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Abstract

A method for finding correspondences between widely separated views is
presented. The proposed solution consists in estimating the local perspective
distortion between the neighborhoods of junctions. To this end, a formula-
tion is proposed, based on a constrained minimization involving an estimated
fundamental matrix. An application is also proposed to fundamental matrix
recovery using crude camera pose estimates.

1 Introduction

The correspondence problem is fundamental to computer vision, and a necessary step in
many applications. It is however a difficult problem, particularly when correspondences
are required between widely separated views, where perspective distortion makes the ef-
fective comparison of image areas difficult. This work proposes a method for establishing
point correspondences between widely separated views, when the underlying epipolar
geometry is known. This situation might present itself when the goal is to interpret a
dynamic scene from images taken by fixed calibrated cameras, or in epipolar geometry
recovery from an approximate camera pose, as is proposed later in this work.

Essentially, the correspondence problem will be solved by estimating the local per-
spective distortion between junction point neighborhoods, using the shape of these junc-
tions and the camera system’s epipolar geometry. Unlike most proposed solutions for
matching in ways that are tolerant to perspective distortion, this formulation is completely
invariant to the distortion, instead of an affine approximation.

2 Literature Review

Two important approaches exist to making feature matching robust to perspective distor-
tion. Firstly, [5, 7, 10] use descriptions of feature points that are partially invariant to
perspective distortion, and then compare them to establish correspondence. In general,
such methods are only invariant to some affine or similarity approximation of perspec-
tive distortion. Furthermore, as the the degree of invariance of a description increases, its
discriminating power necessarily diminishes.



The other approach is to estimate the local distortion between pairs of image regions,
and then warp the regions before comparing them. This reduces the problem to compar-
ing image regions as they would be seen from the same viewpoint, a situation in which
correlation-based similarity measures work well. This approach was used in [8], but
requiring the presence of special structures in the images such as sets of coplanar line
segments. Similarly, [1] uses an iterative shape adaptation scheme to normalize image
patches, and thus eliminate perspective distortion.

Other methods attempt to reach robustness to perspective distortion by using higher
level features such as [11], where intensity profiles along line segments joining feature
points are used. Finally, [12] suggests using a coarse to fine scheme to iteratively refine
point correspondences.

The approach presented in [13] is somewhat similar to the one proposed here, being
based on junction points. Image regions, defined by two intersecting image edges, are
extracted in an affine-invariant way, and then compared. Their extraction might require
a search in a two-dimensional space defined by the lengths along the edges. Finding
two corresponding regions extracted in an affine-invariant way amounts to discovering an
affine approximation of the homography relating the regions.

3 Epipolar Geometry and Planes

Epipolar geometry is an important and well known tool in computer vision. IfI and I ′
are two views of a same scene, andx andx′ are the projection onI and I ′, of a point
X in space,x′ should be located onl′, the epipolar line ofx in I ′. This epipolar line is
the projection, inI ′, of the line in space passing throughX and the first camera’s focal
point. The relationship between points and their epipolar lines can be expressed asl′ = Fx,
whereF is the3×3 fundamental matrix, x is expressed in homogeneous coordinates, and
l′ is the set of all pointsp such thatl′>p = 0.

The epipolar relationship does not depend on the structure of the scene being viewed.
However, more can be said when two views of a planar area are considered. Two views
of a plane are related by a projective linear transformation, orhomography. If X happens
to be located on a planar surface,x andx′ are related byx′ = Hx, whereH is the3×3
planar homography matrix.

When such a homography relating two views of a planar area is known, it can be used
to remove the perspective distortion through warping. In the case of planar surfaces taken
from widely different viewpoints, intensity patterns in untransformed image areas exhibit
low correlation, but after warping, can become very similar.

4 Homography Estimation

Homographies are determined by eight degrees of freedom (DOF). Thus eight indepen-
dent constraints are needed for their estimation. However, if a homographyH is sought
between images related by a fundamental matrixF, thenH>F is skew-symmetric:

H>F+F>H = 0 (1)

This results in five independent linear constraints onH; three more are required to fully
describe a homography [6].



Homographies describe the relationship between views of corresponding points lying
on a planar surface, but also between lines. Ifk andk′ are projections of a line in space
lying on a plane whose views are related by an homographyH, they will be related by:

k = H>k′ (2)

Hence a line correspondence(k,k′) puts two independent linear constraints onH, through
Equation (2). And thus, the fundamental matrix and two line correspondences lying on a
common planar area determine the homography between the views of that planar area, as
they provide5+2+2 constraints on the 8 DOF of the homography.

5 Affine Transformations from Junction Points

In this work, junction points will be matched across images. These junction points will be
defined as points at the origin of two line segments. When corresponding junction points
are compared, the lines defining them also correspond. These line-correspondences can
then be used to constrain the estimation of local homographies.

As proposed in [4], these line-correspondences could define a simple affine trans-
formation approximating the homography. But the additional (generally inaccurate) as-
sumption that points along the lines remain at the same distance from the junction points
in the different views is also needed to define a unique transformation. This affine ap-
proximation of the homography relating the neighborhoods ofx andx′, which are at the
intersection ofk1,k2 andk′1,k′2 respectively, is theH such that:

Hx = x′ and Hx i = x′i for i ∈ {1,2} (3)

wherexi is an arbitrary point alongk i andx′i is a point onk′i chosen such that‖x−xi‖2 =
‖x′−x′i‖2. This approximation of the homography can be used to warp one of the point’s
neighborhood before comparing it to the other.

6 Local Homographies from Junctions

WhenF is known, Equation (1) can be used to constrain an homography, together with
the line correspondences. Then, the system is over-constrained, and a minimization is re-
quired. If the line-correspondences are assumed to be exact, the best approximation of the
homography agrees with them, but minimizes the other constraint. Thus, the homography
is defined as theH which minimizes the Frobenius norm:

‖H>F+F>H‖F subject tok i = H>k′i for i ∈ {1,2} (4)

wherek i andk′i are the lines defining the junctions. A least-squares solution to this con-
strained system of linear equations can be found directly and efficiently [2]. In fact, only
the singular value decomposition of a9×9 matrix, and another6×9 matrix are required,
with some simple matrix multiplications.

Figure 1 shows two test images, along with epipolar lines. Figure 2 (a) and (b) show
closeups of two junction point neighborhoods. It is seen that the corresponding neigh-
borhoods are significantly different. (d) shows (b) after being warped by homographies
obtained from Equation (4). These images are obviously very similar to (a).



Figure 1: A pair of images with their corresponding epipolar lines. 2.
.

(a) (b) (c) (d)

Figure 2: (a) and (b): closeups of image regions centered on junction points from each
image in Figure 1. (c): image (b) warped by a transformation computed using Equation
(3). (d): image (b) warped by an homography computed using Equation (4).

For comparison, (c) shows the result of warping (b) by the affine transformation com-
puted only from the junction lines using Equation (3), and not the epipolar geometry. It
can be seen how this transformation incorrectly preserves the length of the line segments
defining the junctions, while they are stretched appropriately in (d). The correlation scores
between the warped image regions and the corresponding left image regions are shown in
Table 1. It is seen that the proposed method is a clear improvement.

Figure 3 shows the correlation scores between the junction neighborhoods of Figure
2, and their warped counterparts, taken over neighborhoods of different sizes. It is seen
that the correlation is improved by the proposed method defined by Equation (4), over the
simpler method defined by Equation (3), or over using no warp at all.

7 The Matching Process

The process of finding corresponding junction points between images will now be exam-
ined. First, junction points must be detected in both images. This can be achieved with
methods based on differential operators, junction model fitting, or the use of edge maps.
Here, the method described in [3] was used, but what follows does not depend on this
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Figure 3: Correlation scores between the regions shown in Figure 2, over neighborhoods
of varying size around the junction points. (a): gutter image. (b): window image

unwarped affine warp homography warp
first row of Figure 2 0.034 0.331 0.675
second row of Figure 2 0.180 0.546 0.784

Table 1: Correlation between the two junction neighborhoods shown in Figure 2

choice of specific operator.
As the epipolar geometry is assumed to be available, it can be used to guide matching.

Thus, only junction points in the second image that lie close to the epipolar line of a junc-
tion point in the first image are considered. For each pair of considered junction points,
a homography is computed using Equation (4), and then used to warp the neighborhoods
of junctions in the second image, towards a comparison to the first image junction neigh-
borhoods. Normalized correlation is used for the comparison, and only pairs exhibiting
high correlation are kept.

When computing a homography between two junctions, it must be decided which line
segment corresponds to which one in the other view (which isk′1, and which isk′2 in
Equation (4)). Fortunately, the clockwise order of the line segments should be preserved.
Thus,k1× k2 will have the same sign ask′1× k′2, andi, j ∈ {1,2} are determined such
that(k1×k2)(k′i ×k′j) > 0.

Finally, it is advantageous to require that only the best matches be kept, for given
junction points (uniqueness). As well, a junction point’s best match in the other image,
should also also have the first point as its best match (symmetry) [14].

Figure 4 shows an image on which the matching scheme was applied, using19×
19 correlation windows and different thresholds on the correlation. A similar matching
scheme using affine transformations defined by Equation (3), rather then the proposed
homographies was also applied. The resulting match sets contained varying quantities
of accurate matches, and proportions of mismatches. Each point on the graph represents
the result of an experiment with a different threshold on correlation. The vertical axis
records the proportion of accurate matches in the result, and the horizontal axis records
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Figure 4: Test images, and the result of matching them with various correlation thresholds.
The number and percentage of good matches obtained are shown.

Figure 5: Two image pairs used to test the proposed matching scheme.

their quantity. Matching is successful when it results in many junction pairs, among which
few are mismatches (a situation corresponding to the upper-right part of the graph). It is
seen that the proposed homography estimation method compares favorably with the use
of the simpler approximation of perspective distortion.

For comparison, similar experiments were conducted where correlation was applied
without any warp, with disastrous results. Small image patches undergo less perspective
distortion, so3×3 neighborhoods were used for the unwarped experiments of Figure 4,
but the results were nevertheless far inferior to those obtained from the other methods.

Table 2 shows the result of applying the proposed matching scheme to the four widely
separated image pairs shown in Figures 1, 4, 5, with a correlation threshold of0.7 and
using19× 19 neighborhoods. The results of the same scheme, but with the proposed
homography estimates replaced by the affine transformations described by Equation (3)
are also recorded for comparison. We still see a significant improvement from the use of
the proposed method. The results of other experiments, where correlation was applied
without prior warping are also shown in Table 2. For these experiments, the correlation
window size was reduced to3×3, but still produced far inferior results.

8 Epipolar Geometry Refinement

Fundamental matrix estimation is a key step in many computer vision applications. Un-
fortunately, it is very difficult to estimate a fundamental matrix between widely separated
views. It could sometimes be computed from camera pose, and internal parameter esti-



unwarped affine warp homography warp
Figure 1 10.5% 57.7% 75.9%
Figure 4 12.0% 49.4% 88.7%
Figure 5 (left) 25.0% 65.6% 88.9%
Figure 5 (right) 30.9% 46.3% 61.9%

Table 2: Proportion of good matches found in widely separated views

(a) (b)

Figure 6: (a): Crude epipolar geometry estimate. (b): Improved with proposed approach.

mates, but such a direct approach is very sensitive to inaccuracies in measurements.
The solution will first estimate camera pose with positional sensors, yielding a crude

estimate of the fundamental matrix. This estimate will then be used, by the previously
described matching scheme, to find point matches between the views. These matches
can, in turn, be used to produce a refined estimate of the sought fundamental matrix.

Figure 6 (a) shows an initial estimate of a pair’s epipolar geometry, obtained from
approximate measurements of the pose. Matches were then sought to improve the esti-
mate. Four iterations were used, where junction points were iteratively matched and a
fundamental matrix estimated from the result. This was done using the RANSAC-based
software described in [9]. A set of 35 pairs containing 10 mismatches was obtained and
used to compute the final epipolar geometry shown in Figure 6 (b). It can be seen that the
refined estimate is much better than the original, as the drawn epipolar lines now appear
to correspond more accurately.

Figure 7 shows the result of a similar experiment. This time, the image pair is the
result of a small displacement of one of the cameras from a previously calibrated image
pair. Thus, the previous epipolar geometry can be a starting point in estimating the new
one. Note that it would be very difficult to extract enough correct matches automatically,
without warping, as these views are very widely separated. From the 47 junction point
pairs obtained, 16 agreed with the refined epipolar geometry shown in Figure 7 (b).

9 Tolerance Analysis

If the presented fundamental matrix recovery scheme is to be used in practice, the match-
ing scheme on which it relies must tolerate errors in the original estimate of the funda-
mental matrix. To demonstrate this tolerance, calibrated test images were used. They are
shown in Figure 8 (a), with their correct epipolar geometry. Experiments were conducted
where the camera pose used for matching was perturbed, and the effect on the number of
correct matches found was recorded.

Some results of these trials are recorded in Figure 9. Each point in these graphs



(a) (b)

Figure 7: (a): Crude epipolar geometry estimate. (b): Improved with proposed approach.

(a) (b)

Figure 8: Test images, with an example of the epipolar geometry computed from per-
turbed pose. Points used to evaluate the fundamental matrix deformation are also shown.

represents an experiment with a particular set of perturbed parameters. Each experiment
was conducted with a fundamental matrix computed from a camera pose with position
randomly selected in a cube of 30cm diameter centered on its true location, and each of
its three orientation components within3◦ of its true value.

For each experiment, a measure of the deformation in the perturbed fundamental ma-
trix was recorded as the maximal distance between a left-image point’s epipolar line, and
its corresponding point in the right image. Figure 8 (b) shows an example of a perturbed
epipolar geometry, also illustrating the computation of the deformation measure. It is
seen that the feature point shown on the right image, has an epipolar line in the left image
which runs 29.8 pixels from its expected position on the corresponding point. Since this
is the largest such distance, it is taken as the measure of fundamental matrix deformation.

In each experiment, the accurate matches found by the proposed matching scheme
were counted through visual inspection. The points in Figure 9 (a), have theirx-coordinate
as the given measure of deformation, and theiry-coordinate as the number of accurate
matches that were found. In Figure 9 (b), they-coordinates represent the proportion of
accurate matches in the computed match sets.

For each experiments, it is seen that an adequate number of matches were found (be-
tween 14 and 36). These numbers are relatively low, but sufficient for the reliable fun-
damental matrix estimation using a RANSAC-based scheme. Also, the number of mis-
matches remained reasonable, as it varied between 24 and 41, resulting in a proportion of
good matches that was between28.9%and52.9%.

10 Comparison with Plane Reconstruction

In the previous section, experiments were conducted where an approximation of the cam-
era pose was available. Under such circumstances, and when comparing two views of
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Figure 9: Tolerance of the fundamental matrix recovery scheme. Each point corresponds
to an experiment with a given set of perturbed parameters. (a) Total number of good
matches versusF deformation. (b) Proportion of good matches versusF deformation.

a planar surface, the camera pose could have alternatively been used to reconstruct the
planar surfaces in space. These surfaces would then yield local homographies between
the views. Such an approach will now be compared with the previously described one, of
estimating the homographies using a fundamental matrix only.

Planar surfaces in space, can be determined by the two lines intersecting at a junction.
These lines, in space, are easily computed from corresponding lines in the two images.
However, because of inaccuracies in the estimates, it is unlikely that the two computed
lines will actually intersect in space. For this reason, the surfaces are approximated as
those parallel to both lines and located at the midpoint of the minimal distance between
them. But due to this approximation, the computed homographies now do not necessarily
transfer the junction points exactly on their counterparts. This can be fixed by rectifying,
for each considered junction points, but there is no obvious best way of doing it (should
the correction be in rotation or in translation?). An alternative solution was to compound
a translation with the initial homography estimate, to correct for the shift in position.

The use of camera pose information did not greatly improve the estimated homo-
graphies. When the junction points in the images of Figure 8 were matched using this
approach, 24 correct matches were found (and 9 mismatches), versus 25 correct matches
(and 6 mismatches) when only the fundamental matrices was used. With the perturbed
sets of parameters from the experiments presented in Figure 9, both methods again per-
formed similarly. The use of pose information yielded on average, 26.6 correct matches,
constituting 42.0% of the resulting match set, while the use of the fundamental matrix
yielded 24.7 correct matches on average, accounting for 41.9% of the match set. Further-
more, each method produced superior results in about half of the trials.

Thus, the use of pose information is not greatly advantageous in the described ap-
proach to matching. In addition, it is computationally more expensive, and only appropri-
ate in a narrower range of applications. Therefore, the proposed method, which requires
only a fundamental matrix, should generally be preferred.



11 Conclusion

An effective solution was proposed for the correspondence problem between widely sepa-
rated views. Local homographies were defined using the shape of junctions, and estimates
of the epipolar geometry. It was shown experimentally that when camera pose can be es-
timated, an exact fundamental matrix can be recovered in situations where other schemes
would fail. This approach to fundamental matrix recovery would be useful in the difficult
situation of widely separated cameras where the usual correlation schemes fail.
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