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Abstract

We propose a method to augment live video based on
the tracking of natural features, and the online estimation
of the trinocular geometry. Previous without-marker ap-
proaches require the computation of camera pose to render
virtual objects. The strength of our proposed method is that
it doesn’t require tracking of camera pose, and exploits the
usual advantages of marker-based approaches for a fast im-
plementation. A 3-view AR system is used to demonstrate
our approach. It consists of an uncalibrated camera that
moves freely inside the scene of interest, and of three ref-
erence frames taken at the time of system initialization. As
the camera is moving, image features taken from an initial
triplet set are tracked throughout the video sequence. And
the trifocal tensor associated with each frame is estimated
online. With this tensor, the square pattern that was visi-
ble in the reference frames is transferred to the video. This
invisible pattern is then used by the ARToolkit to embed vir-
tual objects.

1. Introduction

Existing augmented reality approaches relying on spe-
cial markers have achieved impressive results in video-
based applications. The markers may be patterns or land-
marks that are introduced in the scene, or they may be natu-
rally occurring features selected in the scene. The location
of these markers in each video frame then define a 3D vir-
tual coordinate system. The transformation of the virtual
object is then computed with respect to these coordinate
systems and thus inserted into each video frame. The AR-
Toolkit [1, 10] works by tracking a square marker pattern
containing at least four coplanar corners so that the 3D-to-
2D transformation is represented by a plane-to-plane ho-
mography. In Kutulakos’ calibration-free system [8], four
or more non-coplanar points are tracked along the video and
an affine object representation is used to overlay virtual ob-

jects on an orthographic video stream without camera cal-
ibration. The greatest advantage of these approaches that
use markers or control points is their capacity to operate
at frame rate. It comes at the expense of requiring that all
markers be visible in every frame. Therefore, these methods
do not offer robustness to occlusion of any markers, which
restricts the range of views in which augmentations can take
place.

Approaches based on the tracking of natural features pro-
vide a general solution to augment video, especially when a
scene can not be prepared. With tracked features, the tech-
nology of structure-and-motion (SaM) is involved in recov-
ering camera motion and the scene’s 3D structure, which
are then used to incorporate virtual objects into the scene
[21, 4]. Inside accurately reconstructed scenes, occlusions
of real and virtual objects can be properly handled. The
disadvantages of this approach are: (1) Camera calibration
is required in order to obtain metric structure and motion;
(2) Computational requirements to deal with live videos ex-
ceeds the capability of realtime processing systems. There-
fore, these approaches are only suitable for off-line video
processing.

To calculate camera pose and scene structure, feature
correspondences need to be established throughout the se-
quence. The approach used in [21] is to first match fea-
tures between all consecutive pairs of video frames. Cor-
respondences over many frames are produced by merging
the matches of overlapping frames. Then a frame-to-frame
transformation is computed and the camera pose related to
every frame is the product of all rotations and translations
from previous frames. The main disadvantage of this recur-
sive approach is that it is easily corrupted by accumulated
error, especially in long sequences.

Another approach to establishing correspondences con-
sists in registering every video frame with respect to some
reference images of the scene, which are captured dur-
ing an initialization phase. Since feature matching is al-
ways performed between the current frame and reference
images, the geometrical transformations, including homo-



graphic, epipolar, projective or trifocal transformations, are
computed independently in each frame. Therefore, er-
ror accumulation is avoided. A possible approach to us-
ing keyframes for augmented reality is to calculate the 3D
structure of features matched in the keyframes, then track
these features in every other frame in order to obtain 2D-
3D matches to compute projection matrices [4]. Unfortu-
nately, the computational complexity of such reconstruction
and auto-calibration approaches hinders their application to
online processing. The latest progress in using multiple
keyframes for the recovery of camera pose and the track-
ing and augmenting of a known object is presented in [17].
However, a 3D CAD model of the target object is required
a priori.

In this paper we propose an approach to the online aug-
mentation of live video that doesn’t require camera pose in-
formation or camera internal parameters. It combines the
strengths of both keyframe-based techniques and the AR-
Toolkit to achieve a good performance in terms of robust-
ness and speed. In the off-line initialization stage, three ref-
erence images are captured from different viewpoints with
a square pattern temporarily placed in the scene. Then, the
pattern is withdrawn, and as the camera is moving freely
inside the scene, image features taken from an initial set of
corresponding triplets detected on the three reference im-
ages are tracked across the video sequence. The trifocal
tensor associated with each frame and two of the reference
images is then estimated in realtime. Using these computed
tensors, the square pattern, which was visible in the refer-
ence images, can be transferred to the moving frames. Vir-
tual objects are then placed onto the video, by feeding this
virtual pattern to the ARToolkit.

The method proposed in this paper uses a 3-step
paradigm where (1) feature points are tracked, (2) a tensor
is estimated, and (3) additional points and virtual pattern are
transferred. An important aspect of this work is the fact that
the updated tensors associated with every moving frame and
the two fixed reference views are computed based on a com-
mon set of detected features. As a consequence, there is no
drift problem. At the same time, the viewpoints will always
remain sufficiently wide to ensure an accurate estimation of
the tensor.

This method also distinguishes itself in three ways: (1)
Random sampling techniques are avoided in the process
of tensor estimation because of their complexity. Instead,
the tensor is estimated by using an algebraic minimization
method and its accuracy is improved afterwards through a
quick removal of outliers. (2) A simple tracker is used to
provide an evolving set of point triplets. This set is also up-
dated by recovering lost points and correcting mismatches
using trifocal transfer. Stable performance of tracking over
a long video sequence is also ensured by automatically re-
setting the tracker when the size of the set of tracked points

becomes too small. (3) The method is flexible in the sense
that for simple applications, such as video labeling or nota-
tion, the line segments and vertices of the rendered virtual
objects may be transferred from the fixed reference views
to the moving camera view using the trifocal tensor that we
compute at each frame. For a rudimentary polyhedral ob-
ject, this transfer process is quick and direct. Even for a
complex object, the transfer of its rendered triangulation is
still straightforward as long as its rendering in the two fixed
reference images is available.

It is also important to note that the proposed 3-view sys-
tem can easily be extended to the case of multiple views.
An additional first step would be to identify the two closest
reference views with which tensor estimation is to be per-
formed. This way the scope of this vision system could be
scaled to a size required by a given application.

The rest of this paper is organized as follows. Section
2 gives some preliminaries and notations on trifocal tensor.
Section 3 gives an outline of the approach. Section 4 dis-
cusses the tensor estimation process. Section 5 describes
updating of the set of points to be tracked. Section 6 deals
with inserting virtual objects into live video. Finally, Sec-
tion 8 contains the conclusion.

2. Preliminaries

The trifocal tensor describes the projective geometric re-
lations of image triplets taken from cameras [7]. If the cam-
era matrix of the first view is in canonical form,P1 = [I|0],
and the camera matrices of the other two views are ex-
pressed asP2 = [A|e′], P3 = [B|e′′], whereA and B
are3× 3 matrices, and,e′ ande′′ are the epipoles corre-
sponding to the image of the center of the first camera on
the image plane of the second and third cameras respec-
tively, then the3× 3× 3 trifocal tensor could be denoted
asT = [T1,T2,T3]T , with:

Ti = aie′′T − e′bi
T (1)

It is known that this tensor provides a more accurate and
stable description of three views’ geometry than the fun-
damental matrices between each pair of views. The most
attractive characteristic of the trifocal tensor is the transfer
of points and lines, i.e. a point/line in one image can be
computed from its correspondence in the other two images.
If (l, l′, l′′) is a set of corresponding lines and(x,x′,x′′) is
a set of corresponding points in three images, the transfer
operations can be represented by following equations:

lT = l′T[T1,T2,T3]l′′ (2)

[x′]x(
∑

i

xiTi)[x′′]x = 0 (3)



The trifocal tensor can be estimated from image corre-
spondences alone without knowledge of the camera param-
eters. This means that no explicit 3D information is required
in order to work with tensors. Moreover, the normalized
projection matrices of three cameras corresponding to a ten-
sor may be chosen as

P1 = [I|0] (4)

P2 = [[T1,T2,T3]e′′|e′] (5)

P3 = [(e′′e′′T − I)[T1
T ,T2

T ,T3
T ]e′|e′′] (6)

3. Outline of the Approach

Figure 1. Flow chart of the proposed approach

Our proposed approach is illustrated in Figure 1. Figure
2 shows a schematic overview of the 3-step procedure. The
system has, as input, three camera views, denoted byV1,
V2, V3 respectively. They contain a square pattern which is
purposely placed inside the scene at the capture time. Note
that this pattern does not have to be present anymore once
the three keyframes are obtained.

The initialization step consists in obtaining both an ini-
tial estimate of the tensor and a large set of matched triplets.
Several alternatives can be envisaged in order to achieve this
goal, including a tensor-based guided-matching [20] and the
PVT tool described in [14]. The feature points of the ob-
tained triplet set that belong to one reference view will con-
stitute the initial set of point to be tracked. Match pairs be-
tween the other fixed views will serve as a match pool that
will be used, during the process, to update the list of points
to be tracked.

Once the initialization process is completed, the online
tensor estimation and augmentation process can start. The
detected points in one reference view are tracked from one
frame to the next. This leads to new positions of the points
for which we still have the correspondences in the two fixed
ones. Using this updated triplet set, robust and fast estima-

tion of the tensor is achieved; this aspect is discussed in de-
tail in Section 4. Once a new tensor is obtained, the square
pattern specified in the two fixed reference views,V1 and
V3, is transferred into the moving camera view to generate
a virtual image of this pattern, with which the ARToolKit
method is implemented to embed the virtual object.

Obviously, when points are tracked over time, more and
more features are unavoidably lost. And if nothing is done,
the tracked set will eventually vanish. To overcome this
problem, the match set is updated after each tensor estima-
tion. Indeed, using the pool of match pair available in the
two fixed views, it becomes possible to transfer new points
on the image using the newly estimated tensor. This last
step ensures the long term viability of the estimation pro-
cess. In a multi-camera implementation, points from view
close to the current reference views would also be trans-
ferred, thus allowing the identification of the view toward
which the moving camera is transiting.

4. Online Estimation of the Trifocal Tensor

The properties of the trifocal tensor have been exploited
in various video-based applications, including camera pose
estimation [14], object-based video compression [15], 3D
modelling [2] and augmented reality [21]. All these works
propose an off-line processing of recorded videos and are
based on a similar framework (as mentioned in Section 1)
that can be summarized as follows. Cross-correlation and
guided matching based on fundamental matrices are used
to find matches between two adjacent frames. The resulting
overlapping match sets are then used to build putative triplet
sets of correspondences between three consecutive frames,
from which the tensor of this image triplet is computed. Fi-
nally, all tensors of the sequence are linked together into a
long chain. A random sampling technique is used to esti-
mate the tensor and fundamental matrix. Again, this mech-
anism suffer error accumulation. And the accuracy of the
resulting tensor is doubtful because of the small motions
involved in consecutive frames.

In this section we describe a method to estimate the tri-
focal tensor based on the utilization of three keyframes. Its
capability to implement in realtime has been proven by ex-
periments.

4.1. Overview of Estimation Methods

The trifocal tensor is computed from image correspon-
dences of points and evaluated in terms of residual error
between transferred points and measurements. Existing es-
timation methods could be roughly divided into two classes.
The first class, that includes linear least-square solution, al-
gebraic minimization and geometric distance minimization



Figure 2. Three reference images, V1, V2, V3, are shown in the top column.Matched corners from the
initial set of triplets are shown superimposed on each image. A blank paper was selected on the
reference images by manually selecting its four corners at system initialization time. For each video
frame, the bottom-left image, the trifocal tensor is estimated from tracked corners (blank circles). All
matches of the view pair ( V1,V3) can be transferred to this frame. The transferred points (white dots)
are used for updating the tracker’s point set. Transfer of the four corners on the blank paper gives a
virtual plane location, upon which a virtual object (teapot) can be added.

method, is made of over-parameterized approaches which
makes them easier to implement.

The linear solution, the easiest to compute, is the most
unreliable because tensor is parameterized by all its entries
and therefore does not take into account all the tensor geo-
metrical constraints. The principle of both algebraic mini-
mization and geometric distance minimization is to use the
linear solution as an initial estimation and re-parameterize
it by the24 entries of the projection matrixP′ andP′′. The
desired tensor is found by minimizing the residual error.
Because the tensor is estimated using all available matches,
these methods can be affected by the presence of outliers.
For this reason, there always is a risk of obtaining an in-
valid tensor.

The second class is the one that uses random sampling in
the estimation of the tensor. The 6-point RANSAC (RAN-
dom SAmple Consensus) method [9] has the capability of
producing a good tensor estimate even in the presence of a
significant number of mismatches [16]. The final tensor can
then be estimated from the identified inlier matches using
one of the aforementioned methods.

The main drawback of RANSAC is its computational
complexity, which increases rapidly with the number of
matches and proportion of outliers. Ways to improve the
speed of RANSAC schemes are proposed in [12, 13] but a

simpler approach will be used here. Another potential prob-
lem with RANSAC is that it does not always work well in
a multi-planar scene. This problem has already been ad-
dressed in some papers [5, 18]. If the selected6 points
are accidently collinear or coplanar, the resulting tensor can
only provide correct geometry for one plane. Consequently,
to achieve the expected performances in both time and pre-
cision, we select algebraic minimization to estimate the ten-
sor combined with the application of some additional steps
to remove the inevitable outliers.

4.2. Modified Algebraic Minimization

The standard algorithm of algebraic minimization is
briefly given here.

1. From the set of point triplets, compute the tensor lin-
early by solving a set of equations of the formAt = 0,
whereA expresses the equation (3) andt is the vector
of entries of tensor.

2. Find the two epipolese′ ande′′ from the tensor

3. According to Equation (1), construct the28×12 matrix
E such thatt = Ea, wherea is the vector representing
entries ofai andbi.



4. Compute the tensor by minimizing the algebraic error
‖AEa‖ subject to‖Ea‖ = 1

In our framework, since the tensor is always associated
with two fixed reference frames, one epipole and one pro-
jection matrix of this view triplet are actually fixed. As-
suming that in Equation (1),P1, P3 correspond to the pro-
jection matrices of the two reference frames andP2 of the
moving camera, then it follows thatP3 is known from the
initial tensor of the three reference frames and so ise′′.
In Algebraic Minimization, the matrixE is constructed in
terms of the6 entries of the two epipoles,e′ ande′′, which
are retrieved from the tensor computed by the linear least-
square solution. And the tensor is expressed linearly as
t = Ea wherea is a vector of the entries of the left3× 3
matrices inP2 andP3. Now, to force the tensor to be con-
sistent with the fixedP3 ande′′, two options are available:
(1) choose the fixede′′ instead of the one computed from
the initial tensor of linear solution; (2) skip the step to solve
the linear tensor and constructE directly with the entries of
P3 anda with the entries ofP2. In Figure 3 (a), we com-
pare the performance of these two alternative approaches
for a test sequence of250 frames. From the experiment,
it appears that the use of a fixede′′ in the tensor compu-
tation is not very stable. In contrast, the tensor subject to a
fixedP3 exhibits reliable performance over long sequences.
It has the capability to counter the effect of false matches
and comprise the conditions where few features are being
tracked. However, its overall accuracy remains inferior to
the one obtained with the tensor computed by standard Al-
gebraic Minimization, as illustrated in Figure 3 (b). The in-
stability of standard Algebraic Minimization when dealing
with a small number of features results in peaks of error in
the tensors estimated over a long sequence while the fixed
P3 approach produces a much smoother curve. In conse-
quence, the use of a fixedP3 will be restricted to the case
where few features are available or a large portion of false
matches exists or when tracked features are not well dis-
tributed across the whole scene.

Note that, in the estimation process, an affine tensor
could have been used instead. The computation of this
affine tensor is simpler and faster than the projective ver-
sion, but it does not behave well for scenes with significant
depth variations [11]. In addition, as it will be discussed
in Section 7, the tensor computation does not constitute an
important portion of the total processing time.

4.3. Establishing Point Triplets and Computing Tri-
focal Tensors

The task of tracking matched points belonging to one
reference view is done using the widely used Lucas-Kanade
tracker. During this tracking process, it is unavoidable that
the tracker will lose some features, and will introduce some
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Figure 3. (a) comparison of the two modified
Algebraic Minimization using the fixed e′′ or
P3. The tensor computed using e′′ is drawn
with a dash line. (b) comparison of the stan-
dard Algebraic Minimization and the one us-
ing the fixed P3 of a long sequence. The stan-
dard AM is fragile when few features are being
tracked. The solid line represents the more
stable tensor subject to P3

wrong traces. This is especially true in the case of se-
quences produced by handheld cameras involving quick and
saccadic motion. Therefore, additional efforts are required
in order to monitor the quality of tracked points and get
rid of wrongly tracked points. However, it would be un-
reliable to measure the similarity between tracked points
and their possible correspondences in the two reference im-
ages through normalized cross-correlation (NCC). Because
it is observed that NCC degrades when there is a large ro-
tation between images. An alternative solution is to apply a
disparity-gradient constraint [19] on the candidate matches
composed by the tracked points and their correspondences
on the reference frames.

The resulting set of point triplets is used to compute a
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Figure 4. Experimental results for a sequence of 1331 frames. The left plot shows the residual error
of a tensor computed with all putative triplets. The residual error of the new tensor computed after
removing outliers is illustrated in the center plot. In the right plot, the remaining peak errors are
eliminated by using a fixed P3 in the tensor computation.

new tensor using the algebraic minimization approach. The
average value of the residual errors is then used to assess the
quality of the resulting transfer. If its value is smaller than a
given threshold (we used3 pixels), then the tensor is judged
to be of good quality and can be used as is. Otherwise,
additional steps to identify potential outliers are required;
this is discussed next.

4.4. Removal of outliers

In the case where the quality of the tensor is lacking, it
must be reestimated. The strategy used depends on the num-
ber of supporting triplets in the set of points. An important
portion of supporting triplets means that the quality of the
tensor is not good mainly because of the presence of a few
strong outliers. In this case, a statistical method based on
the so-called x84 rule [6] is implemented. Absolute devia-
tions of all triplets’ residual error are calculated, from which
a threshold is automatically set as the 5.2 MAD(Median Ab-
solute Deviation). The points having larger deviations are
considered outliers and must then be eliminated.

In the opposite situation, i.e. when the number of sup-
porting triplets is relatively low, then the current tensor
is not able to guide the identification of outliers. Cross-
correlation has to be performed on each putative triplet. All
features on the current frame that do not correlate well their
potential correspondences on both reference frames are re-
jected.

Once the outliers are rejected using one or the other
of these methods, the tensor has to be re-estimated with
all remaining triplets and its quality needs again to be re-
evaluated. In Figure 4, the average residual errors of the
tensors computed before and after the step of removing out-
liers are given.

5. Updating the Tracked Point Set

During tracking, the lifetime of a given tracked point
largely depends on the magnitude of the camera motion.
Over time, more and more points will thus be lost, mainly
because they go out of the field of view or because they
are occluded by some scene object. However, at the same
time, other points, that are included in the initial pool of
matches will appear in the view. It is therefore important,
for the viability of the procedure, to identify those points
and to incorporate them into the tracking process. Using the
current estimation of the tensor, these points could be iden-
tified by transferring all the reference matches (in the two
fixed views) onto the current moving view. The presence
of a correspondence is verified by searching in a small area
around the transferred point for a point that correlate well
with one of the two reference matched points. This way,
the method can even recover points that have been badly
tracked in the current frame. The benefit of adding these
points is illustrated in Figure 5.

6. Embedding Virtual Objects on the Trans-
ferred Pattern

Once the trifocal tensor of every video frame is obtained,
rendering the virtual objects is accomplished in a two-step
procedure:

1. The pattern from the reference images is transferred
using the computed trifocal tensor.

2. The ARToolkit [10] is used to compute the homogra-
phy from theinvisiblepattern plane to the XY plane of
the virtual objects. A transformation matrix is then ex-
tracted from the homography and sent it to an openGL
graphic server.
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Figure 5. A long sequence( 1183 frames) is
recorded when a black-white square was
placed on the desk. The camera’s view-
point has dramatic changes. Its four corners
on every frame are detected and compared
with the predicted corner positions computed
from the estimated tensor. The number of
tracked features across the sequence and the
offset between tensor-predicted corners and
their true detected positions before and af-
ter recovering lost and inaccurate features
are shown respectively in the top and bottom
plot. Note that in the without-adding-features
case, the tracker is reset automatically when
too few features remain. In this experiment,
this happens at the 624th frame.

In our system it is not necessary to use a visible pattern,
as is usually required by the ARToolkit. The same results
are achieved by using aninvisible plane transferred from
the reference images by using the online computed tensor.
This allows the continuing augmentation of the scene even
if the pattern is removed after the initialization phase, or if it
would be partly or completely occluded. A sample resulting
video sequence is shown in Figure 6. A poster is augmented
on the wall and is not lost, even though on some frames, the
transferred pattern is almost out of view. Another benefit
brought by the use of aninvisiblepattern is that virtual ob-
jects can be added anywhere, including on untextured sur-
faces (see Figure 7), as long as the surrounding regions have
sufficient features.

Figure 6. A square pattern is pasted on the
wall when three reference frames are cap-
tured. The transferred patterns are shown su-
perimposed on the video frames. From them,
the homographies are computed which map
a logo image on the wall.



Figure 7. Example sequence: a teapot is
added upon a white paper.

Chia [3] has used two keyframes to register the video
frames of a calibrated camera. The approach described in
this paper is an improvement in two respects. Firstly, In
Chia’s system, placement of virtual objects into the video
relies on measurements of camera pose relative to two ref-
erence images, where positions of virtual objects have been
computed by using the ARToolkit during initialization. We
propose to implement an ARToolkit method with a trans-
ferred pattern along the video. Every frame is registered
with respect to the graphic coordinate system individually.
Therefore, the need for computation of camera pose and
scene reconstruction is avoided. The online estimation of
the trifocal tensor provides all the required information to-
wards embedding virtual objects. Secondly, the trinocular
geometry is exploited to provide a more powerful disam-
biguation constraint than the epipolar geometry would. This
is because in a view triplet, image coordinates in a third
view are completely determined, given a match in the other
two view, whereas image positions are only restricted to a
line by the epipolar geometry of image pairs.

7. Experimental Results

Our system runs on a desktop PC with a web camera
of image resolution320 × 240 pixels. The approach pro-
posed in this paper has been tested on various sequences
composed of thousand of frames each. Undoubtedly, its per-
formance varies according to different conditions appearing
in the videos. On average, the median residual error of the
tensor is around3 pixels and the processing is carried out at
the speed of14fps. An analysis of processing time is given
in Figure 8.

Figure 8. Timing chart

For each frame, about8.32ms, 12% of the time, is spent
on tracking features along the sequence. Another32% of
the time is consumed on estimating the tensor. Establishing
triplets for every video frame takes the largest portion of
time. It varies with the number of features tracked along



the sequence. Typically in our experiments the initial set
of triplets over three reference images contains around150
features.

Figure 7 shows some frames of an augmented video
sequence. The frames with the inserted virtual ob-
ject (the teapot) are shown on the right column, while
the features points used to compute the tensors are
identified on the left column. In this case, the
pattern used for the augmentation corresponds to the
white sheet that is shown enclosed by the reprojected
black rectangle. More video sequences are available
at the address: http://www.site.uottawa.ca/research/viva/
projects/augmented/. Jitter of virtual objects on the video
is observed when the camera looks at the edges of a scene
containing multiple planes. One way to reduce this jit-
tering would be to correct the homographies, using previ-
ous frames, in order to impose temporal smoothness of the
transformations.

8. Conclusion

A new approach to augment a live video sequence was
presented. It works in the context of a 3-view system, which
consists of a moving camera and three reference images
of the scene. The trinocular geometry relating every video
frame to two of the reference images are estimated. Tensors
are updated, online, over video stream, with a fast estima-
tion method. This approach does not rely on camera pose
to insert virtual objects, and does not require intrinsic cam-
era calibration. The main requirements of the approach are
that the scene must contain a sufficient number of features,
and that these features must be well distributed. The pro-
posed methodology works effectively as long as the mov-
ing camera captures views that remain within the visual hull
spanned by the reference images. The performance of the
system can be expanded by adding more reference views.
We are currently investigating the use of an array of cam-
eras where for each frame, the tensor between the two clos-
est views will be estimated.
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