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Abstract

This paper presents a matching scheme for large set
of omnidirectional images sequentially captured in an ur-
ban environment. Most classical image matching methods
when applied to cylindrical panoramas taken in large en-
vironments does not always produce a sufficient number of
matches. In this work, our objective is to making sure that
the full set of panoramas remains as connected as possible
at all geographical locations even if only a few panoramas
sharing the same view of the scene are available. For this
matter, we present a matching strategy that augments the
accuracy and the number of match points in the context of
urban panorama matching. To improve matching results,
the method simulates different local transformations at cho-
sen view directions of the panoramas. We show that our
matching scheme improves the matching result on the spe-
cific panoramas where the classical methods fail to find a
sufficient number of matches. This conclusion is supported
by real-world experiments performed on 8017 pairs of im-
ages coming from 763 different images.

1. Introduction
The capture and processing of a large set of images has

many applications. Google Street View and the Photo Ex-
plorer of Snavely et al. [13] are two good examples of such
applications. The goal of Google Street View is to be able to
virtually navigate in large cities following predefined paths.
Photo Explorer builds partial 3D representation of cities
and buildings from large photo collections allowing uncon-
strained exploration of scene based on the available multiple
views. In this paper, our objective is to match a large set of
omnidirectional images sequentially captured in an urban
environment.

Different alternative technologies could be used to cap-
ture panoramas in a large outdoor or indoor environment. In
our case, we use an electric scooter equipped with a com-
puter, GPS and an omnidirectional camera mounted on top.

The resulting panoramic images can then be represented on
a 3D surface such as sphere, cylinder or cube [5, 14]. The
scooter is driven in an urban environment and panoramas
are captured at regular time intervals. Once this is done,
the next step is generally to match all these panoramas from
which useful 3D pose and structure information can be com-
puted.

Using classical matching strategies on such a set of
panoramas is very challenging [2, 11, 12]. These match-
ing schemes are meant to be used on planar images and
our experiment has shown that the direct application of
these methods on cylindrical panoramas taken in large en-
vironments does not produce satisfactory results in many
cases. And this for a number of reasons. First, the cylin-
drical panorama induces non linear distortion of the im-
age. Straight lines that are not vertical do not appear as
straight lines on an unfold cylindrical panorama. Therefore,
the matching of two different panoramas of the same scene
is difficult even with scale and affine invariant features and
descriptors such as MSER [8], SIFT [7] or SURF [1].

More importantly, the fact that the images are taken fol-
lowing linear trajectories can produce large changes in the
point of view. In addition, urban scenes often include large
open spaces (public spaces, parks, parkings) which can limit
the number of distinguishing features visible in a given
panorama. Figure 1 is a good example of such situation;
the images show a single building (the National Gallery of
Canada) visible in a limited portion of the panoramas. It be-
comes therefore essential to maximize the number of good
matches at these locations if one wants to connect these
panoramas together. Finally, needless to say that, in an out-
door environment, lighting changes, shadows, reflections,
and occlusions make difficult obtaining a large number of
matches.

Feature detection and matching of non planar images
obtained from catadioptric systems was studied in [3, 9].
It was also studied in the case of images with radial dis-
tortion [6], wide angle images [4] and spherical panora-
mas [15]. The strategy used in [3, 9, 15] is to work with re-



projections of the images to be matched. As for [4, 6], they
rather modify the convolution step in the definition of the
SIFT features so that it applies on wide angles images [4]
or on images with radial distortion [6].

One natural solution could be to extract limited fields of
view planar images from the panoramas and simply match
them all together. But then we need a criterion to select
what are the relevant fields of view to extract and what are
the relevant images to compare. In [3], regular sampling is
used. The approach in [9] creates virtual camera planes at
regions defined by MSERs. In our approach, we rather sam-
ple the panoramas where the density of SURF features is
the highest. This way, we only consider relevant sections of
the panoramas for matching. Moreover, even with limited
field of view images, large perspective change in the images
might prevent the successful matching of two images. This
is also the case with planar images and this is one of the rea-
sons why ASIFT [10] was introduced by Morel and Yu. The
methods presented in [3, 4, 6, 15] do not take this fact into
account. Mauthner et al. [9] uses local affine frame to com-
pensate for perspective changes. These are defined from the
convex hull of the MSERs which assumes that these regions
can be reliably detected from image to image. Our method
consists in extracting limited field of view images extracted
at chosen view directions and then matching these images
using multiple view reprojections. This approach is inspired
by ASIFT with the difference that ASIFT applies multiple
global transformations whereas we use multiple local trans-
formations inside the panoramas. Our method can be seen
as a generalization and an extension of the simple solution
that consists in extracting few precomputed limited fields
of view from the panoramas. As in the ASIFT scheme, we
aim at identifying the projective images that produces the
optimal number of matches through multiple image trans-
formations.

1.1. Multiple Images Matching

One of the most important work in the area of multiple
images matching is the one of Snavely et al. [13]. Given a
large set of images of the same scene, they explain how to
build a 3D representation of the scene in which we can nav-
igate virtually and then collect information about the differ-
ent objects in the scene. Our problem is different since we
follow a long trajectory in wich we have only a few panora-
mas sharing the same view of the scene. This aspect of
the problem was also studied in [9, 15] with different tech-
niques.

In this work, our objective was to making sure that the
full set of panoramas remains as connected as possible at
all geographical locations. For this matter, we developed a
matching strategy that augments the accuracy and the num-
ber of match points in the context of urban panorama match-
ing. We first describe a simple criterion that enables us to

select pairs of panoramas to be matched. We also present,
and this is our main contribution (refer to Subsection 2.4), a
matching scheme that augments the matching result by ap-
plying the scheme on the specific panorama where the clas-
sical methods fail to find a sufficient number of matches.
The proposed matching scheme does not replace the classi-
cal matching scheme used in large image set such as the one
described in [13] or [15], it is rather a supplementary step
in the matching phase.

The paper is structured as follows. In Section 2, we
present the proposed matching scheme. In Section 3, we
present some mathematical background of our matching
scheme. Section 4 contains experimental results. These ex-
periments are based on 8017 pairs of images coming from
763 different images. We conclude in Section 5.

2. The Algorithm
We are given a set of n panoramas Pi (0 ≤ i < n)

that were taken in different outdoor scenes. For each Pi,
we have access to the GPS coordinates (xi, yi) of Pi. The
width and the height of Pi are denoted bywidth and height
respectively. Since the panoramas were sequentially cap-
tured, we know a priori that the predecessors of a panora-
mas (the ones taken just before) and its successors (the ones
taken just after) have been taken at nearby locations (ap-
proximately 2m to 4m between each panorama). In addition
to comparing a panorama Pi with its predecessors and suc-
cessors, we also want to compare Pi with all panoramas in
the set that are geographically close. Indeed, during a cap-
ture session, the trajectories often intersect with each other.
In this section, the different steps of the algorithm will be il-
lustrated through the pair of images of Figure 1. These two
images are not part of the experimental results presented in
Section 4. We use this pair of images in this paper because
they intuitively support our explanations.

2.1. Step 1: Find Relevant Pairs of Panoramas to
Match

Let L be the list of all pairs of panoramas to be matched.
At first, L = { }, and at the end of Step 1, L contains the
list of all pairs of panoramas to be matched. This first step
describes how we compute L. The list of panoramas to be
matched is determined from the ` predecessors and the `
successors of each panorama, if they exist (refer to Fig-
ure 2). The 2` neighbouring panoramas of a panorama Pi
define a disk Di centered at (xi, yi). Together with the 2`
neighbours of Pi, we also add to L all pairs (Pi, Pj) such
that Pj ∈ Di. This ensures that all panoramas geographi-
cally close to Pi are tested for matching since we need to
connect as much panoramas as possible.

For each 0 ≤ i < n, do the following.

1. For all i < j ≤ min{i + `, n}, update L = L ∪



(a) Image 1 of the National Gallery of Canada.

(b) Image 2 of the National Gallery of Canada.

Figure 1. Two different views of the National Gallery of Canada,
Ottawa, Ontario, Canada. For both of them, width = 1608 and
height = 640.
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Figure 2. Example of trajectory followed by the scooter. Panora-
mas are taken at regular intervals. With ` = 3, the disk D5 in-
cludes panoramas P2, P3, P4, P5, P6, P7, P8, P11, P12, P100 and
P101. P100 and P101 come from a later trajectory. The radius of
D5 is ‖P5P2‖. The grey zone Z can be any kind of object, from
a parc without trees to immense buildings. If it is a tall building,
then there is no hope to match P5 with P11 nor P5 with P12.

{(Pi, Pj)}. (Since we start at i = 0, we never need
to look at the predecessors of Pi.)

2. Let r = max
i−`≤j≤i+`

0≤j<n

‖(xi, yi)− (xj , yj)‖.

3. For all j ∈ [0, n − 1] \ [i − `, i + `], if ‖(xi, yi) −
(xj , yj)‖ ≤ r, then update L = L ∪ {(Pi, Pj)}.

2.2. Step 2: Compute SURF Features

For all 0 ≤ i < n, compute the SURF features of the
cylindrical panorama Pi and store them in F (i). In our case,
we adjust the threshold of the SURF algorithm such that

(a) Image 1 of the National Gallery of Canada.

(b) Image 2 of the National Gallery of Canada.

Figure 3. Two different views of the National Gallery of Canada
together with their SURF features. The ten vertical lines indicate
the ten direction of highest SURF features density (we work with
m = 10, refer to Subsection 2.4). Under these two images, we
show the relative density of SURF features for each direction.

|F (i)| ≈ 1
1000width · height. Figure 3 shows the detected

SURF features.

2.3. Step 3: Regular Panorama Matching

For all pairs (Pi, Pj) ∈ L, symmetrically match Pi and
Pj using F (i) and F (j) by comparing nearest neighbor with
second nearest distance (refer to [7]). Store the matches in
M (i,j). Apply RANSAC to M (i,j) and store the matches
that support the computed epipolar geometry in M̂ (i,j). In
the case of our tested pair of panoranmas, we obtain 11
matches (refer to Figure 4(a)). We used symmetrical match-
ing and second nearest neighbor constraint to minimize the
number of false matches such that RANSAC can success-
fully identify the underlying epipolar geometry (i.e. the fun-
damental matrix). Indeed, with difficult pairs of panoramas,
we observed that simpler matching scheme gives rise to a
very large number of false matches and only few more good
matches.



(a) Symmetrical matching with second nearest neighbour constraint (11
matches).

(b) Matching with the tangent plane technique (m = 9) (73 matches).

Figure 4. Comparison of the two matching schemes: SURF with
second nearest neighbour constraint and the tangent plane tech-
nique.

2.4. Step 4: Compute SURF Features on Rotated
Tangent Planes

This step contains our main contribution for matching
panoramas where the classical methods fail to find enough
matches. The mathematical background of this step is de-
scribed in Section 3.

The proposed strategy is to extract several fields of view
images from the panoramas. Given a panorama Pi, the
criterion we use is to select the set of directions Θi =
{θ(i)0 , θ

(i)
1 , ..., θ

(i)
m } of highest SURF features density. These

m directions are rich in SURF features and therefore are
worth matching (refer to Figure 3). One way to generate
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Figure 5. Cylinder C related to Panorama P seen from above. Π0

is the plane tangent to C at direction θ. Πα is the plane obtained
by rotating Π0 of an angle α with respect to the axis defined by
the tangential line at direction θ. We do not project all of P onto
Πα. We project only 1

10
of it. This projection defines a screen Σα

on Πα. We will then try to match these screens (refer to Subsec-
tion 2.5). The grey part of C represents a circular arc of length
1
10
width.

planar fields of view images from Pi is to define a plane

Π
θ
(i)
k

0 tangent to Pi at direction θ(i)k and then project Pi onto

Π
θ
(i)
k

0 (refer to Figure 5). However, we want to take into
account the non linear distortion of the image induced by
the cylinder that make the matching difficult between two
different panoramas of the same scene. Therefore, we also

consider the planes Π
θ
(i)
k
α obtained by rotating Π

θ
(i)
k

0 of an
angle α with respect to the axis defined by the tangential
line at direction θ

(i)
k (refer to Figure 5). This is inspired

by ASIFT in which different possible affine transformations
of the images to be matched are generated. Following this

idea, not only do we project Pi onto Π
θ
(i)
k

0 , we also project

Pi onto all Π
θ
(i)
k
α ’s. This approach will be refered to as the

tangent plane technique (TPT). Note that even if this step
is time consuming, it is applied only on the restricted set of
pairs of panoramas that have been found difficult to match
using regular matching (REG) (refer to Subsection 2.3).

For all panorama Pi such that there is a panorama Pj
with |M̂ (i,j)| < thresh, do the following.

1. From F (i), compute the set Θi = {θ(i)0 , θ
(i)
1 , ..., θ

(i)
m }

of directions with highest vertical SURF features den-
sity in Pi.

2. For all θ(i)k ∈ Θi, let Π
θ
(i)
k

0 be the plane tangent to Pi

at direction θ(i)k . Let Π
θ
(i)
k
α be obtained from Π

θ
(i)
k

0 by a
rotation of angle α with respect to the axis defined by
the tangential line at direction θ(i)k . Given a restricted
field of view of width 1

10width centered at direction



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6. Consider the one before last vertical line in Figure 3(a).
It corresponds to the direction of second highest SURF features
density. Denote this direction by θ. Let Πθ

0 be the plane tangent
to C at direction θ. Let Πθ

α be obtained from Π
θk
0 by a rotation

of angle α with respect to the axis defined by the tangential line
at direction θ. We project 1

10
of the panorama on Πθ

α and we get
Σθ

α. Figures 6(a)-6(i) show Σθ
α for nine different values of α. 6(a)

α = −57o, 6(b) α = −43o, 6(c) α = −29o, 6(d) α = −14o,
6(e) α = 0o (this angle corresponds to the plane tangent to C at
direction θ), 6(f) α = 14o, 6(g) α = 29o, 6(h) α = 43o, 6(i)
α = 57o

θ
(i)
0 , project Pi onto Π

θ
(i)
k
α for all − 1

3π ≤ α ≤
1
3π with

a step1 of 1
125π. Let Σ

θ
(i)
k
α be the projection of this

restricted field of view onto Π
θ
(i)
k
α . Σ

θ
(i)
k
α is a rectangle

in Π
θ
(i)
k
α .

3. For all Σ
θ
(i)
k
α , compute the SURF features and store the

results in F (i)
k,α (with the same SURF threshold used for

Pi).

The directions with highest vertical SURF features density
are depicted in Figure 3. In Figure 6, we see the projec-

tion of a panorama onto Π
θ
(i)
k
α for a fixed direction and for

nine different values of α. Figure 6(e) correponds to the

tangent plane Π
θ
(i)
k

0 . To understand why this method takes
into account the non linear distortion of the image induced
by the cylinder, look at Figure 6(c). Compare the “Britain”
poster with the one of Figure 1(b). We see the poster from
a comparable point of view in Figure 6(c) (that comes from
Figure 1(a)) and in Figure 1(b). Several matches obtained
by the tangent plane technique come from this part of the
panoramas (refer to Figure 4(b)).

2.5. Step 5: Match Panoramas with all SURF Fea-
tures

Take (Pi, Pj) ∈ L. We use the following strategy based
on the directions Θi and Θj . Each direction θ(i)k ∈ Θi is

1The range and the number of plane to generate was empirically deter-
mined.

matched with all directions θ(j)k′ ∈ Θj to find the best pos-
sible match of directions. For a fixed direction θ(i)k , we do

not compare all Σ
θ
(i)
k
α ’s with all Σ

θ
(j)

k′
α′ ’s. We rather compare

Σ
θ
(i)
k

0 ’s with all Σ
θ
θ
(j)

k′
α′ ’s, and then we compare all Σ

θ
(i)
k
α ’s

with all Σ
θ
(j)

k′
0 ’s. It is significantly less time consuming this

way and experimentation shows that the results are compa-
rable. Once the best possible direction in Pj is found for
the direction θ(i)k ∈ Θi, the matches between the two corre-
sponding planar images are added to M (i,j).

Let M ′(i,j) = { }. For all pairs (Pi, Pj) ∈ L with
|M̂ (i,j)| < thresh, do the following.

1. For all θ(i)k ∈ Θi, do the following.

(a) Match all Σ
θ
(i)
k

0 ’s with all Σ
θ
(j)

k′
α′ ’s (0 ≤ k′ ≤ m,

− 1
3π ≤ α

′ ≤ 1
3π) with second nearest neighbour

constraint. Store the results in M (i,j)
(k,0),(k′,α′).

(b) Match all Σ
θ
(i)
k
α ’s (− 1

3π ≤ α ≤ 1
3π) with all

Σ
θ
(j)

k′
0 ’s (0 ≤ k′ ≤ m) with second nearest neigh-

bour constraint. Store the results in M (i,j)
(k,α),(k′,0).

(c) Take 0 ≤ k′ ≤ m, − 1
3π ≤ α ≤ 1

3π and − 1
3π ≤

α′ ≤ 1
3π such that |M (i,j)

(k,α),(k′,α′)| is maximum.

Update M ′(i,j) = M ′(i,j) ∪M (i,j)
(k,α),(k′,α′).

2. Apply RANSAC to M (i,j) ∪M ′(i,j) and store the re-
sults in M̂ (i,j).

The result of this step is depicted in Figure 4(b).

3. Mathematical Foundation
In this section, we present the mathematics underlying

the transformations described in Section 2. We present the
results without proofs due to lack of space. Most of the
formula presented were derived from 3D analytic geometry
formula and rotation matrices.

Let P be a cylindrical panorama. P is a rectan-
gle of size width by height. Therefore, the radius of
the cylinder C it represents is r = width

2π . Let p =
(a, b) be a point on the panorama. On C, p corresponds
to the direction θ = a

r and corresponds to the point(
r sin(θ), 12height− b,−r cos(θ)

)
. Let φ(x) be the direc-

tion corresponding to the abscissa x and, conversly, ξ(θ) be
the abscissa corresponding to the direction θ. We have

φ(x) =
x

r
ξ(θ) = rθ .

Denote byCyl(x, y) the 3D coordinates on the cylinder cor-
responding to the point (x, y) on P . Conversly, denote by



Pano(x, y, z) the 2D coordinates on the panorama corre-
sponding to the point (x, y, z) on the cylinder. We have

Cyl(x, y)

=

(
r sin(θ),

1

2
height− y,−r cos(θ)

)
Pano(x, y, z)

=

(
ξ(atan2(x,−z)), 1

2
height− y

)
.

Therefore, the equation of the plane Π0 tangent to C at
direction φ(a) is

Π0 : z =
x sin(φ(a))− r

cos(φ(a))
.

Let Πα be obtained from Π0 by a rotation of angle α with
respect to the axis defined by the tangential line at direction
φ(a). The equation of Πα is

Πα : z =
x sin(φ(a) + α)− r cos(α)

cos(φ(a) + α)
.

We now project C onto Πα. Let (x, y, z) be a point
on the cylinder C. Let ∆ be the line through (0, 0, 0) and
(x, y, z). We denote by TPα(x, y, z) the intersection point
of ∆ and Πα. Conversly, Let (x, y, z) be a point on Πα. Let
∆ be the line segment from (0, 0, 0) to (x, y, z). We denote
by TP−1α (x, y, z) the intersection point of ∆ and C. We
have

TPα(x, y, z)

=
r cos(α)

x sin(φ(a) + α)− z cos(φ(a) + α)
(x, y, z)

TP−1α (x, y, z)

=
r√

x2 + z2
(x, y, z) .

When we project C onto Πα given a restricted field of
view of width 1

10width, we get planar image on a screen Σα
that is part of Πα. When α = 0, the center of Σ0 correspond
to the direction φ(a). However, when α 6= 0, the center of
Πα does not correspond to φ(a) (refer to Figure 5). We
need the following formulas to take this phenomenon into
account and to switch between the two dimensions of the
planar image on Σα and the three dimensions of the points
on Πα. Given a point (x, y, z) on Πα, its corresponding
coordinates on Σα are denoted by Πα(x, y, z). Conversly,
given a point (x, y) on Σα, its corresponding coordinates on

Figure 7. Global matching results of the 8017 pairs of panoramas.

Πα are denoted by Σ−1α (x, y, z). We have

Σα(x, y, z)

=

(
r cos(α) sin(φ(a) + α)− x

cos(φ(a) + α)
,

1

2
height− b− y

)
Σ−1α (x, y)

= (−x cos(φ(a) + α) + r cos(α) sin(φ(a) + α),

1

2
height− b− y,

− x sin(φ(a) + α)− r cos(α) cos(φ(a) + α)) .

Therefore, the value at pixel (x, y) on the
screen Σα is equal to the value at pixel (x′, y′) =
Pano(TP−1α (Σ−1α (x, y)) on P . Since x′ and y′ are more
likely not to be integers, we compute the value of the pixel
at position (x, y) by bilinear interpolation.

4. Experimental Results
We tested our method on 8017 pairs of panoramas taken

on the campus of the University of Ottawa and in the city
of Ottawa. The cylindrical panoramas have an height of
512 pixels and a width of 1608 pixels. The global matching
results of the 8017 pairs of panoramas appears in Figure 7.
A pair (Pi, Pj) is represented by a point (x, y) on this graph
where x is the number of matches between Pi and Pj using
regular matching and y is the number of matches obtained
using the tangent plane technique for the same pair. The
graph shows that we do worst than SURF for 1.9% of the
pairs, as good as SURF for 48.7% of the pairs and better
than SURF for 49.4% of the pairs.



Figure 8. Evolution of the number of pairs of panoramas having a
number of matches greater than a given value.

However, we use the tangent plane technique only when
the number of matches using regular matching is unsuffi-
cient. Let us say that a pair of panoramas is considered suc-
cessfully matched if there are more than 10 good matches.
Among the pairs that were not successfully matched us-
ing regular matching, 17.1% of them were successfully
matched with the tangent plane technique. Among the pairs
for which we got between 10 and 20 good matches using
regular matching, the average number of matches increases
from 14.1 to 35.2 (an increase of 149.2%). Moreover, our
method also produces good results on pairs of images for
which the regular matching scheme is successful. Indeed,
among the pairs for which we got at least 100 matches using
regular matching, the average number of matches increases
from 224.9 to 468.2 (an increase of 108.2%).

Figure 8 shows the evolution of the number of pairs
of panoramas having a number of matches greater than a
given value for the two compared approaches (in black,
the tangent plane method and in grey, the regular matching
scheme). That is a point (x, y) on these curves means that
y pairs of panoramas have at least x matches. The fact that
the black curve stays over the grey one shows that the tan-
gent plane technique always finds a higher number of pairs
of panoramas having at least a given number of matches.

Table 1 gives the number of pairs of panoramas for which
the number of matches found is whithin different inter-
vals. The indicated numbers well emphasize the fact that
our large scale panorama matching problem remains very
challenging. Indeed, more than half of the pairs of panora-
mas were not successfully matched. As mentionned in the
introduction, many geographically close panoramas suffer
from occlusion, difficult lighting condition and low number
of reliable features. Nevertheless, The tangent plane tech-
nique meets its objective in increasing the success rate of
the matching. Figures 9 and 10 illustrate how the tangent
plane technique can improve the matching rate.

Nb of good matches Nb of pairs Nb of pairs
with REG with TPT

0 6080 3884
]0, 10] 354 1508
]10, 20] 377 841
]20, 50] 625 761
]50, 100] 310 470
]100,∞[ 271 553
Total 8017 8017

Table 1. Number of pairs of panoramas for which the number of
matches found is whithin different intervals.

(a) Symmetrical matching with second nearest neighbour constraint (0
match).

(b) Matching with the tangent plane technique (m = 9) (25 matches).

Figure 9. The tangent plane technique can improve the matching
rate. Note that the second panorama was not in the list of prede-
cessors/successors of the first panorama.

5. Conclusion

This paper presented a method to increase the number of
succesfully matched omnidirectional views in the context
of large urban image-based models. To demonstrate the
validity of such matching scheme, it must be tested on a
large number of real-world outdoor images taken under



(a) Symmetrical matching with second nearest neighbour constraint (10
match).

(b) Matching with the tangent plane technique (m = 9) (38 matches).

Figure 10. The tangent plane technique can improve the match-
ing rate. In this example, the second panorama was the second
successor of the first panorama.

various viewing condtions. Here, we used 8017 city
panorama pairs on which we showed an increase of 100The
method is based on multiple planar reprojections of local
virtual planes. These planes are defined on tangential lines
of the cylindrical panoramas taking advantage of the fact
that these omnidirectional images were captures from trans-
lations on a ground plane. Generalization of this matching
technique to any kind of panoramic representation (e.g.
spherical) is also possible using the notion of tangent plane.
Using this approach, it takes a few minutes to match a
pair of panoramas. This one is therefore, meant to be used
offline, on those panoramas were regular matching schemes
fail to find an adequate number of matches. The next step
will then be to build long tracks of matched points accross
multiple panoramas, following an approach similar to the
one described in [13] and to perform 3D pose and structure
estimation.
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