gradient-based subtraction approach 
has also been proposed in [1]. Here, we propose to model the 
probability of appearance and disappearance of edges due to 
moving objects in the scene. Our probability model is similar to 
the Order Consistency criteria described in [2].   

For each pixel, the horizontal and vertical gradient background 
distributions are computed using luminance values of the 
background model. Consequently, each gradient will also follow 
Gaussian distribution with mean ),( jiGt

H  and variance 

),(,2 jit
Hσ  for the horizontal gradient distribution, and with 

),( jiGt
V  and ),(,2 jit

Vσ  for the vertical gradient distribution. 
These values are computed as follows: 
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From these models, the probability of observing vertical 

( ),( jiPt
H ) and horizontal ( ),( jiPt

V ) edges can be computed. For 

instance, ),( jiPt
H is computed as: 
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where TG is a selected gradient threshold representing the 
minimum magnitude difference of luminances from which two 
pixels located at (i+1, j) and (i-1, j) or (i, j+1) and (i, j-1) could be 

heuristically considered as an edge pixel at (i, j). ),( jiPt
V is also 

computed using (5) but using the vertical mean and variance 
instead. 
 
For each incoming frame, the instantaneous horizontal and 
vertical gradients t

HGI ,  and t
VGI ,  for each pixel ),( jiI t  are 

computed as: 
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The current new pixel can then be considered as new vertical edge 
pixel (i.e. appearance of an edge) not present in the background 
model if | t

HGI , | is higher than TG and its corresponding horizontal 

background gradient | ),( jiGt
H | is lower than TG. Reciprocally, the 

current pixel could potentially be covering a previous background 
edge pixel (i.e. disappearance of an edge) if | t

HGI , | is lower than 
TG and its corresponding horizontal background gradient 

| ),( jiGt
H | is higher than TG. The explanation above is 

summarized by the following expression: 
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where App=1 represents the potential “appearance” of a vertical 
edge pixel, and Disp=1 represents the potential “disappearance” 
of a background vertical edge. The same procedure is performed 

for the vertical direction but using t
VGI , and ),( jiG t

V  instead. 

From the probability results found using (5), the probability of 
either an appearance or a disappearance of a vertical edge pixel, 

DispAppHP ||, , is evaluated as follows: 
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replacing ),( jiP t
H  by ),( jiPt

V in (8), the probability of 
appearance or disappearance of an horizontal edge, DispAppVP ||, , 
is also evaluated. Finally, the classification procedure is 
performed as in (9). Starting for the horizontal gradient analysis 
using equations (6-8) we have: 
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The threshold probability, DispAppT || , should be much lower than 

50% (i.e. in the range of 10-20%). For instance if DispAppHP ||,  
resulting from (8) is equal to 50% at location (i, j), it implies that 
the mean gradient, ),( jiGt

H , from the background gradient model 
distribution, is equal to |TG|. Consequently, a small perturbation 
on the incoming pixels would toggle the labels App and Disp. 
Therefore, there is not enough evidence of either a real 
appearance or a real disappearance of a pixel, and ),( jiI t should 
then be classified as an undetermined (DKN2) pixel instead of a 
foreground pixel. Then, if for the horizontal analysis, the 
classification for ),( jiI t  yields either a background pixel (BG2) 
or an undermined pixel (DKN2), then the same analysis should 
also be done with the vertical gradient, using again equations (6-
8). 

2.3 Detection based on vector deviations 
The third detection technique creates a vector from 5 neighbour 
pixels, ),( jiV t

I , for each incoming pixel in the frame and 

compares it to the corresponding vector, ),( jiV t
B , formed using 

the background model: 



[ ] )10()1,(),1,(),,1(),,1(),,(

),(

−+−+

=

jiIjiIjiIjiIjiI

jiV
t
Y

t
Y

t
Y

t
Y

t
Y

t
I

[ ] )11()1,(),1,(),,1(),,1(),,(

),(

−+−+

=

jiBjiBjiBjiBjiB

jiV
t
Y

t
Y

t
Y

t
Y

t
Y

t
B

 
This kind of vector model is also used in the Grammian change 
detector [3]. Here, the comparison is achieved by calculating the 
angle between the vectors as shown in (13) and by comparing 
their length as in expression (14) defined in the next section. The 
angular deviation criterion is defined as follows: 
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where •  corresponds to the dot product of 2 vectors and || || is the 
magnitude of a vector. Tangle is the threshold corresponding to the 
magnitude of the angle deviation. It should be noted that with this 
technique, three distinct scenarios would yield a pixel 
classification as a background: 
i) if the scene did not change; the input vector received is then a 
background vector; 
ii) if there is a change of illumination; for instance a shadow 
occurs in the scene, the vectors would still have similar 
orientation but the input vector would have a smaller magnitude; 

iii) in the case of a uniform background covered by an object with 
a different but uniform color as well. This foreground object 
would be classified as background since the vectors would be 
pointing in the same direction. This scenario would yield a false 
classification. However, it can be corrected with the following 
and last technique that consists in comparing the vector 
magnitudes. 

2.4 Detection based on vector magnitude ratio 
The fourth technique is a complement of the third technique since 
it only processes the background-classified pixels (BG3) outputs 
from the third technique. It calculates the ratio of the magnitudes 
of the vectors that have similar orientations (i.e. 3),( BGjiI t => ). 
This technique can also be used for the undetermined-classified 
pixels (DKN1) obtained from the first technique in section 2.1 
(low saturation case). 
When the magnitude ratio of these vectors fall within [TLB, TUB], 
then their difference is assumed to be due to cast shadows 
(causing local illumination changes on the background) or to 
other form of illumination fluctuations (e.g. sun/cloud transitions) 
and consequently the current pixel would be then correctly 
classified as BG4, that is: 
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where TLB is the lower bound threshold and TUB is the upper 
bound threshold of the ratio of the vector’s magnitudes. 

2.5 Aggregation of the techniques 
Each technique presented here produces independent foreground 
segmentation results. This section will show how to combine all 
the results in order to produce a single decision corresponding to 
the classification of the incoming pixel as belonging either to 
foreground or background. Figure 1 shows the block diagram on 
how to combine the techniques. The symbol⊕ represents the 
binary logic “or”. Each arrow indicates an output that could be 
either FG or BG represented by binary logics “1” and “0”, 
respectively. Only technique #2 yields 5 types of outputs: BG, 
FG, DKN, App and Disp. In general, at stage A, the most 
foreground-classified pixels correspond to the “body” of moving 
objects (i.e. dense mapping) and at stage B, most foreground-
classified pixels correspond to the edges of moving objects. The   
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Figure 1: Block diagram representing the aggregation of the 

techniques and the post processing 
output of the connected component block (8-connectivity has 
been used) groups the foreground-detected pixels into regions, 
referred to as blobs (i.e. moving objects). After finding all the 
blobs, the post processing block analyses separately each blob and 
decides whether or not to keep the blob. Its decision making 
process is explained in (15). It can been seen that the entire region 
(i.e. blob) is discarded if its total area, Area(blob) is lower  than a 
minimum selected number of pixels, MinAreaT . The entire blob is 
also discarded if the number of foreground-classified pixels from 
A belonging to the current blob, )( BlobAArea ∈ , is lower than 
a minimum percentage, AreaLT , of Area(blob). Also, it has been 
observed that motion background (such as tree leaves under the 
wind) tends to produce lot of FG pixels of category A (i.e. 
perturbed edges). In this case, the number of foreground classified 
pixels from B belonging to the blob but different than the ones 
from A, ( )BlobABArea ∈∉ )( , will be higher than a maximum 
percentage AreaHT  of Area(blob). The solution is therefore to 
keep only a portion of the entire blob (i.e. the foreground 
classified pixels from A belonging to the blob, BlobA∈ ). 
Finally, if )( BlobAArea ∈  is higher than the minimum 
percentage, AreaLT , of  Area(Blob), then the entire blob is kept. 
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Global Output represents the overall classification assigned to the 
incoming pixel (FG or BG).  Also, as illustrated in Fig.1, its 
foreground-classified pixels can be checked with the output of 
technique#2, to further differentiate between an appearance of an 
edge pixel and the disappearance of a background edge pixel.  

3. MODEL UPDATING 
Following the idea in [4], the background model is being updated 
using an exponential averaging, where α is the learning rate. 
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In order to resolve the problems of bootstrapping, relocation of 
background objects, foreground objects becoming stationary and 
sudden illumination changes, the algorithm creates a secondary 
background model (BM#2). It also creates and updates a 

foreground model (FM) with its 4 statistical parameters: ),( jiF t
Y , 

),(,2 jit
Fσ , ),( jiF t

V  and ),( jiFt
U ; these ones being updated as in 

(16). The second background model (BM#2) is modeled like the 
first background model (BM#1) with again 4 statistical 
parameters. For each incoming frame, the different segmentation 
techniques illustrated in the block diagram of Fig. 1 will also be 
performed using instead BM#2 as a reference. Figure 2 illustrates 
the overall algorithm structure. Each module output (i.e. Global 
output # 1 or # 2) results from the aggregation of the techniques 
using their corresponding background models, BM#1 and BM#2. 
However, for each incoming frame, only one of the background 
models will be selected for an update (including the selection 
criteria) as described in (17). For each incoming 
frame, ),(1 jiBGcnt  and ),(2 jiBGcnt  count the number of frames 
that a given pixel at (i ,j) has been classified as BG by module #1 
and #2, respectively. The foreground model parameters are 
updated only when a pixel at (i, j) is FG-classified by both Global 
Outputs. ),( jiFGcnt counts the number of frames that the pixel 
at (i, j) remained foreground-classified. If it is classified as a 
foreground over a selected number of frames or seconds, waitT , it 
should become part of the background model by replacing the 
background model having the lowest background-classified 
counter value (i.e. ),(1 jiBGcnt  or ),(2 jiBGcnt ) with the current 
foreground model. The FM parameters are also reset. 
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4. CONCLUSION 
An efficient and effective algorithm for foreground extraction has 
been described. It combines different complementary techniques 
to perform robust background subtraction of the visual data 
collected by a fixed camera. Chrominance information is first 
used because it allows reliable positive detection of foreground 
parts. More foreground elements are then detected by considering 
neighboring pixel information, integrated in a vector form and 
compared to the background model in an illumination-invariant 
way. For more accurate foreground extraction, the algorithm also 
incorporates a probabilistic formulation for gradient-based change 
detection. All these methods are combined in a way that makes 
foreground extraction invariant to illumination changes (e.g. 
shadows), object relocation and small background motion.  
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