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Abstract

Global context descriptors are vectors of additional in-
formation appended to an existing descriptor, and are com-
puted as a log-polar histogram of nearby curvature val-
ues. These have been proposed in the past to make Scale
Invariant Feature Transform (SIFT) matching more robust.
This additional information improved matching results es-
pecially for images with repetitive features. We propose a
similar global context descriptor for Speeded Up Robust
Features (SURFs) and Maximally Stable Extremal Regions
(MSERs). Our experiments show some improvement for
SURFs when using the global context, and much improve-
ment for MSER.

1 Introduction

The process of matching two images by finding points of
interest (also called feature points) that correspond to one
another has been a heavily researched topic in the field of
computer vision. There are many applications of this re-
search, from object recognition to the determination of the
geometry between two cameras. Most of the focus has been
on the case of matching two planar images, such as those
captured as photographs. These correspondences can be
used for such applications as wide baseline matching, 3D
reconstruction, image retrieval, and building panoramas.

There have been many feature detectors and descrip-
tors proposed, including the popular Scale Invariant Fea-
ture Transform (SIFT) [9], its successor Speeded Up Robust
Features (SURF) [2], and the affine invariant Maximally

Stable Extremal Regions (MSER) [10]. While these fea-
ture types have been shown to work well in many situations
[12, 13, 14], they may benefit from an addition of some ad-
ditional context in an image with many repeating features.
In fact, a global context descriptor has been proposed as an
addition to SIFT descriptors [15, 7]. We propose a similar
global context descriptor for SURF and MSER, and com-
pare the performance of these feature types for several im-
ages.

An explanation of these features types (SIFT, SURF, and
MSER) is provided in the background section next, along
with information about the existing methods of producing
a global context descriptor for SIFTs. A global context de-
scriptor for SURF and MSER in Section 3 is followed by
the results of experimentation in Section 4. Conclusions
and suggestions for improvement are given in Section 5.

2 Background

The first step in matching features is to reliably locate
points or areas of interest. Many detection methods aim to
find points or corners in an image using image contours,
image intensity, or parametric models [16]. For example,
the popular Harris corner detector [6] uses image deriva-
tives to locate intensity changes in two directions, indicat-
ing the presence of a corner. Because corners are detected
throughout an image with good repeatability, this is one of
the most popular detectors. Unfortunately, Harris corners
are quite sensitive to changes in image scale, and become
less repeatable under such conditions [16].

There has been much work on scale-invariant feature de-
tection [4, 8, 11, 17], the highlight of which is Lowe’s [9]



Scale Invariant Feature Transform (SIFT). Coupled with the
SIFT descriptor, feature points are translation, rotation, and
scale invariant, and are often chosen as the best among other
detectors and descriptors [12, 14]. However, like most de-
tector/descriptor combinations, SIFT only works well up to
about a 30◦ change in viewpoint between the two images
being matched, with larger changes handled for images of
planar surfaces [14].

Bay et al. developed Speeded Up Robust Features [2]
to improve the runtime efficiency of SIFT while still ob-
taining good matching results. The SURF detector is based
on the determinant of the Hessian matrix and second or-
der Gaussian derivative approximations. It makes use of
box filters to compute the Hessian since the computational
cost of evaluating these filters is independent of their size
once the integral image has been computed. According to
an analysis comparing SIFT and SURF [1], SURF does in-
deed perform more efficiently than SIFT with a smaller but
sufficient number of quality detected points.

A high quality affine co-variant detector was developed
to look for what are called Maximally Stable Extremal Re-
gions, or MSERs [10]. In this case, the features are actually
shapes rather than points or corners. This detector can be
described in simple terms using its similarity to the water-
shed algorithm [18] for image intensities. Suppose that the
image represents a terrain viewed from above, where black
areas are low ground and white areas are high ground. If
the terrain is slowly flooded, certain areas will collect water
in such a way that the pool does not change shape for some
time. These areas are considered to be the most stable and
are chosen as features. When combined with certain de-
scriptors, MSERs perform very well when detected on flat
surfaces, and have average performance for use with images
of 3D objects [14]. They can also work well for changes in
illumination between images [5].

After features have been located in an image, some
unique way of describing them is required so that features
in another image can be compared, and correspondences
found. The SIFT framework defines how to describe a fea-
ture point in addition to the detection method mentioned
above. A scale for each feature is decided during SIFT’s
difference of Gaussians detection process. The scale deter-
mines the local working area around a feature point. The
SIFT feature descriptor obtains rotation invariance by de-
tecting one or more prominent orientations from the image
gradient (obtained from the image derivative), and then ro-
tating the working area to match. The rotated working area
is divided into a 4x4 grid, totalling 16 regions. An 8-bin
histogram is filled by the directions of the image gradients
found in each region. The counts in these bins for all re-
gions are used to form the SIFT descriptor, which will be a
vector of size 128.

The SURF descriptor relies on first order Haar wavelet

responses in the x and y directions, differing from the use
of gradients in SIFT. This, the authors claim, makes cal-
culating the SURF descriptors more efficient. Like SIFT,
SURF also assigns an orientation to each feature point. The
typical SURF descriptor is a vector of length 64. Being
smaller than the SIFT descriptor by half, fewer compar-
isons are needed for computing distances between feature
descriptors while finding possible matches.

Detected MSER features can be described in a variety of
ways. In the original work describing MSERs [10], Matas et
al. proposed an affine invariant procedure that uses several
multiples of the original MSER as measurement regions,
transforming the measurement region so its covariance ma-
trix is diagonalized, and then computing rotational invari-
ants based on complex moments. This method is based on
the actual intensity values found in the image, but it is also
possible to describe MSERs by their shape alone. Another
approach [3] uses local affine frames defined from affine-
invariant sets of three points chosen from the MSER contour
and centroid. A more recent method given by Forssén and
Lowe [5] works with affine-normalized patches that contain
either the actual image values, or a binary image represent-
ing the MSER shapes. In this case, the SIFT descriptor is
used to describe the patches, as it was evaluated as the best
choice for describing MSERs [14].

3 Global Context for SURF and MSER

While SURF and MSER features have performed well
in practical experiments [1, 5, 13], they may be benefited
with the addition of a global context descriptor in the same
way SIFT results were improved. To help distinguish repet-
itive features in an image, two similar frameworks were pro-
posed for augmenting a SIFT descriptor with a global con-
text vector. The first work by Mortensen et al [15] uses the
whole image to gather context from all surrounding pixels,
while the second by Li and Ma [7] uses a local measurement
area for each feature and gathers context only from other
feature points within this area. In both cases, a log-polar
histogram tallies principal curvature points in the measure-
ment region. The principal curvature c(x, y) is taken as
the maximum absolute eigenvalue of the Hessian matrix for
the region. We propose computing the global context of
a SURF point with a similar technique used for SIFT, and
adapt this strategy for use with MSERs.

Essentially the same algorithm that was used for com-
puting the global context descriptor for SIFT points may be
used with SURF. The only difference in the implementa-
tion suggested here is that the SURF points will not have
affine covariant measurement regions, which were used by
Li and Ma, but not Mortensen et al. That is, while Li and
Ma modified SIFT detection to be affine covariant by using
elliptical regions transformed into circles, we will not mod-



Algorithm 1 Compute the global context vector for a single
SURF feature located at x̃.

1. Compute the curvature of the entire image by finding
the maximum absolute eigenvalue of the Hessian ma-
trix for each pixel.

2. Compute the circular measurement region with radius
R as K times the scale of the SURF feature.

3. For each other SURF feature whose location x is
within R pixels of the SURF feature point location x̃:

(a) Compute radial and angular bin for SURF loca-
tion x.

(b) Weigh curvature value found in the curvature im-
age at x with an inverse Gaussian and chosen σ.

(c) Add weighted curvature value to computed bin.

4. Create vector by flattening radial and angular bins.

ify SURF detection in any way. While this can occasionally
be a disadvantage for certain image pairs with large differ-
ences in viewing angle, it is a simple addition to the exist-
ing SURF detection and description algorithm and requires
fewer steps. As will be seen in the next section, experimen-
tal results are satisfactory.

3.1 Computing Global Context for SURF

The computation of the SURF global context descriptor
is outlined in Algorithm 1. The main idea is to build the
global context descriptor using other SURF points that lie
within a radius of K times the scale at which the SURF
point in question was detected. The curvature is computed
once for the entire image and queried as needed by individ-
ual SURF points that are included in the global descriptor
computations.

In more detail, the first step is to compute the curvature
of the entire image using the Hessian matrix:

H(x, y) =
(
Lxx Lxy
Lxy Lyy

)
= I(x, y) ∗

(
gxx gxy
gxy gyy

)
(1)

Then, for each SURF point x̃ = (x̃, ỹ) a measurement re-
gion is defined as a circle with radius K times the scale at
which the point was detected. All SURF points x that lie
within the circular measurement region are found. Each of
these nearby SURF points x = (x, y) in the measurement
region are placed in the appropriate angular bin ϕ and ra-
dial bin ρ. There are 12 angular and 5 radial bins, as was
proposed in both methods for computing global context for
SIFT. The bin indices are computed as

ϕ =
⌊

6
π

(
arctan

(
x− x̃

y − ỹ

)
− α

)⌋
(2)

and

ρ = max
(

1, log2

(
r

rmax

)
+ 6

)
(3)

where α is the angle at which the SURF point x̃ was de-
tected and rmax is the radius of the measurement region.

The curvature value at x is weighted with the inverse
Gaussian of equation

w(x, y) = 1− e−((x−x̃)2+(y−ỹ)2)/(2σ2) (4)

and added to the appropriate bins computed as above.
When all pixels in range have been added, the bins are
flattened into a single vector with dimension 60 and the
vector is normalized to have unit length one. This is the
global context vector, which can be matched with any pre-
ferred method, such as thresholding or nearest-neighbour
ratio thresholding. In the experiments, the global context
vector is compared using the χ2 metric, just as the SIFT
descriptors are.

3.2 Computing Global Context for MSER

A global context framework was also developed for use
with MSERs to improve matching abilities in image pairs
with repetitive features. The general idea is the same as
finding the global context descriptor for SIFT and SURF
feature points in that nearby curvature values are collected
in a log-polar histogram for each MSER feature. The two
main questions are what the measurement region should be,
and how to best collect these curvature values.

The measurement region for the global context descrip-
tor for SURF features is related to the scale at which the
SURF point was detected and an elliptical affine region
around the feature point. A possible application of this
to MSERs, then, would be to use the bounding ellipse of
the MSER shape itself as the measurement region. This
idea does not work here because of the way MSERs are
detected. MSERs are areas with relatively stable intensity
values. This means that there often won’t be any signifi-
cant curvature values within the MSER region, and that the
bounding ellipse may not contain many curvature values be-
yond the actual boundaries of the shape. In other words,
whatever curvature is available within the bounding ellipse
often does not provide much context in terms of surround-
ing features.

A potentially good measurement region, then, may not
be the bounding ellipse of the feature itself, but perhaps
some multiple K of it. This way, a certain amount of sur-
rounding context will be measured beyond what is available



in the SIFT patch descriptors. ChoosingK involves balanc-
ing between having a more distinct descriptor, and remain-
ing robust to image transformations between two views.

Within the measurement region of the SIFT or SURF ap-
proach for global context, curvature values were collected
at each other nearby feature point. The initial instinct is
to do the same for MSERs: collect curvature values at the
centroids of MSERs that fall within a particular measure-
ment region. As discussed above, however, there is of-
ten not much or any curvature within an MSER’s bounds,
where the centroid usually falls. Even where there are non-
zero curvature values, it is clear that this one value does not
do a good job of representing the feature as a whole. The
location of other features might not be represented in the
global context when the centroid does not have a positive
curvature value, and additional information distinguishing
the features is lost.

To incorporate more information about the features
found in the measurement region, one might consider using
all of the curvature values within the bounds of each nearby
MSER (or a slight expansion of the region to ensure bound-
ary pixels are considered). Each of these values would be
individually placed in the appropriate log-polar bins. While
this would indeed consider the shapes of MSERs in their en-
tirety, there is a disadvantage. If an MSER with significant
size was detected in one image but not the other, its many
curvature values would increase the difference between the
global context vectors significantly.

Instead, the approach from earlier work [15] is borrowed.
There, all curvature values within the measurement region
(which happened to be the entire image in that case) are
incorporated into the global context vector. Instead of us-
ing the entire image, only pixels within K times the MSER
bounding ellipse would be considered. This approach en-
sures that the number of nearby MSERs need not agree in
the two images. Using this idea, the process used to ob-
tain global context descriptors for MSERs is shown in Al-
gorithm 2.

The first step is to normalize the region, transforming
the bounding ellipse into a circle. This is accomplished in
the same way that shape and texture patches are created by
Forssén and Lowe [5]. The global context descriptor can
be computed for both shape and texture types of MSER
patches. However, in both cases, the pixels from the original
image are resampled into the new patch. Thus, the global
context descriptor should be the same for a shape and tex-
ture patch that are based on the same MSER feature.

Next, the curvature image is found for the patch. The
Hessian matrix in equation (1) is computed, and the curva-
ture values set as its maximum absolute eigenvalues. By
using the patch version of the MSER to obtain the curvature
image, a constant σ may be used. In the experiments that
follow, σ = 0.5.

Algorithm 2 Compute the global context vector for an
MSER feature.

1. Normalize the MSER region (shape or texture, same
as the original MSER patch) into a square patch of size
2R by 2R. The area included in the patch is K times
the bounding ellipse of the MSER region. The patch
will be sampled from the original image for both shape
and texture MSER features.

2. Compute curvature of new patch by finding the maxi-
mum absolute eigenvalue of the Hessian matrix at each
pixel.

3. For each pixel within R pixels of the centre of the
patch:

(a) Compute radial and angular bin for pixel.

(b) Weigh curvature value found at that pixel with an
inverse Gaussian and chosen σ.

(c) Add weighted curvature value to computed bin.

4. Create vector by flattening radial and angular bins.

(a) Angular bin 2, radial
bin 3.

(b) Angular bin 7, radial
bin 5.

Figure 1: The log-polar graph of a patch shown with a par-
ticular bin roughly highlighted.

A log-polar graph is used again here. To achieve rotation
invariance, the same feature angle α used when computing
the SIFT descriptor for MSER patches will be used to posi-
tion the first angular bin. In other words, the log-polar graph
will be rotated by the same angle. Bin indices are computed
as before. Figure 1 shows a patch with the log-polar graph
superimposed. The green line indicates where the first an-
gular bin begins, based on the feature’s angle calculated us-
ing image gradient when computing a SIFT descriptor. In
this case, the y-axis points down, so positive angles are in
the clockwise direction. Yellow pixels are used to roughly
highlight which pixels belong to a particular bin.

4 Experimental Results

We conducted several experiments to compare how well
SURFs and MSERs work for certain image types both with



and without global context descriptors. The images used in
these experiments were provided online by the Oxford Vi-
sual Geometry Group1 and are used often when comparing
the performance of feature detectors and descriptors (e.g.
[12, 13]). Three image sets, each with six varying view-
points, were chosen, as shown in Figure 2. The graffiti and
wall image have changes in the viewing angle up to 60◦,
while the boat image set has changes to the zoom and rota-
tion between the images.

The code used in the experiments is a mixture of our own
implementations and those available freely online. The de-
tection and description of SURF interest points is packaged
as a Matlab mex interface2, while the MSER region detector
is from the VLFeat library3. Evaluation code from the Ox-
ford group is used to determine how many SURF or MSER
regions can be considered matches; in the case of SURF, the
code is modified to work without applying an affine trans-
formation to the regions between images.

Once MSER regions have been detected, we use our own
implementation of Forssén and Lowe’s [5] approach to de-
scribing them. The bounding ellipse of the region is trans-
formed to a circle of a particular size, and the image con-
tents are resampled into a small patch of size 41× 41. Two
patches are made for each region: one that uses the original
image contents, called the texture patch, and one that uses
the region’s shape mask, called the shape patch. A SIFT
descriptor is built for each patch.

The global descriptors for both SURF and MSER are
computed using the methods presented in the previous sec-
tion. The multiple of region size for MSERs is K = 4 and
for SURF is K = 10. Several values were tested, and these
were deemed to provide the best balance between distinc-
tiveness and robustness.

The matching results presented next are obtained us-
ing nearest neighbour ratio thresholding with a threshold
of 0.8. The χ2 norm is used to find the distance between
two MSER SIFT descriptors as suggested by Forssén and
Lowe, while the SURF descriptors use the standard Eu-
clidean norm. Shape patches are compared only to other
shape patches, and texture patches are compared only with
texture patches, but the resulting matches from both types
of patches are considered together. When using a global
descriptor as well, the nearest neighbours are first found
based only on the SURF or MSER descriptors. The re-
sults are then filtered by thresholding the χ2 norm between
the global descriptors using a threshold of 0.05 for MSER
and 1.6 for SURF (remembering that these descriptors are
computed differently). Match correctness is evaluated by
applying the homography associated with the image pair to
the feature in the first image, and then thresholding the per-

1http://www.robots.ox.ac.uk/~vgg/research/affine/
2http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php
3http://www.vlfeat.org/

pindicular distance to the match in the second image.
Matching results are shown in Figures 4-6 with a legend

for all the graphs appearing in Figure 3. Each graph shows
results for SURF and MSER both with and without global
context descriptors. The first graph, recall, shows how many
matches found were correct out of the total number of pos-
sible correct correspondences. In the case of MSERs, the
total number of regions is taken to be twice the number of
MSERs that match to account for the fact that there are two
patches for each region – one shape patch, and one texture
patch – and thus two possible matches. The second graph,
1-precision, is given by

1− precision =
#false matches

#correct matches + #false matches

where a lower number is better. The last graph depicts what
percentage of all matches were found to be correct.

The results for the graffiti images are in Figure 4. The
recall for most images for all types of matching is rela-
tively low, with most values being under 30%. The recall
for results using the global descriptor is lower than those
that don’t use it. This is to be expected, since the global
descriptor is acting as a threshold on the same results that
don’t use global context. The 1-precision is almost the same
for SURF features both with and without global context,
as is the recall. These values differ greatly for MSERs,
suggesting that the global context really helps distinguish
MSER features. It is worth noting that while these experi-
ments use the shape and texture MSER patches all together,
one might choose one or the other to suit the application at
hand and potentially obtain better results even without the
global context. The percentage of correct matches in the
third graph shows the value of using MSERs with global
context for their performance at more extreme viewing an-
gles, provided the number of correct matches could be im-
proved.

The wall image results in Figure 5 also show that SURF
matching it not improved greatly with the use of global con-
text, but that MSER matching is. Interestingly, SURF per-
forms similarly well as MSER, even for the more extreme
changes in viewing angle, though SURF has much better
recall for the smaller changes. The features seem to be less
sensitive to changes in viewing angle for these highly tex-
tured images than in the graffiti images, which had more
distinct shapes.

Finally, the boat image results in Figure 6 show a much
larger gap between the recall of SURF with and without
global context. Otherwise, the results are similar to those of
the wall image, where the percentage of correct matches is
high and the precision good for almost all feature types for
all images.

An additional set of examples is shown in Figure 7 and
Figure 8. The images were taken in Ottawa, Canada. The



Figure 3: Legend for Figures 4-6.

first image in each pair of Figure 7 is a regular photograph,
while the second image is one face of a panoramic image
of the area. These images are difficult to match with high
precision because of reptitive features (windows) and large
variations in scale and blur. The results in Figure 8 were
obtained using the same matching techniques used for the
above results, but the correct matches were hand counted as
the images are not related by a homography. The percentage
of correct matches and the total number of matches are plot-
ted against each other in a graph where the ideal location is
the top right. For these images, the percentage of correct
matches is noticeably improved for both SURF and MSER
using global context, while the number of correct matches
(related to recall) is again lower for both cases.

In summary, both feature types with global context
have relatively stable precision and percentage of correct
matches for viewpoint changes in the case of a textured and
repetitive image set as well as for zoom and rotation, but
not as stable for an image set with more clearly defined
shapes. In all cases, recall goes down as the image pairs
become more difficult to match. The percentage of correct
matches for SURF is not always greatly improved with the
use of the global context descriptor, even in the case of a
more repetitive image. However, MSER matching results
improve greatly. The recall (and thus the actual number of
correct matches) is lower for MSERs, but it may be pos-
sible to improve this by, for example, using only shape or
texture patches. Further experimentation for a particular im-
age type may help find more appropriate region multipliers
and thresholds for the global context descriptor, allowing
for more matches at the possible cost of lowering the per-
centage of correct matches.

5 Conclusion and Future Work

Previous work has established a global context descrip-
tor for SIFT features, used to improve matching results for
situations where the SIFT descriptor alone did not prove
to be distinctive enough. Based on this, we proposed a
similar global context for SURFs and MSERs. While the
SURF global context was essentially the same as that used
for SIFT, constructing the MSER global context required
more consideration.

In the experiments performed here, matching perfor-
mance for SURF was almost the same with and without the

(a)

(b)

(c)

Figure 7: Additional test images taken in Ottawa.
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Figure 8: Matching results for images in Figure 7a (+), Fig-
ure 7b (o), and Figure 7c (�).



(a) Graffiti test images.

(b) Wall test images.

(c) Boat test images.

Figure 2: Test images.
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Figure 4: Matching results for graffiti images.
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Figure 5: Matching results for wall images.
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Figure 6: Matching results for boat images.

global context. This suggests that SURF descriptors are ac-
tually fairly distinct without any additional context, at least
for the image types tested here. On the other hand, results
for MSER were much improved with the use of the global
context. The trade-off is that the recall in this case was
lower. However, it may be possible to improve this, per-
haps even with simple improvements over which shape and
texture patches are kept as matches, or making the choice
between shape or texture patches for certain image types.

In the future, it would be worth examining the SURF
global context descriptor further to see if there are cases of it
improving matching performance more significantly. There
are ways of improving the global context for MSER that are
worth exploring as well, including enforcing a minimum
measurement area to avoid too small a surrounding region
for smaller MSERs. Finally, additional image types should
be tested to see where global context is most useful.
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