
Robots with Lights: Overcoming Obstructed Visibility
Without Colliding

Giuseppe Antonio Di Luna1, Paola Flocchini2, Sruti Gan Chaudhuri3,
Nicola Santoro4, and Giovanni Viglietta2

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti, Università
degli Studi di Roma “La Sapienza”, Rome, Italy

diluna@dis.uniroma1.it
2 School of Electrical Engineering and Computer Science,

University of Ottawa, Ottawa ON, Canada
flocchin@site.uottawa.ca, viglietta@gmail.com

3 Department of Information Technology, Jadavpur University, Kolkata, India
srutiganc@it.jusl.ac.in

4 School of Computer Science, Carleton University, Ottawa ON, Canada
santoro@scs.carleton.ca

Abstract. Robots with lights is a model of autonomous mobile computational
entties operating in the plane in Look-Compute-Move cycles: each agent has an
externally visible light which can assume colors from a fixed set; the lights are
persistent (i.e., the color is not erased at the end of a cycle), but otherwise the
agents are oblivious. The investigation of computability in this model is under
way, and several results have been recently established. In these investigations,
however, an agent is assumed to be capable to see through another agent.

In this paper we start the study of computing when visibility is obstructable,
and investigate the most basic problem for this setting, Complete Visibility: The
agents must reach within finite time a configuration where they can all see each
other and terminate. We do not make any assumption on a-priori knowledge of the
number of agents, on rigidity of movements nor on chirality. The local coordinate
system of an agent may change at each activation. Also, by definition of lights,
an agent can communicate and remember only a constant number of bits in each
cycle. In spite of these weak conditions, we prove that COMPLETE VISIBILITY

is always solvable, even in the asynchronous setting, without collisions and using
a small constant number of colors. The proof is constructive. We also show how
to extend our protocol for COMPLETE VISIBILITY so that, with the same number
of colors, the agents solve the (non-uniform) CIRCLE FORMATION problem with
obstructed visibility.

1 Introduction

1.1 Framework

In the traditional model of distributed computing by mobile entities in the plane, called
robots or agents, each entity is modelled as a point; it is provided with a local coordi-
nate system (not necessarily consistent with that of the other agents); it has sensorial
capabilities, called vision, enabling it to determine the position (within its own coordinate

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 150–164, 2014.
c© Springer International Publishing Switzerland 2014

Robots with Lights: Overcoming Obstructed Visibility 151

system) of the other agents. The agents are anonymous, they are indistinguishable, and
they execute the same code.

Agents operate in Look-Compute-Move cycles: when becoming active, an agent uses
its sensing capabilities to get a snapshot of its surroundings (Look), then this snapshot
is used to compute a destination point (Compute), and finally it moves towards this des-
tination (Move); after that, the agent becomes inactive. In the majority of investigations,
the agents are assumed to be oblivious: at the beginning of each cycle, an agent has no
recollection of its past observations and computations [11]. Depending on the assump-
tions on the activation schedule and the duration of the cycles, three main settings are
identified. In the fully-synchronous setting, all agents are activated simultaneously, and
each cycle is instantaneous. The semi-synchronous setting is like the fully synchronous
one except that the set of agents to be activated is chosen by an adversary, subject only to
a fairness restriction: each agent will be activated infinitely often. In the asynchronous
setting, there is no common notion of time, and no assumption is made on timing of
activation, other than fairness, nor on the duration of each computation and movement,
other than it is finite.

Vision and mobility provide the agents with stigmergy, enabling the agents to commu-
nicate and coordinate their actions by moving and sensing their relative positions. The
agents are otherwise assumed to be silent, without any means of explicit direct com-
munication [11]. This restriction enables deployment in extremely harsh environments
where communication is not possible, i.e an underwater deployment or a military sce-
nario where wireless communication are impossible or can be jammed. Nevertheless, in
many other situations it is possible to assume the availability of some sort of direct com-
munication. The theoretical interest is obviously for weak communication capabilities.

A model employing a weak explicit communication mechanism is that of robots with
lights: in this model, each agent is provided with a local externally visible light, which
can assume colors from a fixed set; the agents explicitly communicate with each other
using these lights [5, 6, 10, 12, 14, 16]. In this model, the lights are persistent (i.e., the
color is not erased at the end of a cycle), but otherwise the agents are oblivious.

The classical model of silent entities and the more recent model of entities with
visible lights share a common assumption, that visibility is unobstructed. That is, three
or more collinear agents are assumed to be mutually visible. It can be easily argued
against such an assumption, and for the importance of investigating computability when
visibility is obstructed by presence of the agents: given three collinear agents, the one
in the middle blocks the visibility between the other two and they cannot see each other.

Nothing is known on computing with obstructed visibility except for the study of
uniformly spreading agents operating in a one dimensional space (i.e., on a line) [3],
and the investigations on the so-called fat agents model, where agents are not points but
unit discs (e.g., [1, 2, 4]). Notice that the fat agents model and our model do share the
common assumption of visibility obstruction, but they are computationally orthogonal
otherwise, and a solution in one model cannot generally be transformed into a solu-
tion in the other. A noticeable difference, for example, is regarding collisions: for fat
agents collisions are allowed and can be used as an explicit computational tool, while for
punctiform agents collisions create unbreakable symmetries and, unless this is the re-
quired outcome of the problem, their avoidance is required by all solution protocols.

152 G.A. Di Luna et al.

In this paper we start to fill this void, and focus on agents with visible lights in
presence of obstructed visibility.

The problem we investigate is perhaps the most basic in a situation of obstructed
visibility, and it is the one of the agents reaching a configuration of complete un-
obstructeded visibility. More precisely, this problem, that we shall call COMPLETE

VISIBILITY, requires the agents, starting from an arbitrary initial configuration where
they are in distinct points but might be unable to see everybody and might not know the
total number of agents1, to reach within finite time a configuration in which every agent
is in a distinct location from which it can see all other agents, and no longer move.

Among the configurations that achieve complete visibility, a special class is that
where all agents are on the perimeter of a circle (not necessarily equally spaced). The
problem of forming any such a configuration is called CIRCLE FORMATION and it has
been extensively studied both in the classical model of silent agents and in the ones with
visible lights (e.g., [7–9, 13, 15]). Unfortunately, none of these investigations consider
obstructed visibility, and their algorithms do not work in the setting considered here.

1.2 Our Contributions

In this paper we study solving COMPLETE VISIBILITY by robots with lights. That is,
we consider autonomous and anonymous agents, each endowed with a visible light that
can assume a constant number of persistent colors, that are otherwise oblivious, and
whose visibility is obstructed by other agents in the line of sight; and we investigate
under what conditions they can solve COMPLETE VISIBILITY and at what cost (i.e.,
how many colors).

We do not make any assumptions on a-priori knowledge on the number of agents,
nor on agreement on coordinate systems, unit of distance and chirality; actually, the lo-
cal coordinate system of an agent may change at each activation. Neither we make any
assumption on rigidity of movements; that is, a move may be stopped by an adversary
before the agent reaches its destination; the only constraint is that, if interrupted before
reaching its destination, the agent moves at least a minimum distance δ > 0 (other-
wise, no destination can ever be reached). Also, by definition of lights, an agent can
communicate and remember only a constant number of bits in each cycle.

In spite of these weak conditions, we prove that COMPLETE VISIBILITY is always
solvable, even in the asynchronous setting, without collisions and using a small constant
number of colors. The proof is constructive. We first design a protocol that achieves
complete visibility with six colors under a semi-synchronous scheduler. We then show
how to transform it into an asynchronous algorithm with only four additional colors.
We also show how to extend the protocol so that, under the same weak conditions and
without increasing the number of colors, the agents can position themselves on the
perimeter of a circle. In other words, we also show how to solve the (non-uniform)
CIRCLE FORMATION problem with obstructed visibility.

Due to lack of space, some of the proofs are sketched and some omitted.

1 The actual number of agents may be unknown for several reasons; e.g., if the deployment of
agents has been done by an airplane, a subset of agents may be lost or destroyed during the
landing process.

Robots with Lights: Overcoming Obstructed Visibility 153

2 Model and Definitions

Consider a set of mobile anonymous agents A : {a1, a2, .., an}. Each agent ai has a
persistent state variable si, which may assume any value in a finite set of colors C.
We denote by xi(t) ∈ R

2 the position occupied by agent ai at time t expressed in
some global coordinate system (used only for description purposes, and unknown to
the agents); when no ambiguity arises, we omit the indication of time. A configuration
C is a set of n tuples in C × R

2 each defining the position and color of an agent; let Ct
denote the configuration at time t.

Each agent ai has its own system of coordinates centered in itself, which does not
necessarily agree with those of the other agents, i.e. there is no common unit of measure
and no common notion of clockwise orientation. Agents ai and aj are visible to each
other at time t if and only if the segment xi(t)xj(t) does not contain any other agents.
Let Ct[ai] denote the set of the positions and colors of the agents visible to ai at time
t. We shall call such a set local view. A configuration C is said to be obstruction-free if
∀ai ∈ A we have |C[ai]| = n; that is, if all agents can see each other. Two agents ai
and aj are said to collide at time t if xi(t) = xj(t).

At any time, agents can be active or inactive. When activated, an agent ai performs a
sequence of operations called Look-Compute-Move: it activates the sensors to obtain a
snapshot (called local view) of the positions of the visible agents expressed in its own
coordinate system (Look); it then executes an algorithm (the same for all agents) based
on its local view, which returns a destination point x ∈ R

2 and a color c ∈ C (Compute);
it then sets its own state variable to c and moves towards x (Move), these operations are
considered atomic. The movement may be stopped by an adversary before the agent
reaches its destination; the only constraint on the adversary is that, if interrupted before
reaching its destination, a robot moves at least a minimum distance δ > 0 (otherwise,
no destination can ever be reached).

We consider two schedulers for the activation of the agents: Semi-Synchronous
(SSYNC) and Asynchronous (ASYNC). In SSYNC, the time is discrete; at each time in-
stant t (called a round) a subset of the agents is activated and performs its operational
cycle instantaneously. The choice of the activation is done by an adversary, which how-
ever activates each agent infinitely often. In ASYNC, there is no common notion of time;
each agent is activated independently, and each Compute and Move operation can take
an unpredictable (but bounded) amount of time, unknown to the agent.

At the beginning (time t = 0), the agents start in an arbitrary configuration C0 occu-
pying different positions, and they are black (the state variable of each one is set to a
special symbol ă). The goal is for the agents to reach, in finite time, an obstruction-free
configuration without ever colliding. We call this problem COMPLETE VISIBILITY. An
algorithm is said to solve the problem if it always achieves complete visibility regard-
less of the choices of the adversary, and from any initial configuration.

Let Ht be the convex hull defined by Ct, let ∂Ht = Vt ∪ Bt denote the agents on
the border of Ht, where Vt : {v1, . . . , vk} ⊆ A is the set of agents (corner-agents)
located at the corners of Ht and Bt : {b1, . . . , bl} is the set of those located on the
edges of Ht (edge-agents); let It be the set of agents that are interior of Ht (interior-
agents). Let nt = |Vt| be the number of corners in H0. Given an agent ai ∈ A, we
denote by Ht[ai] the convex hull of its local view Ct[ai]. Let Cc

t indicate the set of

154 G.A. Di Luna et al.

agents in Ct with color c at time t, similarly we define Hc
t [ai] as the convex hull, of

Cc
t [ai]. Analogously defined are the extensions of Vt,Bt, It. Given a configuration C,

we indicate by SEC(C) the smallest enclosing circle containing C (when no ambiguity
arises we just use the term SEC). Given two points x, y ∈ R2 with xy we indicate
the line that contains them, and we use the operator ∩ to indicate the intersection of
lines and segments. Let d(x, y) indicate the Euclidean distance between two points (or
a segment and a point); moreover, given x, y, z ∈ R2 we use ∠xyz to indicate the angle
with vertex y and sides xy, yz. In the following, with an abuse of notation, when no
ambiguity arises, we use ai to denote both the agent and its position.

3 Complete Visibility in SSYNC

In this Section we provide an Algorithm that reaches Complete Visibility in the semi-
synchronous setting. The algorithm is described assuming |V0| ≥ 3; we will then show
how the agents can easily move to reach this condition starting from a configuration
with |V0| = 2.

Our algorithm works in two phases: (1) Interior Depletion (ID) and (2) Edge Deple-
tion (ED). The purpose of the Interior Depletion phase is to reach a configuration CID
in which there are no interior-agents. In this phase, the interior-agents move towards
an edge they perceive as belonging to the border of the convex hull, and they position
themselves between two corner-agents. At the end of this phase, all agents are on ∂H0.
The goal of the Edge Depletion phase is to have all agents in BID to move so to reach
complete visibility.

3.1 Phase 1: Interior Depletion Phase

Initially all agents are black. The objective of this phase is to have all agents on ∂H0,
with the corner-agents colored red and the edge-agents colored brown.

Notice that corner (resp. edge) agents are able to recognize their condition in spite of
possible obstructions. In fact, if a black agent ai is activated at some round r, and it sees
that Cr[ai] contains a region of plane that is free of agents and wider than 180◦, then
ai knows it is a corner and sets its variable si to red. A similar rule is applied to edge-
agents; in this case, an edge-agent ai sets its variable si to brown if Cr[ai] contains a
region of plane free of agents and wide exactly 180◦ (see Coloring Case of Figure 1).

In the ID phase, corner-agents color themselves red, and no longer move, while edge-
agents color themselves brown. Each interior-agent a moves to position itself on one of
its nearest visible edges of ∂H0; note that an edge of ∂H0 can be recognized in a’s
local view once it is occupied only by brown and red agents. To prevent collisions,
the interior-agent moves towards the chosen edge e perpendicularly if and only if it is
one with minimum distance to e and its destination on e is empty; otherwise it does not
move. An edge-agent on the destination of an interior one, slightly moves to make room
for the interior-agent. The INTERIOR DEPLETION algorithm is detailed in Figure 1.

It is easy to see that at the end of this phase, all the agents will be positioned on a
convex hull.

Robots with Lights: Overcoming Obstructed Visibility 155

Algorithm INTERIOR DEPLETION (for the generic agent ai activated at round r)

– Coloring Case: if (si = black) then:
• If (ai is a corner-agent in Hr[ai])) then ai sets si = red
• If (ai is an edge-agent in Hr[ai])) then ai sets si = brown

– Interior Case: if (ai is interior in Hr[ai] and si = black) then:
• ai uses its local view Cr[ai] to determine the edges of ∂Hr[ai].
• If (∃e ∈ ∂Hr[ai] such that ∀aj ∈ Ir[ai], d(aj , e) ≤ d(ai, e)) then

∗ ai computes a point x of e such that aix ⊥ e; if x is empty, then ai moves
toward x

– Obstructing Edge Case: if (si = brown) then:

• Let e be the edge to which ai belongs; if (∃aj ∈ Ir[ai]∧sj = black∧ajai ⊥ e),
then ai moves toward the nearest point x ∈ e such that ∀ak ∈ Ir[ai], akx 	⊥ e.

Fig. 1. Algorithm for the Interior Depletion Phase

Lemma 1. For any initial configuration C0 there exists a round r ∈ N
+ such that in Cr

we have that Ir = ∅; furthermore, this occurs without collisions.

Theorem 1. There is a round r ∈ N
+ such that the agents occupy different positions

on Hr. Moreover, the corner-agents are red, and the edge-agents are brown.

3.2 Phase 2: Edge Depletion -ED

The purpose of the ED phase is to move the edge-agents out of the current convex hull
to reach a final configuration whose convex hull includes H0 and all agents are on the
corners, thus achieving complete visibility.

The algorithm makes an edge-agent move from its edge e = v0v1 to a point out of
the current convex hull, but within a safe zone. Safe zones are calculated so to guarantee
that red agents never cease to be located on corners of the current convex hull, in spite
of the movement of the edge-agents. More precisely, the safe zone S(e) of e consists
of the portion of plane outside the current convex hull, such that ∀x ∈ S(e) we have

∠xv0v1 < 180◦−∠v−1v0v1
4 and ∠v0v1x < 180◦−∠v0v1v2

4 (see Figure 2a).
Note that, due to the mutual obstructions that lead to different local views, edge-

agents cannot always compute S(e) exactly (see Figure 2b). In fact, only when there is
a single edge-agent between the two red corner-agents on e, the computation of S(e)
is exact; in any case, we can show that the safe area S′(e) computed by an agent is
S′(e) ⊆ S(e) and thus still safe.

The migration of edge-agents and their transformation into corner-agents occurs in
steps: in fact, if the edge e contains more than one edge-agent, our algorithm makes
them move in turns, starting from the two agents b1 and b0 that are immediate neigh-
bors of the corners v1 and v0, respectively. Only once they are out of the convex hull
and they are corner of a new edge e′, other agents on e will follow, always moving
perpendicularly to e′. Careful changes of colors are required to coordinate this process.

156 G.A. Di Luna et al.

In fact, once the first pair is in position, the two agents will become blue to signal the
other brown agents on e that it is their turn to move out; they will set their color to red
only when there is no interior-agent in the space delimited by e′ and e. Once red, their
color will never change until completion.

Due to the different estimations of S, to semi-synchronicity, and to the unpredictable
distance traversed by an agent (possibly stopped before destination), a variety of situa-
tions could disrupt this ideal behaviour. In particular, it could happen that only one of
the two agents, say b1, moves while the other stays still, or that b1 moves further from
e than b0. In both cases this leads to a configuration in which b0 becomes an interior or
edge-agent. This problem is however adjusted by b1 that, when noticing the situation,
moves towards v1 until b0 becomes a corner in H[b1]. A further complication is that b1
might wrongly perceive b0 as a corner and thus decide not to move; this occurs if v0b0
happens to be collinear with b1 obstructing visibility; such a case is however detected
by b0 itself, which uses a different color (orange) to signal that b1 has to move further
towards v1 to transform b0 into a corner (see Figure 2d).

v−1

v0 v1

v2

b0

Safe Area

b1

(a) Safe Area of edge v0v1: an agent moving inside the safe
area cannot create collinearity with agents on the neighboring
edges

v−1

v0 v1

v2

b0 b1

(b) Approximation of the safe area computed by agent b1
using as reference the two lines v1v2 and v−1b0 . This ap-
proximation is entirely contained in the real safe area

v−1

v0 v1

v2
b0 b1

(c) Creation of a new edge, due to non-rigid movements or
to different approximations of the safe area, agent b1 could
move making agent b0 interior, this condition is adjusted by
letting b1 move towards v1

v−1

v0 v1

v2
b0

b1

(d) b1 could move in such a way to become collinear to
v0b0 , b0 signals this condition by changing its color

Fig. 2. Edge Depletion Phase

The detailed algorithm for the ED phase is reported in Figure 3.

3.3 The case of |V0| = 2

The strategy of the previous Section works for |V0| > 2. It is however simple to have
the agent move to reach such a condition from |V0| = 2, as described below.

When |V0| = 2 the agents are necessarily disposed forming a line and |A| ≥ 2. First
notice that an agent a can detect that the configuration is a line, and whether it is an

Robots with Lights: Overcoming Obstructed Visibility 157

Algorithm EDGE DEPLETION
For agent ai activated at round r; to be executed if and only if �(black, aj) ∈ Cr[ai].

- Execute COMPUTE ORDER and appropriate case from the list below.

– BROWN EDGE CASE: ai belongs to an edge e of Cr[ai] and si = brown.
If ai is the only agent on e then

• ai computes the angles α = 180◦ − ∠v−1v0ai, β = 180◦ − ∠aiv1v2, and γ =
min(α

4
, β
4
); it then computes a point x such that ∠xv1ai < γ and ∠xv0ai < γ.

• ai sets si = yellow.
• ai moves perpendicularly to e with destination x.

If ai is not the only non-red agent on e and one of its neighbors on e is red (by routine
COMPUTEORDER, this agent is v1) then: let b be its other neighbor;
• ai computes the two angles α = 180◦ − ∠aiv1v2, β = 180◦ − ∠v−1bai, and

γ = min(α
4
, β
4
); it then computes a point x such that ∠xv1ai < γ ∧ ∠xbai < γ.

• ai sets si = yellow.
• ai moves perpendicularly to e with destination x.

– YELLOW CASE: si = yellow.
• if there is another yellow or blue agent aj with eai = eaj then

∗ if aiv1 ∩ ajv0 	∈ (aiv1 ∪ ajv0) then ai sets si = blue

∗ if aiv1 ∩ ajv0 ∈ aiv1 then ai moves towards v1 along aiv1 of d(ai,v1)
2

∗ if aj ∈ aiv1 then ai sets si = orange
• else if �(sj , aj) ∈ Cr[ai] with aj 	= ai and eai = eaj and �(sj , aj) ∈ Cr[ai]∩eai

then
∗ ai set si = red

– ORANGE CASE: si = orange.
• if there is another blue agent aj with eai = eaj then

∗ if aj 	∈ aiv1 then ai sets si = blue
– BLUE CASE: si = blue and ai ∈ e with e edge of Cr[ai].

• if there is another orange agent aj with eai = eaj then
∗ ai moves along aiv1 in direction of v1 towards the point at distance d(ai,v1)

2

• else if �(brown, aj) ∈ Cr[ai] such that aj could move to e then
∗ ai sets si = red

– BROWN INTERIOR CASE: ai is such that si = brown and ai ∈ Ir[ai].
• if there exists and edge e′ = axay with sx = sy = blue and ai could move

perpendicularly towards e′ without crossing any segment delimited by two red
agents, then ai moves towards e′.

• if ai ∈ e = a0a1 with e ∈ ∂H{red,brown}
r [ai] and ∃x ∈ R

2 such that a0ai ⊥ xai

and �aj ∈ ∠a0aix or �aj ∈ ∠a1aix then ai executes the second subcase of the
BROWN EDGE CASE.

– CORNER CASE: ai is a corner of Cr[ai] and si = red.
• ai can check local termination and the global termination

∗ ai locally terminates when si = red
∗ ai detects the global termination of ED phase when �(sj , aj) ∈ Cr[ai] with

sj 	= red

Fig. 3. Edge Depletion Phase algorithm

158 G.A. Di Luna et al.

Procedure COMPUTE ORDER

– if ai belongs to an edge e of Hr[ai] and si = brown, it orders the red agents in its
local view in a circular order, starting from the closest, (v1, v2, . . . , v0).

– if si ∈ {orange, blue, yellow}, then ai determines which of its current neighbors was
v1 in its previous computation and the edge eai = v1v0 to which it belonged:
• ai computes the nearest edge e = {u, v} ∈ Hred

r [ai]
• ai computes the point x ∈ R

2 such that is uv ⊥ aix
• ai sets v1 = u, v0 = v if �aj ∈ ∠uxai otherwise it sets v1 = v, v0 = u.
• ai sets eai = v1v0

Color Meaning Transition to:

Black initial color of all agents {Red,Brown}
Brown agents on edges or having to move to a new edge of H Y ellow

Y ellow agents moving out of H to form a new edge {Blue,Orange,Red}
Orange agents needing to be transformed into corners Blue

Blue corner-agent now forming a new edge e, waiting for other
agents to move to e

Red

Red a stable corner-agent −

Fig. 4. Colors used in the COMPLETE VISIBILITY algorithm

extremity (i.e., it sees only one other agents a′), or an internal agent (i.e., it is between
two collinear agents). If a is an extreme, it does not move; if it is an internal agent, a
it moves perpendicular to the segment a′a. This means that, as soon as at least one of
the internal agents is activated, it will move (or they will move) creating a configuration
with |V| > 2. At that point, the algorithm previously described is applied.

3.4 Correctness of the ED Phase

With the following lemma we show that the global absence of interior-agents with re-
spect to the initial convex hull, can be locally detected by each agent.

Lemma 2. Given an agent ai ∈ A with si ∈ {red, brown} and a round r ∈ N
+, if

�(black, aj) ∈ Cr[ai] then Cr does not contain interior-agents with respect to H0.

Proof. By contradiction, assume that �(black, aj) ∈ Cr[ai] but there exists at least an
interior-agent a with respect to H0. By the rules of the ID phase, agent a cannot change
its color from black to another because it can detect it is neither a corner nor a border.
Thus, a is not in Cr[ai] because Cr[ai], by assumption, does not contain black agents.
Thus, it must exist an agent ak that has color different from black and ak ∈ aia. But
since a is interior then also ak is interior, and so sk = black. �Lemma 2

We now show that the safe area S′(e) computed by an edge-agent on e is such that
S′(e) ⊆ S(e) and thus its movement is still safe (it does not transform a red corner into
an interior or edge-agent).

Robots with Lights: Overcoming Obstructed Visibility 159

Lemma 3. Given a configuration Cr and an edge e = v0v1 of Hr, if an agent aj ∈ e
moves from e, it moves inside the safe zone S(e)

Proof. The case when there is a single edge-agent b ∈ e is trivial because b can compute
exactly S(e). Consider now the case when there are two or more edge-agents on e;
among those, let b0 and b1 be the two that are neighbors of v0, v1. Those agents move
only when executing the Brown Edge Case or Brown Interior Case. Let us consider
the movement of the first that is activated, say b1. Agent b1 has two neighbors on e: a
brown neighbor b and the red corner v1. Agent b1 orders the corners in its view from
v1 to vlast, according to its local notion of clockwise, where vlast is the last corner
before b, i.e. v−1 in Figure 2b. Following the rules of the algorithm, b1 computes: α =
180◦ − ∠vlastbb1, β = 180◦ − ∠b1v1v2, and γ = min(α4 ,

β
4). Angle ∠vlastbb1 is

an upper bound on ∠vlastv0b1, otherwise we could get a contradiction since vlastb and
vlastv0 will intersect in two points: one is vlast and the other one is after the intersection
of vlastv0 and v0v1, that is impossible. Thus, α is a lower bound on the angle that a
single agent would compute on e, which implies that b1 will move inside S(e). The
same holds for b0. Notice that, given two points x and y inside the safe zone, any point
z ∈ xy is still inside the safe zone, thus any agent that moves on the lines connecting
two agents inside S(e) will still be in S(e), completing the proof. �Lemma 3

The next lemma shows that the moves of our algorithm cannot transform any red
corner-agents into an interior-agent.

Lemma 4. Consider a corner-agent v1 of Hr′ with s1 = red, we have that ∀r ∈ N
+

with r > r′, v1 is also a red corner-agent of Hr.

Proof. It is easy to see that during the ID phase we have that Hr = H0 since the
interior-agents will never trespass the edges of H0, so the hypothesis holds. We have
to show that the same holds during the ED phase. We have that v1 never moves after
it sets s1 = red so if v1 is a corner it cannot become interior as a consequence of its
own move. Consider the two edges adjacent to v1: e1 = v0v1 and e2 = v1v2. Assume,
by contradiction, that there exists a round r in which the moves of a set X of agents on
these two edges is such that v1 is a corner-agent in Hr−1 but not in Hr. From Lemma
3 we have that agents in X move to points inside the safe zones S(e1) and S(e2) of
e1, e2. Let us consider two points x ∈ S(e1) and y ∈ S(e2), such that agents on them
will make v1 interior. If v1 is interior in Hr, we have that ∠xv1y > 180◦. It is easy
to see that ∠v0v1x < γ (see Brown Edge Case and Brown Interior Case of Figure 3)
and that γ ≤ 180◦−∠v0v1v2

4 , since γ = min(α4 ,
β
4), and that at least one of the two

among β, α is a lower bound on 180◦ − ∠v0v1v2. The same holds for y, so we have
∠v2v1y ≤ 180◦−∠v0v1v2

4 . Thus, we have ∠v0v1x + ∠v2v1y + ∠v0v1v2 < 180◦ and
then ∠xv1y < 180◦, which is a contradiction. So, v1 cannot be interior in Hr. The
same arguments hold if at round r−1 we consider a set of agents X on two edges e′, e′′

that are not adjacent to v1; this is easy to see since, given x ∈ S(e′) and y ∈ S(e′′) we
have ∠xv1y ≤ ∠v0v1v2 < 180◦, which is another contradiction to the hypothesis of v1
being interior in Hr. �Lemma 4

In the next sequence of lemmas, we show that, given an edge e in a configuration C
of the ED phase, all edge-agents in e will eventually became red corners.

160 G.A. Di Luna et al.

Lemma 5. Given a configuration Cr and an edge e of Hr with a single brown agent b
on e, eventually b will be a red corner.

Proof. Since red corners never move and no interior-agents can be moving on e, while
inactive, agent b maintains its single position inside e. When activated at some round
r′, agent b executes the Brown Edge Case with a single agent. Thus b switches color to
yellow and it moves perpendicularly to e of at least min(d(vh, x), δ). At round r′+1, b
is a corner-agent of Hr′+1; in the next activation, after executing the Yellow Case code,
b becomes red. �Lemma 5

Lemma 6. Given a configuration Cr and an edge e ofHr with exactly two brown agents
b0, b1 on e, eventually they will set their state variable to yellow and they will move
outside e.

Proof. Let b1 be the first to be activated at some round r′ ≥ r. At that time, b1 switches
its color to yellow and it moves perpendicularly to e (see Brown Edge Case). Agent b0
will do the same, no matter if it is activated in round r′ or in some successive rounds
(see Brown Edge Case and Brown Interior Case). �Lemma 6

Lemma 7. Given a configurationC, any agent b1 with s1 = yellow eventually becomes
corner and will sets its state variable to red.

Proof. If b1 is yellow then a1 has moved from an edge e = v0v1. If b1 was not the
only agent on e that could move, then there is (or there will be) another yellow agent
b0 moving from e. By construction, b1 waits until it sees the other yellow agent b0 (see
Yellow Case). If both b1 and b0 realize to be corners of the current convex hull, then they
eventually set their color to blue and then to red, thus the lemma is proved. However,
due to the non-rigidity or the different local views of b1 and b0, the pathological case of
Figure 2c may arise where one of the two, say b0, becomes an interior-agent. This case
is adjusted by the Yellow Case rule: each time a1 is activated, it will move towards v1
until a round r′′ is reached when b0 is not interior anymore in Cr′′ [b1]. Note that, since
b1 moves always half of the distance d(b1, v1), and the number of rounds until the next
activation of b0 is finite, we have that b1 will never touch v1. Two possible sub-cases
may happen at round r′′: (i) b1v1∩b0v0
∈ (b0v0∪b1v1): in this case, in the subsequent
activations, b1 and b0 will set their colors to blue; (ii) b1 ∈ b0v0: this might not be
detected by the local view of b1, but it is detected by b0 that sets its color to orange ; in
the next activations b1 will move so to transform b0 into a corner and, after this move,
an activation of b0 will set s0 = blue. So, in both sub-cases we eventually reach a
configuration in which b1 and b0 are blue corner-agents. In the subsequent activations,
they will set their color to red , proving the lemma. �Lemma 7

Lemma 8. Given a configuration C, let e = v0v1 be an edge with q > 2 edge-agents
on it. Eventually all these agents will become corners and set their color to red.

Proof. The two edge-agents b0, b1 ∈ e that are neighbors of red corners, execute the
same code described in the previous lemma. So, they wil reach a configuration Cr′ in
which b0 and b1 are blue corner-agents. In this case, they wait until all the agents on

Robots with Lights: Overcoming Obstructed Visibility 161

e move on the segment b0b1; then, they set their color to red (see the rule 3 of Blue
Case). It is straightforward to see that each remaining agent on e will move now towards
this new edge without colliding, since all movements to the same edge are on parallels
trajectories. It follows that, in finite time, a new edge e′ is formed with q − 2 agents.
Iterating the reasoning we will end up in a case where the number of edge-agents on
the same edge is at most 2, hence, by Lemmas 5-7, the lemma follows. �Lemma 8

Theorem 2. The COMPLETE VISIBILITY problem is solvable in SSYNC by a team of
oblivious, obstructable agents, using five colors without creating any collision.

Proof. From Theorem 1 we have that from any configuration C0 we reach a config-
uration CID where IID = ∅. This is locally detected by agents (see Lemma 2), that
start executing the ED phase. By Lemma 4 we have that the number of red corners is
not decreasing during the execution of the algorithm. From Lemmas 5-8 we have that
eventually each edge-agent a of HID will became a red corner. So we will reach a
configuration Cfinal in which all agents are corner of Hfinal, thus, they cannot obstruct
each other. Moreover, It is easy to see that each agent is able to detect not only local
termination, when it sets its color to red, but also global termination of ED phase, and
thus of the algorithm, when each agent in its local view is red. �Theorem 2

4 Complete Visibility in ASYNC

In this section we consider the asynchronous model (ASYNC), where there is no com-
mon notion of time or rounds, there are no assumptions on time, on activation, on syn-
chronization; moreover, each Compute and Move operation and inactivity may take an
unpredictable (but finite) amount of time, unknown to the agent. As a consequence,
agents can be seen while moving, and their computations and movements may be based
on obsolete information.

Asynchronous Interior Depletion phase. The INTERIOR DEPLETION algorithm of
Sec. 3.1 works also in ASYNC without modifications. We only need to show that the
asynchronous behaviour of the agents, and in particular the asynchronous assignment
of colors, cannot induce a collision among interior-agents. Since agents always move
perpendicularly to the closest edge, it is easy to see that this does not happen and thus
Lemmas 1 and Theorem 1 hold also in the asynchronous case.

Asynchronous Edge Depletion phase. The Edge Depletion phase has to be modified
for ASYNC. To see why the EDGE DEPLETION algorithm would not work, consider,
for example, the Yellow Case in Algorithm 3: it is possible that a moving yellow agent
is seen by another yellow agent, this could lead to scenarios in which an agent assumes
color red while it is on the edge of the convex hull and not on a corner.

The source of inconsistencies is the fact that agents can be seen while in transit. To
prevent this problem we use new colors (yellow moving and blue moving) to signal
that the agents are in transit; those agents will take color yellow (resp. blue) once as
the movement is completed. Using these intermediate colors, we can simulate the ED
phase of the previous Section (for |V0| > 2).

162 G.A. Di Luna et al.

More precisely, in the Edge Depletion algorithm of Figure 3, instead of becoming
yellow, a brown agent becomes yellow moving, turning yellow at the next activation.
Similarly, instead of becoming blue, a yellow agent becomes blue moving, turning blue
only when seeing that the “companion” agent is blue moving or blue.

It is not difficult to see that, with these additional colors, since agents will always
move inside the safe zones of H, the validity of Lemmas 4, 7-8 holds also in ASYNC.

The case of |V0| = 2. When the agents initially form a line, the algorithm described
for SSYNC where the agents first move to a configuration |V0| > 2, and then apply
the general Algorithm, would not work. Consider, for example, the following scenario:
both extreme agents compute and their destination is in opposite direction, but only one
of them actually moves. At this point, the agents on the line set their color to red or
brown , but they will became interior-agents as soon as the slower extreme agent moves
from the line towards its destination, thus changing the convex hull.

The idea is to use a completely different algorithm in ASYNC when the initial con-
figuration is a line (refer to Figure 5b). Two additional special colors (line-extreme and
line-moving) are used. The color line-extreme is taken by the two agents a1 and a2 lo-
cated at the extreme points of the line, x1 and xn, when activated; this color is used to
acknowledge the line condition, and to define the smallest enclosing circle SEC with
diameter x1, xn. Notice that, due to obstructed visibility, the diameter, and thus SEC,
is unknown to the agents. The two extreme agents will never move.

The general strategy is to have the other agents move to points on SEC. First notice
that an agent a can detect that the configuration is a line, either by geometric condi-
tions (i.e., it sees only one or two collinear agents), or by the special color of some
visible agents (line-extreme or line-moving). If an uncolred agent a located in x sees
a line-extreme agent (say a1), then a changes its color to line-moving and it moves
perpendicularly to xx1 toward the perimeter of the circle whose diameter is identified
by a1 and the closest agent b
= a1 on the line xx1 (note that there must be at least
one, possibly the other extreme). A line moving agent follows similar rules; if it can
detect SEC (e.g., it sees two line-extreme) it continues its perpendicular move towards
it. Otherwise, it does not move. It can be shown that, at any time, there is at least one
agent that, if activated, can move. A non extreme agent switches its color to red when
it sees only agents on the SEC; an extreme agents switches its color to red when it sees
only red or line-extreme agents.

It is not difficult to see that this set of rules will allow the agents to reach SEC in
finite time becoming red, and thus to solve the COMPLETE VISIBILITY problem.

Theorem 3. The COMPLETE VISIBILITY problem is solvable in ASYNC by a team of
oblivious, obstructable agents, using eight colors without creating any collision.

5 Circle Formation in ASYNC

When executing the previous algorithm, the agents reach a configuration Cfinal in
which all agents are corners of Hfinal. Starting from this particular configuration it
is possible to arrange the agents in such a way to reach a configuration Ccirc in which
each agent is positioned on the SEC(Cfinal). Note that the solution of the COMPLETE

Robots with Lights: Overcoming Obstructed Visibility 163

VISIBILITY problem when |V0| = 2 already form a circle, hence we focus on the case
|V0| > 2.

b

c a

(a) CIRCLE FORMATION: Agent a is neighbor of an agent b
on SEC , so it moves on line ca in direction of SEC . Dur-
ing this movement, the corner-agents of the convex hull are
not modified, and visibility with the other agents is preserved.

(b) ASYNCH FORMATION FOR |V0| = 2: the two extreme
agents signal the line configuration with color line-extreme,
the other agents move perpendicularly to them until they
reach the SEC whose diameter is defined by the extreme
agents.

Fig. 5. Edge Depletion Phase

Notice that, when all agents are on ∂Hfinal they can compute the sameSEC(Cfinal)
since all the local views are consistent. Moreover, there exists a set of agents X ⊆ A
that are already on SEC, and |X | ≥ 2. The idea of the algorithm is to move all agents
on SEC in such a way that in each point of their trajectories they can see a subset of
nodes Y such that SEC(Y) = SEC(X) = SEC(Cfinal). More precisely, the mov-
ing rule allows agents to move towards SEC if they are “neighbors” (i.e., neighboring
corner) of some agent on SEC in Cfinal (see Figure 5a). Let a be neighbor of some b
already on SEC, and let c be its other neighbor: a will move toward SEC on line ca
guaranteeing that the corner-agents of the convex hull stay corner-agents, and do not
loose visibility with any other agent. Note that, unless in final position, there is always
at least one agent that can move. The algorithm terminates when all the agents are on
SEC.

It is not difficult to see that:

Theorem 4. Starting from a configuration Cfinal in which all the agents are corners,
there is an algorithm in ASYNC that makes the agents reach a configuration Ccirc in
which each agent occupies a different position on SEC(Cfinal) without colliding.

Acknowledgements. This work has been supported in part by the National Science and
Engineering Research Council of Canada, under Discovery Grants, and by Professor
Flocchini’s University Research Chair.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering
many fat mobile robots in the plane. In: Proceedings of the 32nd ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 250–259 (2013)

164 G.A. Di Luna et al.

2. Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility and without
global navigation. In: Int. Symp. on Swarm and Evolutionary Comp., pp. 30–38 (2012)

3. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoretical
Computer Science 399, 71–82 (2008)

4. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theo-
retical Computer Science 410(6-7), 481–499 (2009)

5. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: Syn-
chronizing asynchronous robots using visible bits. In: Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)

6. Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Synchronized dancing of oblivious
chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496,
pp. 113–124. Springer, Heidelberg (2014)

7. Datta, S., Dutta, A., Gan Chaudhuri, S., Mukhopadhyaya, K.: Circle formation by asyn-
chronous fat robots. In: Hota, C., Srimani, P.K. (eds.) ICDCIT 2013. LNCS, vol. 7753,
pp. 195–207. Springer, Heidelberg (2013)

8. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots
with convergence toward uniformity. Theor. Comp. Sci. 396(1,3), 97–112 (2008)

9. Dieudonné, Labbani-Igbida, O., Petit, F.: Labbani-Igbida. Circle formation of weak mobile
robots. ACM Transactions on Autonomous and Adaptive Systems 3(4), 1–16 (2008)

10. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM
2007. SOFSEM, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool (2012)

12. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots with con-
stant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 189–200. Springer, Heidelberg (2013)

13. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc, A.,
Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer, Heidelberg
(2005)

14. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: New directions and
challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS,
vol. 3741, pp. 1–12. Springer, Heidelberg (2005)

15. Sugihara, K., Suzuki, I.: Distributed motion coordination of multiple mobile robots. In: Pro-
ceedings of 5th IEEE Int. Symposium on Intelligent Control, pp. 138–143 (1990)

16. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis,
E., auf der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 291–306.
Springer, Heidelberg (2014)

	Robots with Lights: Overcoming Obstructed Visibility Without Colliding
	1 Introduction
	1.1 Framework
	1.2 Our Contributions

	2 Model and Definitions
	3 Complete Visibility in SSYNC
	3.1 Phase 1: Interior Depletion Phase
	3.2 Phase 2: Edge Depletion -ED
	3.3 The case of |V0| = 2

	3.4 Correctness of the ED Phase

	4 Complete Visibility in ASYNC
	5 Circle Formation in ASYNC
	References

