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The dynamics of majority voting has always been of interest in the area
of discrete dynamical systems. In recent years, there has been a growing
interest on this process also in the distributed computing field, due to
its links to fault-tolerance, reliability, and virus disinfection. In fact, local
voting mechanisms are often employed in distributed systems and networks
as a decision tool for a variety of applications.

In presence of faults, these schemes can trigger a dynamics of contam-
ination: a non-faulty node will exhibit a faulty behavior if the majority of
its neighbors is faulty. Some distributed and networked systems employ
mechanisms to mend the faults; in these cases a decontamination dynam-
ics is present and interacts with the contamination process. Depending on
whether the decontamination is carried out by the majority-voting mech-
anism already in place or by the use of a team of mobile agents, the
decontamination process is called internal or external, respectively.

In this paper we focus on the contamination and decontamination pro-
cesses in majority based systems and we survey the recent results in
presence of both internal and external decontamination.

Keywords: Majority voting, majority rule, dynamic monopolies, dynamos,
decontamination.

1 INTRODUCTION

Discrete dynamical systems, and in particular Cellular Automata have been
often employed to describe, model, analyze and investigate situations arising
in a variety of application domains. This has been recently the case in the
context of fault-tolerance of distributed systems and networks.
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Distributed and networked systems often employ local majority based rules
to enhance reliability and fault-tolerance. Indeed, local voting schemes are
used as a decision tool in a variety of different applications. For example,
majority voting among the participants has been employed in algorithms for
agreement and consensus in distributed environments. In distributed databases
management, inconsistencies are commonly resolved by majority voting. Vot-
ing has also been used to enforce data consistency when updating copies of
the same data by forcing changes of majority-based quorum systems. In the
context of resource allocation, majority is typically employed to ensure mutual
exclusion to dedicated resources. Local voting schemes are also used for key
distribution in security, and reconfiguration under catastrophic faults in sys-
tem level analysis. Systems employing majority-based local voting schemes
have clearly a higher level of resistance e.g., to virus contamination: an
un-contaminated site will avoid contamination as long as a majority of its
neighbours is un-contaminated.

In spite of the higher reliability, in majority-based distributed processes like
the one mentioned above, faulty elements can still induce a faulty behavior in
their neighbors. This is for example the situation in distributed systems where
majority voting among various copies of crucial data are performed between
neighbours at each step: if the majority of its neighbors is faulty (i.e., has
corrupted data), a non-faulty element will exhibit a faulty behavior (i.e., its
data will become corrupted) and will therefore be indistinguishable from a
faulty one.

The study of the effectiveness of using local-majority voting to achieve
reliability and fault tolerance in distributed and networked systems has recently
been the subject of intensive theoretical research. In this research, the system
is modeled as a simple undirected connected graph G = (V , E) of size n

where nodes are colored black or white (i.e, have a Boolean state), and each
node re-colors itself at discrete time steps on the basis of the majority of the
colors held by its neighbours. Different variants of the model can be identified
depending on the action to be taken in case of tie, or depending on whether the
node consider itself or not when applying the majority rule. Such a process
has been studied also in relation to other applications: in fact, it could model
spread of information, diffusion of diseases, epidemics, influence and flow of
information in various environments, such as societies, genetic processes.

The spreading of a specific color, say black, in such models is tradition-
ally referred to as contamination. By assigning such a color to the initially
faulty elements, the study of the contamination process provides insights on
the degree of reliability and fault-tolerance of the system under examination.
Some systems provide mechanisms to restore faulty elements to a normal
functioning; the use of these mechanisms is traditionally referred to as decon-
tamination. There are two main types of decontamination: in the first type (e.g.,
in case of software malfunctions) a local faulty behavior can be “mended” by
the existing local-majority mechanism – with possibly different rules (internal
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decontamination); in the second type, when the voting mechanisms alone are
not effective (e.g., in case of viruses), the decontamination process is carried
out by external agents, called cleaners (external decontamination). In absence
of decontamination mechanisms, contamination is the only process occurring
in the system; in presence of decontamination, the contamination process
exists in the same space and time domain as the decontamination process,
their interaction creating a dynamic of faults propagation and their mending.

The study of the dynamics of these processes is a crucial first step in the
analysis of these systems, for example to determine whether the initial impact
of the initial faults will be limited in scope (e.g., a bichromatic fixed point will
be reached) or leads to a collapse of the entire system (i.e., a monochromatic
black fixed point will be reached); to determine, in case the system provides a
decontamination mechanism, whether the decontamination will be successful
(i.e., a monochromatic white fixed point is reached) or not, and if not whether
the system will be forever unstable.

In addition to the dynamics, the most important questions are quantitative
or decisional or both. For systems without decontamination or with internal
decontamination, the research in the distributed computing community has
been focused almost exclusively on the patterns of initial faults that lead to a
monochromatic black fixed point (i.e., lead the entire system to a faulty behav-
ior); the focus is on the identification and characterization of these patterns,
called dynamos, and on questions about their size. External decontamination
has been investigated more in the context of cleaning a network from viral
infections and the typical problem has been the determination of the smallest
possible team of external agents necessary to perform a full decontamina-
tion (i.e., reaching white fixed points) and the design of the decontamination
strategy.

This paper is a survey reviewing recent results on contamination and
decontamination in majority based systems. More precisely, in Section 2 we
introduce the basic terminology; in Section 3 we consider solely the con-
tamination process; in Section 4 we focus on systems with an embedded
local-majority mechanism of decontamination; in Section 5 we consider sys-
tems where the decontamination process is carried out by external agents. In
all cases we reviewing recent results.

2 MODELS AND TERMINOLOGY

Let G = (V , E) be a simple undirected connected graph of size n where
nodes v1, v2, . . . , vn are colored black or white (i.e., have boolean states).
Let x(vi) ∈ {0, 1} be the state of node vi , where 0 corresponds to white and
1 corresponds to black.

Anode subject to majority voting updates its color, assuming the colour held
by the majority of its neighbours. The update is performed simultaneously at
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discrete time steps by all nodes subject to majority voting; that is, the dynam-
ics is synchronous. In the definition of majority voting it is very important to
define what action a node should take in case of tie. Possible actions (as defined
in [43]) are: prefer-white (PW), prefer-black (PB), prefer-current (PC), prefer-
flip (PF). Another distinction regards whether the node making the decision
is included in the computation of the majority: self-including (SI), self-not-
including (SN). Depending on the combination of the various parameters,
different models, often with quite different dynamics, can be defined (some-
times indicated as (PW, SI), (PB, SI), etc.). Notice that model (PB, SN) is
usually called simple majority, while (PC, SN) is called strong majority.

A contamination rule is a local majority-based rule applied to white nodes
only. In this paper we consider only system with contamination. An inter-
nal decontamination rule is a local majority-based rule applied only to black
nodes. Hence, in systems with internal decontamination, majority rule is
applied to all nodes. On the other hand, an external decontamination (also
called cleaning) is defined by a different process: external entities (called
agents) move on the graph from node to neighbouring node and a black node
can become white only if an agent moves on it. Internal and external decontam-
inations are quite different processes and they are typically employed in very
different context (the first in majority-based distributed systems, the second
in networks infected by a virus).

A Dynamic Monopoly (Dynamo for short) for a given contamination (and
decontamination) rule is an initial configuration leading to monochromatic
black fixed point under that rule. The dynamics is said to be monotone if the
set of black vertices at any time t is a subset of the one at time t + 1.

3 CONTAMINATION

We will first consider contamination in systems where no decontamination
mechanism is in place. In the context of fault tolerance, this process describes
the impacts that permanent faults have in distributed majority-based systems.
In these systems, dynamos are also called irreversible because the black
nodes cannot change their color. The research focus is on the determination
of the smallest possible size for a dynamo and sometimes on the charac-
terization of the dynamos patterns in particular topologies: chorded rings
(a special type of one-dimensional Cellular Automata), tori (two-dimensional
Cellular Automata with various boundary conditions), and some common
interconnection networks.

3.1 Chorded rings
Chorded rings are a special type of one dimensional circular Cellular
Automata. A chorded ring C(〈1, 2, . . . , p, k〉) (with p < k) of size n is a
ring on n nodes x0, x1, . . . , xn−1 where each node xi is connected to nodes
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FIGURE 1
A portion of a chorded ring C(〈1, 2, 3, 6〉) (the chords are shown only for one node).

xi+1 · · · xi+p and xi+k (all operations on the indices are modulo n). Examples
of chorded rings are rings (p = k = 1), double-loop networks (p = 1; k > 1),
fan networks (p = k − 1), and complete graphs (p = k = �n

2 �). Depend-
ing on the relationship between p and k a chorded ring will be said to be
weakly (p < k

2 ) or strongly (p ≥ k
2 ) chorded. Notice that this type of topol-

ogy is quite popular (e.g., in peer-to-peer systems): the p neighbours provide
redundancy, while the kth neighbour is typically useful for routing purposes.
A chorded ring can also be seen as a k-neighbours one dimensional circular
CA where the neighbours at distance p + 1, p + 2, . . . , k − 1 do not influence
the evolution rule.

Contamination in chorded rings has been studied under the simple majority
rule (or, model (PB,SN)) in [13]. In particular, the focus has been on the
determination of dynamos which occupy the minimum possible “window”
(smallest number of consecutive nodes) and containing the minimum number
of faults (minimum size). Such dynamos are called optimal. First of all, it
has been shown that the smallest dynamo pattern must occupy a window of k

consecutive nodes in any chorded ring C(〈1, 2, . . . , p, k〉), then the problem
of determining the minimum dynamos has been studied separately for weakly
and strongly chorded rings fixing the length of the window to k.

Weakly-chorded rings. (C(〈1, 2, . . . , p, k〉) with p < k
2 ). In [13] it has

been shown that p+1+� (k−2p−1)
p−1 	 is a tight bound on the size of the optimal

dynamos. The general construction of optimal dynamos can be carried out
by identifying an initiating pattern followed by an appropriate number of
filling patterns in a window of length k. Intuitively, the initiating pattern is
a pattern whose presence initiates the propagation of blacks; a filling pattern
is a pattern that allows the propagation to continue until the k-window is all
black. For example, Figure 2 shows an optimal dynamo for C(〈1, 2, 3, 18〉)
(only a portion of the chorded ring is shown and only the connections of
one node): the first 2p + 1 nodes (in this case seven) constitute the initiating
pattern, which is contaminated in three steps; after that, the filling patters will
be contaminated sequentially, one node at the time, until the whole window

FIGURE 2
The first five steps in the evolution of an optimal dynamo for C(〈1, 2, 3, 18〉).
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FIGURE 3
Example of optimal dynamos in various chorded rings. The portion underlined with a parenthesis
is the initialing pattern.

is black. As soon as this happens, the contamination will continue for the rest
of the chorded ring. Other examples of optimal dynamos in various chorded
rings are shown in Figure 3.

In the particular case of double-loops C(〈1, k〉), the minimum size is
� (k+1)

2 	. Moreover, for this case the optimal dynamos can be precisely
described: to be an optimal dynamo a pattern of length k must not contain
two consecutive 0s and must contain � (k+1)

2 	 1s. All and only such patterns

are: (10)� k
2 �(1) for k odd, and (10)a(1)(10)b(1) with a + b = (k − 1)/2, for k

even. In the case of triple-loops C(〈1, 2, k〉) the minimum size is � (k+4)
3 	 and

a complete characterization of the patterns has been provided: any pattern of
length k that contains two consecutive 1s and that does not contain three con-
secutive 0s is a dynamo and, vice versa any minimum size dynamo of length k

in C(〈1, 2, k〉) must contain two consecutive 1s and must not contain three
consecutive 0s. Such patterns have been enumerated.

Strongly-chorded rings. (C(〈1, 2, . . . , p, k〉) with p ≥ k
2 ). In this case it

has been shown that the size of the optimal dynamos is p+1; some conditions
have been derived, but no complete characterization of the patterns exist.
Special is the case p = k −1 where the resulting graph is called fan graph and
which corresponds exactly to a one dimensional CA with neighborhood k. In
such a case, in fact, there is only one optimal dynamo, which consists of k

consecutive nodes with value 1.

3.2 Tori
A torus is a bi-dimensional Cellular Automata with circular connections.
Dynamos in tori with different wrap-around connections have been studied
in [18] as they represent one of the simplest and most natural way of connect-
ing processors in a network. The authors have considered simple and strong
majority in: (1) toroidal mesh (the last node of a row/column is connected to
the first of the same row/column); (2) torus cordalis (equivalent to double-loop
networks, where the last node of a row is connected to the first node of the
next row while the last of a column is connet to the first of the same column);
(3) torus serpentinus (last node of a row/column is connected to the first node
of the next row/column).
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Most results are based on the determination of immune subgraph (or white
blocks) and black compacts. A white block for a certain type of majority is a
pattern of white nodes whose presence forbids the evolution to a monochro-
matic black fixed point. A black compact is a pattern of black nodes that is
instead necessary to start the propagation of black nodes so to evolve to a
monochromatic black fixed point. Most lower bounds for the tori are based
on combinatorial argument on the necessity of having certain black compacts
while forbidding white blocks. The bounds are summarized in Tables 1, 2
and they are all are tight within an additive constant; in fact, dynamos almost
matching the lower bounds have been constructed. Figure 4 shows examples

Simple Majority

Lower Bound Upper Bound

Toroidal mesh � a+b
2 	 − 1 � a+b

2 	 − 1

Torus cordalis � b
2	 � b

2� + 1

Torus serpentinus �min{a,b}
2 	 �min{a,b}

2 � + 1

TABLE 1
Bounds on the size of irreversible dynamos for toroidal mesh, torus cordalis, and torus
serpentinus of a × b vertices in the case of simple majority

Strong Majority

Lower Bound Upper Bound

Toroidal mesh � ab+1
3 	 min{� a

3 	(b + 1), � b
3	(a + 1)}

Torus cordalis � ab+1
3 	 � a

3 	(b + 1)

Torus serpentinus � ab+1
3 	 min{� a

3 	(b + 1), � b
3	(a + 1)}

TABLE 2
Bounds on the size of irreversible dynamos for toroidal mesh, torus cordalis, and torus
serpentinus of a × b vertices in the case of strong majority

FIGURE 4
Optimal dynamos for: simple majority in (a) toroidal mesh and (b) torus cordalis; (c) strong
majority in toroidal mesh.
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of optimal dynamos for simple majority in a toroidal mesh and in a torus
cordalis, and for strong majority in a toroidal mesh (this last construction
holds also for the case of torus serpentinus).

3.3 Common interconnection networks
Several typical interconnection networks have been investigated under the sim-
ple majority rule in [16, 35]. In [35] the authors studied Butterflies, Wrapped
Butterflies, and Cube Connected Cycles. The summary of the known bounds
for some interconnection networks is shown in Table 3. Let us briefly describe,
for example, the results on the Butterfly. A Butterfly BF(d) is composed by
d + 1 rows each containing 2d vertices connected as in Figure 5.

In a wrapped butterfly WBF(d) the first and the last row coincide. It is shown

in [35] that an optimal irreversible dynamo in BF(d) has size at least 2� (d−1)
2 �

while upper bounds have been constructed with size 2d−2 (the construction is
shown in Figure 5(a)). In the case of WBF(d), an optimal irreversible dynamo

Lower Bound Upper Bound

BF(d) 2d−2 2d−2

WBF(d) 2� d
2 � 2d−2 + 2d−3 + 2d−4

CCC(d) max{� d+1
2 � · 2d−2, 2d} n · 2d−2 + 2d−3

H(d)
⌈ 2d

d+1

⌉
O

(
2d√
d

)

TABLE 3
Bounds on minimum dynamos size for some interconnection networks

d)

a) b)

c)

FIGURE 5
(a) Optimal dynamo in a butterfly. The first four steps in the contamination process are shown.
This butterfly (BF(5)) is fully contaminated in 10 steps.
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Lower Bound Upper Bound

d-regular � n
2t+1	 ?

Ring, Tori, WBF � n
2t+1	 � n

2t+1	
Cube Connected Cycle (for t > 5) �n

8 � �n
4 · (1 + 3

4(t−2)
)	

Hypercube (n = 2d ) � n
2t+1	 � n

(t+1)
	 − � n√

πd/8
	

DeBrujin � n
2t+1	 �n+1

4 (1 + 1
2t−1 )	

TABLE 4
Bounds on minimum dynamos size as a function of completion time t in some inter-
connection networks of size n. The bounds hold for irreversible dynamos with simple
majority

has size at least 2� d
2 � and the upper bound is 2d−2 + 2d−3 + 2d−4. In both

cases a large gap between lower and upper bound was left. The gap has been
closed in [16] for the case of BF(d) by raising the lower bound to 2d−2. It is
still open how to close the gap for the wrapped butterfly.

Another issue that has been studied in interconnection networks is the
relationship between the size of a dynamo and the time for the system to
collapse [16]. In fact, depending on the topology, various trade-offs between
the two measures have been derived. Let us call t-time dynamo a dynamo that
leads the system to a monochromatic black fixed point in a time bounded by t .
One of the results of [16] shows that in regular graphs with n nodes, the size
of a minimal t-time irreversible dynamo is at least � n

2t+1	. This bound is tight
for rings, tori, wrapped butterflies. Other bounds are summarized in Table 4.

3.4 Other issues
Immune subgraphs. Immune subgraphs have been introduced in [43]
where the connection between immunity and expansion has been studied.
In Section 3.2 we have mentioned that they can be employed to determine
lower bounds on the minimum dynamos size. In [28] immune subgraphs have
been further investigated focusing on the question of determining the size of
the smallest immune subgraph in a given graph. The immunity index of a graph
has been defined as the least integer c1 such that each configuration of size c1 is
immune. The catastrophic index c2 is the smallest integer such that each con-
figuration of size c2 is a dynamo. It is shown that determining whether a graph
has an immune subgraph of a certain given size is NP-complete. Immunity
and catastrophic indices are then studied systematically for various topologies
(tori, hypercubes, butterflies, cube connected cycles . . .). These indices have
been derived also for dynamos evolving to the monochromatic configuration
in a given time t deriving tight trade-offs.

Unanimity rule. Of particular relevance in this context are also the existing
studies on catastrophic fault patterns and deadly sets (e.g., see [10, 41, 42]).
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In fact, these patterns are irreversible dynamos for directed graphs under direc-
tional unanimity (as opposed to majority rule): a node becomes black if all
its in-neighbours (or out-neighbours) are black. They have been studied in
the context of VLS design to analyze the limits of using link redundancy to
achieve fault-tolerance in linear arrays.

4 INTERNAL DECONTAMINATIONS

When internal decontamination mechanisms are in place, a local faulty behav-
ior can be mended by the existing local-majority mechanism: that is, in systems
with internal decontamination, all nodes are subject to the majority rule. In this
case, dynamos are also called reversible. This is the “classical” model stud-
ied in most of the literature on this subject. A comprehensive survey on this
topic already exists (see [44]) so we will only briefly sketch the major results.
Similarly to the irreversible case, determination of minimum size dynamos
has been one of the major focus. However, in most cases, the study has been
restricted to monotone reversible dynamos, where decontamination is ineffec-
tive. In fact, in this case decontamination is in principle possible, however the
dynamos must be designed so to guarantee that a black node never happens
to be in the condition to become white (i.e., decontamination has no effect).

4.1 Dynamics
The majority rule has been studied extensively in the context of discrete
dynamical systems, for example, in neural networks (e.g., see [23, 25]). Let
Xt = (xt (v1), . . . , x

t (vn)) be the global configuration at time t of the n ver-
tices v1, . . . , vn of a graph, where the majority rule is applied synchronously,
at discrete time steps to all vertices. It has been shown by Goles that, for
finite graphs, any sequence {Xt } reaches a period of length at most two [24].
This interesting behavior has been actually shown to hold for a more general
setting (for example, when the majority function is replaced by a threshold
function and when the edges have weights) [25, 47, 48]. This property has
been generalized by Moran in [39] for majority rules over locally finite con-
nected graphs, for which a sufficient condition is given in terms of the “rate
of growth” of the graph. The property has been generalized further to include
local periodicity [22], and also in this more general case a sufficient condition is
provided.

The ring has received special attention due to its application for modeling
biological processes such as the immune system, interaction between cells,
drug scheduling, gene rearrangement. In such cases the interest in fixed-points
is motivated by experiments in molecular biology which have shown that even
very large gene expression networks have only a few stable structures. Several
problems were studied in rings, among these counting the number of fixed
points (e.g., see [1, 2, 26]). For example, in [2] it is shown that the number of
fixed points is only an exponentially small fraction of all configuration. The
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number of fixed points have been studied also in trees in [29] where results
analogous to the ones for the ring are shown. Infinite sequences have been
the object of extensive investigation by Moran ([37–39]) who has provided
conditions for the period-2 property to hold for the particular case of the ring.

4.2 Size of dynamos
The study of reversible dynamos in distributed computing has been introduced
by Peleg [45], whose concern has been mainly the determination of the small-
est size for a dynamo. His work started with the study of 1-time dynamos,
where the monochromatic fixed point has to be reached in a single step (e.g.,
see [4, 43]). A variety of results, mostly on the minimum size of 1-time
dynamos both in general graphs and in specific topologies have been derived,
also considering a more general case when the majority is performed on a
r-neighbourhood. For an extensive and comprehensive survey of all the
existing results on this subject see [44].

The choice of action in case of tie can dramatically influence the dynamics of
the system. Moreover, it is very clear that requiring monotonicity in the process
also strongly influence the dynamics. For example, Peleg proved in [45] a
lower bound of �(

√
n) on the size of monotone dynamos in most variant of

the models, while Berger [5] proved that, without imposing monotonicity, for
every n ≥ 1 there exists a graph G of n or more vertices with a dynamo of
size O(1) in all models.

Some specific topologies have been studied also in the reversible model, but
always with the monotonicity condition, that is when decontamination is inef-
fective. In this context, tori [18] and some interconnection networks have been
studied, where trade-offs between time and size have been determined [16]. In
Tables 5 and 6 the bounds for tori under reversible (but monotone) majority rule
are summarized. Notice that the bounds for irreversible dynamos are smaller
by a factor of two than the ones for reversible monotone dynamos (compare
with Tables 1 and 2). In the case of strong majority the constant becomes 3

2 .
This raises the intriguing question of wether it is possible to transform an
irreversible dynamo into a monotone one using at most twice the number of
initial black nodes ( 3

2 in the case of strong majority).

Simple Majority

Lower Bound Upper Bound

Toroidal mesh a + b − 2 a + b − 1

Torus cordalis b + 1 b + 1

Torus serpentinus min{a, b} + 1 min{a, b} + 1

TABLE 5
Bounds on the size of reversible monotone dynamos for tori of a × b vertices with
simple majority
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Strong Majority

Lower Bound Upper Bound

Toroidal mesh � ab+1
2 	 � ab

2 + min{a,b}
6 + 2

3	
Torus cordalis � ab+1

2 	 � ab
2 + min{a,b}

6 + 2
3	

Torus serpentinus � ab+1
2 	 � ab

2 + min{a,b}
6 + 2

3	

TABLE 6
Bounds on the size of reversible monotone dynamos for tori of a × b vertices with
strong majority

5 EXTERNAL DECONTAMINATION

Decontamination by mobile agents has been extensively studied in various
models in the past thirty years. The underline contamination dynamics can
be very different depending on the application, while the decontamination
process usually works in the same way, as follows. At any time nodes can
be contaminated, clean, or guarded (if they contain at least an agent). All
nodes are initially contaminated except for one (the homebase) where a team
of mobile agents is located. Agents can move in the network from a node to a
neighboruing node and a contaminated node is transformed into clean when
an agent passes by it. The goal is to reach a state when all nodes are clean (or
guarded)�.

As opposed to the dynamics of the previous two Sections, which have
been studied in synchronous settings, when dealing with external decontami-
nation the process has been considered also (and especially) in asynchronous
environments where the actions of the agents, as well as the contamination
of the nodes, occur independently. Moreover, in all cases, the schedule is
deterministic and the worst case is assumed.

A strategy is called monotone if it guarantees that once clean, a node will
never be contaminated again (the set of clean nodes at time t includes the set
of clean nodes at any previous time). In all models the main difficulty derives
from the fact that after being cleaned, a node can get re-contaminated if some
of its neighbours are contaminated. Thus, the decontamination strategy has to
perform the cleaning while avoiding too much recontamination, or avoiding
recontamination all together (for monotone models). Decontamination has to
be executed as efficiently as possible. Efficiency is measured in terms of the
size of the team of agents, traffic (i.e., the number of moves the agents have
to perform), and, in case of synchronous settings, time.

�In a classical model extensively investigated in graph theory, agents can “jump” from a node
to any other node in the graph giving rise to the so called graph search problem (e.g., see [40]),
which we do not discuss here.
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FIGURE 6
A tree with the indication of the minimum number of agents for each starting node.

Contamination by contact. As mentioned, the contamination rule depends
on the application; the most commonly contamination rule employed is “con-
tamination by contact”: a clean node with at least a contaminated neighbour
becomes contaminated. The problem of determining the optimal number of
agents necessary to perform the decontamination in arbitrary topologies is
NP-hard. It has been studied in some specific topologies in the case of mono-
tone strategies, both in synchronous and asynchronous settings. All the results
below are for the case of asynchronous evolution. For example, it has been
shown that it can be solved in linear time in trees [6], where the location
of the homebase influences the required number of agents. In the example of
Figure 6 the minimum number of agents necessary and sufficient to decontam-
inate the tree is indicated for each possible starting location. Optimal strategies
have been studied in chordal rings, tori, and meshes [14, 17], where, besides
determining optimal bounds, the authors have studied the impact on efficiency
of increasing power capabilities of the agents (like, for example, the possi-
bility of “seeing” the state of their neighbours). Arbitrary topology networks
have also been considered: some heuristics have been proposed in [19] and an
exponential move and time solution has been described in [8] to determine an
optimal strategy. Finally, several interesting properties of the decontamination
process and on the relationship between various models have been investigated
in [7, 20, 21]. A topology that has been studied and is perhaps of particular
interest in the cellular automata community is the Sierpiński graph SG(d) (see
Figure 7). In [33] optimal recursive decontamination strategies for Sierpiński

graphs of size n = 3d+3
2 are described, which employ d + 1 agents.

Contamination by majority. A more general rule that has been recently
introduced is the following: a clean node becomes contaminated if at least p

neighbours are contaminated. The contact rule described above would then be
a special case for p = 1. This more general rule is quite reasonable to model
system with a higher level of resistance to recontamination, such as aystems
employing majority-based local voting schemes (in fact, in regular topologies
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FIGURE 7
A Sierpiński graph.

FIGURE 8
A cleaning strategy in the chordal ring when contamination is by contact. The strategy when
contamination is by majority is very similar.

with degree deg, when p = � deg
2 � we have a simple majority rule, when

p = � deg
2 	 we have strong majority). This variant has been introduced in [36]

for the simple majority rule, and very little is known. Monotone protocols and
lower bounds on the number of cleaners and moves necessary for decontam-
ination have been shown for k-dimensional tori and trees. These preliminary
results show that, not surprisingly, the higher resistance has a strong impact
of the minimal size of the team of agents required to clean a given graph. For
example, a a×b torus can be decontaminated with a constant number of agents
when contamination is majority-based, while 2·min{a, b} agents are necessary
when the contamination is by contact. Interestingly, it is easy to see that the
change in re-contamination rule does not always have an impact. Consider, for
example, the case of chordal rings. Regardless of the re-contamination rule,
the number of agents needed to decontaminate the network is �(k), where k

is the length of the longest chord [14, 34]. A strategy for decontaminating a
chordal ring where contamination is by contact is shown in Figure 8. Another
interesting observation concerns tree networks: with contamination by con-
tact the worst possible tree is the binary tree where decontamination requires
�(log n) agents in the worst case [6]; instead, with contamination by majority,
binary trees can be decontaminated by a single agent [36].
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by contact by majority

Chordal Ring C(〈d1, d2, . . . , dh = k〉) �(k) �(k)

Torus (size a × b) �(min{a, b}) �(1)

Hupercube (size n) �( n√
log n

) unknown

Complete Binary Tree (size n) �(log n) �(1)

Sierpiński (size n) �(log n) �(1)

TABLE 7
Summary of bounds on the number of agents in various graphs depending on the
contamination rule

6 CONCLUDING REMARKS

6.1 Open problems
Many problems and questions are open in all the three contamination and
decontamination dynamics described in this survey. We will mention a few
interesting research directions.

In the case of internal decontamination, reversible non-monotone dynamos
have not been studied in any specific topology. Interesting would also be the
study of asynchronous dynamics in these systems: notice that, in absence of
decontamination mechanisms, synchronous or asynchronous updates result
in the same evolution, but this is clearly not the case when there is inter-
nal decontamination. Furthermore, the case when contamination and internal
decontamination follow different rules is totally open. Several computational
issues are also open. For example, it is known that determining whether a
graph has an immune subgraph of a certain size is NP-complete [28]. It is also
known that given a graph, finding a minimum 1-time dynamo is an NP-hard
problem [44]. However, these results have not been generalized for t-dynamos,
and nothing is known in the case of irreversible dynamos.

In the case of external decontamination by majority almost everything is
still open since only a few topologies have been investigated, all of them by
employing simple majority: what happens in other classes of networks? Is the
presence of majority-based contamination going to cause dramatic improve-
ments in other networks, comparable to the ones observed in toroidal meshes
and trees? And if not, why? Another, more fundamental question relates to the
monotone nature of the solution protocols. If we remove monotonicity, what
would be the minimum number of agents needed for the decontamination?

6.2 Related work
As mentioned in the introduction, majority rules have been studied in relation
to various applications: for example, they could describe spread of informa-
tion, diffusion of diseases, epidemics, influence and flow of information in
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different environments, such as societies, genetic processes and distributed
systems.

Particular interest in applications of the majority rule can be found in
distributed computing. Arguably the largest related area concerns ways for
overcoming (benign or malicious) failures by a variety of techniques for
reaching agreement between the non-faulty processors of a distributed system
(see [50]). In particular, a technique that makes direct usage of a dynami-
cal process in this flavor for reaching agreement in spite of failures can be
found in [27]. In distributed databases, management algorithms inconsistency
resolution process are commonly resolved by majority voting (e.g., see [9]).
Voting has also been used to enforce data consistency when updating copies
of the same data by forcing changes of majority-based quorum systems (e.g.,
see [46]). In the context of resource allocation, majority voting is typically
employed to ensure mutual exclusion to dedicated resources (e.g., see [49]).

Confining local failures to the vicinity of their origin and preventing them
from spreading in the network has led to the related approach of local mending,
which is also based on majorities [3,30,31]. In this case, a function distributed
among the nodes of a network could be corrupted due to some transient failures
and the goal is to perform distributed mending in time complexity which
depend on the number of failed nodes, rather than on the size of the entire
network.

Finally, the entire approach of self-stabilization can be viewed as deal-
ing with the same general goal of decontamination, albeit using different
techniques [11, 12].
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